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ABSTRACT

How to efficiently select highly transferable pretrained
models remains a challenging problem in few-shot seman-
tic segmentation tasks. Existing transferability metrics for
classification tasks are difficult to compute on segmentation
data due to the high-dimensional output of the segmenta-
tion model. In this work, we generalize existing transfer-
ability metrics to efficiently predict the transferability of
semantic segmentation models, by calculating transferability
scores over the sampled pixel-wise features. Then with the
help of transferability, we propose a transferability-weighted
finetuning method which puts more importance on those
low-transferability regions to improve the overall transfer
accuracy on the target task. Experiments on a challenging
benchmark show that the transferability scores produced by
our adaptation method are highly correlated with the ground-
truth transfer accuracy, achieving 0.718 Spearman’s correla-
tion coefficient on average and at least 67× gain on efficiency.
In addition, our transferability-weighted finetuning method
outperforms vanilla fine-tuning by 4% in transfer accuracy.

Index Terms— Transferability estimation, Semantic seg-
mentation, Transfer learning, Model finetuning

1. INTRODUCTION

Obtaining a well-performed semantic segmentation model
usually requires massive labeled data for supervised training.
However, annotating a semantic label mask is costly such
that it is difficult to acquire sufficient training data for diverse
practical scenarios. Therefore, transferring reusable knowl-
edge from related source tasks (models) to the few-shot target
task is an effective way to ease the scarcity of labeled training
data. Given a set of source models and a target task, how to
efficiently select the highly transferable models is an essential
problem in transfer learning.

Early works [1, 2] empirically evaluate the task relation-
ships using the transfer training loss or validation accuracy,
which involves expensive computation in retraining neural
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networks. Recently, a series of works including H-score [3],
LEEP [4], OTCE [5] and LogME [6] attempt to address this
problem for classification tasks (or regression tasks [6]) in the
context of transferability estimation. They work as a func-
tion of the source and target data that efficiently approximates
the ground-truth transfer accuracy. Therefore, the predicted
transferability scores can serve as the indicators of selecting
source models.

However, currently there are few transferability studies on
semantic segmentation tasks. And there are difficulties in ap-
plying existing transferability metrics to segmentation data.
The inherent difference is that the classification or regression
tasks considered in previous works are low-dimensional, i.e.,
a classification model only predicts the category of the in-
put instance, while the segmentation model produces a high-
dimensional output since it classifies each pixel on the in-
put image. Existing transferability scores are computed over
the global feature of the input instance. Applying the same
strategy for segmentation tasks is problematic, since the com-
putation resources and time cost are not acceptable in prac-
tice. Another solution is taking semantic segmentation as
a regression task such that a regression transferability met-
ric like LogME can be applied. However, the regression-
based LogME score is computationally more expensive than
the classification-based LogME, and is prone to memory issue
on practical data.

Consequently, in this work, we propose an adaptation
method generalizing existing transferability metrics to se-
mantic segmentation data. We split the global feature map
into pixel-wise feature representations according to pixel lo-
cations, such that transferability scores can be computed over
the pixel-wise features treating each pixel as an instance of
classifying. The advantages of our adaptation method are
twofold. Firstly, it is compatible with all existing metrics
proposed for the classification task. Secondly, the pixel-wise
feature with less dimensions reduces the computation com-
plexity, and we can further improve the efficiency using a
sampled subset of pixels for transferability estimation.

In addition to using transferability scores for source model
selection, how to enhance the transfer accuracy on the tar-
get task with the help of transferability is another important
problem. As transferability reveals the hardness of transfer,



it inspires us to propose a transferability-weighted finetuning
method. Specifically, it measures the transferability at differ-
ent pixel locations, and then uses it as a weighting coefficient
plugging into the cross-entropy loss function, to encourage
the model to focus more on low-transferability regions. In
summary, our contributions are threefold:

1) An efficient, flexible transferability estimation frame-
work for semantic segmentation tasks. It achieves 0.718
Spearman’s correlation with the ground-truth transfer accu-
racy, and at least 67× gain on efficiency.

2) A transferability-weighted finetuning method which
measures pixel-wise transferability and uses it to improve the
transfer accuracy on the target task, with 4% gain.

3) A challenging benchmark evaluating the performance
of transferability estimation and model finetuning. It contains
diverse cross-domain cross-task transfer configurations, using
four datasets and six model architectures.

2. MEASURING TASK TRANSFERABILITY

2.1. Transferability Definition

Suppose there are a source task dataset Ds = {(xi
s,y

i
s)}Mi=1 ∼

Ps(x,y) and a target task dataset Dt = {(xi
t,y

i
t)}Ni=1 ∼

Pt(x,y), where x represents the input image and y de-
notes the label mask. We have xi

s,x
i
t from the input space

X = RW×H×3, and yi
s,y

i
t from the source label space

Ys = {0, 1}W×H×Cs and the target label space Yt =
{0, 1}W×H×Ct respectively. Here W,H denote the width and
height of image. Cs, Ct represent the number of categories
of the source and target tasks respectively. P (xs) ̸= P (xt)
indicates that there exists domain shift, and Ys ̸= Yt indi-
cates that the semantic contents of two tasks are different. For
neural network based transfer learning, we usually transfer a
source model θs pretrained on the source data to the target
task, in which θs : X → P(Ys) and P(Ys) is the space of
all probability distributions over Ys. Here we also use θs to
represent model parameters.

During the transfer training phase, we first use the source
model parameters θs to initialize the target model θt. Then we
finetune θt on the target training data via supervised learning.
Formally, once the optimized target model is obtained, we
define the empirical transferability as,

Definition 1 The empirical transferability from the source
task S to the target task T is measured by the expected log-
likelihood of the θt on the testing set of target task:

Trf(S → T ) = E
(xt,yt)∈X×Yt

[log P (yt|xt; θt)]

= E
(xt,yt)∈X×Yt

log W∏
j=1

H∏
k=1

P (yj,k
t |xj,k

t ; θt)

 .
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Fig. 1. Illustration of converting an embedded global feature
map θs(x) to be pixel-wise feature representations {vpix

i }.

We follow the convention in deep learning based segmen-
tation paradigm using the pixel-wise cross-entropy loss for
training. In practice, we take the commonly used criteria
MIoU (Mean Intersection over Union) as an approximation
of the log-likelihood. Although the empirical transferability
describes the ground-truth transfer performance, it is compu-
tationally expensive to obtain.

2.2. Adaptation Method

We propose a flexible adaptation method to generalize exist-
ing transferability metrics [3, 4, 5, 6] to work on segmentation
data. It splits the global feature map into pixel-wise features
according to pixel locations, as illustrated in Fig. 1. Formally,
the pixel-wise feature set is defined as,

Dpix = {(vpix
i , ypixi )}N×W×H

i=1 , (2)

where vpix
i ∈ Rd represents the d-dimensional pixel-wise

feature vector from the predicted feature maps {θs(xj)}Nj=1,
and ypixi is the pixel-wise label from the ground-truth label
masks {yj}Nj=1. Here N denotes the number of image sam-
ples, and W,H represent the width and height of the im-
age, respectively. In practice, a common segmentation dataset
with 100 images of size 1024 × 512 contains more than 107

pixels. To ensure the computation efficiency, we randomly
sample a subset of the source data Dpix

s and target data Dpix
t

for computing transferability scores.

3. TRANSFERABILITY-WEIGHTED FINETUNING

Task Transferability scores are very useful in selecting highly
transferable source models. A further question is how to uti-
lize transferability to help downstream transfer learning. We
are inspired to propose a transferability-weighted finetuning
method to enhance the transfer accuracy on the target task, as
shown in Fig. 2.

Specifically, we define a pixel-wise transferability map
t ∈ RW×H , and tj,k represents the transferability score at
a pixel coordinate (j, k), where j ∈ [1,W ], k ∈ [1, H]. For-
mally,

tj,k =

{
Trf({θs(xi

t)
j,k}Ni=1) (for [4, 6])

Trf({θs(xi
s)

j,k}Mi=1, {θs(xi
t)

j,k}Ni=1) (for [5]),
(3)



……

…
…

× ×

……

…
…

log

Transferability weighting map One-hot label Softmax output

Fig. 2. Illustration of transferability-weighted cross-entropy
loss function.

where Trf() is the transferability metric from [4, 5, 6]. Note
that H-score [3] is inapplicable here since it cannot be used
to compare the transferability of a same source model with
respect to different target tasks.

Pixel-wise transferability reveals the hardness of transfer
at a local area, which inspires us to use it as a weighting co-
efficient to encourage the neural network to focus on the low-
transferability regions during the finetuning phase. Formally,
we define a weighting map w ∈ RW×H , where

wj,k = exp(
−tj,k −min(−t)

max(−t)−min(−t)
). (4)

Then the transferability-weighted cross-entropy loss is de-
fined as,

L = −
N∑
i=1

W∑
j=1

H∑
k=1

wj,k
Ct∑
l=1

yj,k,l
i log oj,k,l

i , (5)

where oj,k,l
i is the softmax output of the target model. In

practice, we can use patch-wise transferability to improve the
computation efficiency.

4. EXPERIMENT

4.1. Evaluation Benchmark

We propose a challenging benchmark to evaluate the effec-
tiveness of transferability metrics in source model selection
and transferability-weighted finetuning for semantic segmen-
tation tasks. It contains 18 source models pretrained on three
datasets: BDD100K [7], GTA5 [8], ADE20K [9], with in-
creasing domain shifts and task differences with respect to
the target dataset Cityscapes [10]. More details are described
in Fig. 3 and Table 1. For each source dataset, we pretrain
six models with different architectures including Fcn8s [11],
UNet [12], SegNet [13], PspNet [14], FrrnA and FrrnB [15].
We randomly select four cities including aachen, cologne,
jena, strasbourg from Cityscapes as target tasks. To simu-
late the few-shot transfer learning scenarios, each target task
has 20 labeled images for transfer training.

4.2. Evaluation on Source Model Selection

We adopt the commonly used Spearman’s rank correlation
coefficient (Spearman’s ρ coefficient) and the Kendall rank

Fig. 3. Examples from semantic segmentation datasets.

Table 1. Datasets for semantic segmentation.

Dataset Type Categories Training Scenesamples

Cityscapes real captured 34 3,478 street
BDD100K real captured 19 8,000 street

GTA5 computer game 19 24,966 street
ADE20K real captured 150 20,210 diverse

correlation coefficient (Kendall’s τ coefficient) to evaluate
the correlation between the ground-truth transfer accuracy
(MIoU) and predicted transferability scores. A higher corre-
lation result indicates that the transferability metric is more
accurate in prioritizing transferable source models.

Correlation results shown in Table 2 and Fig. 4 (target
task is aachen) demonstrate that our adaptation method is
effective to generalize existing transferability metrics to se-
mantic segmentation data, where OTCE, LEEP, H-score and
LogME are accurate in predicting the highly transferable
source models, achieving an average of 0.718, 0.705, 0.676
and 0.513 on Spearman’s correlation coefficient, respectively.
In addition, we also notice that with the increasing of domain
gaps and task differences (BDD100K < GTA5 < ADE20K)
with respect to the target task, the transfer accuracy drops as
expected. Moreover, without the requirement on GPU, the
adapted transferability metrics achieve at least 67× gain on
efficiency compared to the empirical transferability (5,840s
(∼ 1.62h) using GPU(NVIDIA TITAN V)).

4.3. Study on Number of Sampled Pixels

To ensure the computation efficiency of transferability esti-
mation, we propose to compute transferability scores over
a sampled subset of pixel-wise features. Fig. 6 presents
the effects of different numbers of sampled pixels on the
accuracy of transferability estimation. It demonstrates that
using a small set of pixels (< 0.3%) achieves comparable
performance as using the full pixels (1, 024 × 512 × 10 =
5, 242, 880). We also notice that the accuracy of LogME
drops with the increasing of pixel number, suggesting that
LogME cannot converge well on a large dataset. Meanwhile,
OTCE is unable to compute over the full pixels due to the
memory limit. So in Table 2, we present the correlation
results of OTCE, LEEP, H-score using 15,000 pixels, and
LogME using 1,000 pixels.
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Fig. 4. Visual comparisons on the correlation between transfer accuracy (MIoU) and predicted transferability scores.

Table 2. Correlation results between transferability metrics
and the ground-truth transfer accuracy (MIoU). For each tar-
get task, the upper row represents Spearman’s ρ coefficient
and the lower row represents Kendall’s τ coefficient. The
bottom row presents the computation time of transferability
metrics for a single source-target pair, which is at least 67×
faster than the empirical transferability (∼ 1.62h).

Target task OTCE LEEP LogME H-score

aachen 0.729 0.748 0.599 0.765
0.538 0.577 0.446 0.616

cologne 0.787 0.796 0.475 0.752
0.647 0.621 0.367 0.542

jena 0.699 0.686 0.587 0.583
0.503 0.490 0.412 0.438

strasbourg 0.657 0.589 0.391 0.604
0.477 0.425 0.255 0.425

Average 0.718 0.705 0.513 0.676
0.541 0.528 0.370 0.506

Efficiency 87.39s 5.25s 4.33s 5.30s

OTCE LEEP LogME

Fig. 5. An example of transferability weighting maps.

4.4. Evaluation on Transferability-Weighted Finetuning

We compare our transferability-weighted finetuning method
with the commonly used vanilla finetuning under diverse
transfer settings. We adopt an Adam optimizer with learning
rate 0.0001 to finetune the source model on the target data
for 20k iterations, and we preserve the checkpoint with best
validation accuracy. Meanwhile, we compute transferability
for each 4× 4 patch instead of a single pixel.

Quantitative comparisons shown in Table 3 demonstrate
that our transferability-weighted finetuning consistently out-
performs the vanilla finetuning in the most of transfer exper-
iments. It achieves 4% MIoU gain on average while tak-
ing OTCE as the transferability metric. As shown in Fig.
5, the weighting maps computed on street-scene segmenta-
tion datasets reveal that the areas surrounding the road exhibit
higher uncertainties in transfer learning.

Table 3. MIoU of transferability-weighted finetuning (FT)
and vanilla finetuning on the target task aachen.

Source Model Vanilla FT
Transferability-weighted FT

OTCE LEEP LogME

GTA5

UNet 0.3113 0.3610 0.3640 0.3632
SegNet 0.4330 0.4324 0.4295 0.4199
FrrnA 0.4033 0.4634 0.4170 0.4228
FrrnB 0.4232 0.4351 0.4369 0.4288
Fcn8s 0.4217 0.4421 0.4397 0.4304
PspNet 0.4664 0.4688 0.4681 0.4660

Average 0.4098 0.4338 0.4259 0.4219

BDD100K Average 0.4541 0.4643 0.4599 0.4580

ADE20K Average 0.3436 0.3553 0.3443 0.3605

Average all 0.4025 0.4178 0.4100 0.4135

Fig. 6. Effects of the number of sampled pixels on computing
transferability scores.

5. CONCLUSION

In this work, we propose a general framework compatible
with existing transferability metrics to efficiently predict the
transfer accuracy of semantic segmentation models, which
is useful in source model (task) selection. Moreover, we
propose a transferability-weighted finetuning method to im-
prove the transfer accuracy for a given source-target task pair.
Our method consistently outperforms the vanilla finetuning
method in diverse transfer configurations. Future studies may
further improve the accuracy of transferability estimation
with involving more inherent characteristics of segmentation
data like geometric relationships.
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