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Abstract

Maintaining accurate topology in image segmentation, especially for tubular struc-
tures such as borders of neurons, vessels or roads, is essential in many research fields
but remains unsolved. Existing neural segmentation networks are prone to topological
errors on these fine-scale structures. We propose a skeleton-based hard pixel mining
strategy and incorporate it into training end-to-end segmentation networks. In particular,
we penalize the most topology-relevant yet mis-segmented pixels in overall cost func-
tion. Skeletal hard pixels are mined through several simple logical and morphological
operations which are fast and scalable. We evaluate our method on six public datasets of
different domains, including neurons, roads and coronary arteries. Our approach demon-
strates training speed comparable to the base model, while achieving a significant reduc-
tion in the number of erroneous connected components by 17.14% and loops by 53.87%,
respectively. Extensive experimental results demonstrate that our method outperforms
state-of-the-art computational topology-based method in topological preservation while
maintaining competitive volumetric accuracy. Code is available at the public git reposi-
tory: https://github.com/wlsdzyzl/toposeg.

1 Introduction

As a fundamental task in computer vision, image segmentation has been widely studied and
undergone significant developments since the emergence of deep learning. State-of-the-art
segmentation models learn multi-scale feature representations through convolutional layers
and generate high-quality predictions with satisfactory per-pixel accuracy. Unfortunately,
existing methods still suffer from the inaccurate topology of predictions when facing tubular
or network-like structures such as blood vessels, nerve cells, road networks and circuits,
because topologically incorrect predictions like structures with unintended breaks, may have
very few per-pixel errors. On the other hand, topologically accurate segmentation of these
structures is crucial in various applications [22, 23, 42]. For example, the correct topology
of road networks is necessary for optimal path planning in smart transportation as shown in
Fig. 1. In biomedical engineering, predicting the accurate topology of vessels and neurons
is helpful for analyzing pathological mechanisms and developing new therapies.
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Focusing on hard pixels is a common way to improve the performance of image seg-
mentation models. One of the simplest hard pixel selection methods is to use a threshold
to determine the predicted label map [57]. All mis-segmented pixels are considered as hard
pixels. Another common solution is to assign a continuous weight map based on the pre-
dicted probability and label [7, 24, 29, 41]. These methods perform operations on the whole
image and effectively attack class imbalance, but they are not sensitive to topological errors.
Hu et al. [20] propose a computational topology-based loss function that enforces a segmen-
tation to have the same Betti number as the ground truth. This strategy has three obvious
drawbacks. First, directly aligning the topological features of prediction and ground-truth is
insufficient from a geometric perspective. Secondly, the dimensions of topological features
need to be carefully chosen according to the specific characteristics of the datasets. Ad-
ditionally, the expensive computational complexity of topological feature analysis makes it
challenging to extend persistent homology-based methods to 3D images.

Figure 1: Significance of topological accuracy in road segmentation and subsequent route
planning. The figure contains an aerial image from Massachusetts alongside two segmented
road maps predicted by U-Net (top) [40] and ours (bottom), respectively. These two seg-
mentation results achieve similar quality in per-pixel accuracy, but the top one is observed to
have more broken roads. Road graphs are extracted from these segmentation [6] and further
generate different optimal paths to visit the four locations in the image, which are depicted
in red and blue, respectively. Bottom segmentation is evidently preferred, because the blue
path is much shorter than the red one.

Our method follows the insight behind hard pixel mining (HPM) and tries to emphasize
the importance of the most topology-relevant hard pixels.We adopt the skeleton representa-
tion to identify hard pixel due to the work by Choi et al. [10] which proved that the skeleton
of an object serves as a strong deformation retract of the original structure and preserves all
crucial topological information. In this study, we mine mis-classified skeletal pixels as hard
pixels through several simple morphological operations, leading to only a small increase
in computational and storage burden. We believe these hard pixels are topologically critical
and assign them increased weights for topology preservation. This simple strategy makes our
method suitable for training large image patches, allows it to be seamlessly plugged into the
training of arbitrary segmentation networks. Additionally, our method achieves competitive
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quality in terms of volumetric metrics and demonstrates superiority in topology preservation
compared to existing approaches, including persistent homology-based methods.

2 Related Works

Fine-grained segmentation: Various models are proposed to capture fine details of objects
in dense image segmentation. Long et al. [30] firstly introduce a fully convolutional network
with a skip architecture for semantic segmentation. Chen et al. [8, 9] explore atrous convo-
lution and combine the network with a fully connected conditional random field. Noh et al.
[36] learn a deconvolution network with deconvolution and unpooling layers. Li et al. [28]
fuses hierarchical features captured by a global transformer and dual local attentions. Deng
et al. [13] propose a scale-aware controller to model scale information in renal pathological
images. All these methods represent improvements in model architecture and demonstrate
notable enhancements in segmentation quality. However, they focus on pixel-wise accuracy
and are topology-agnostic.

Class imbalance: The training of tubular structure segmentation model usually faces a large
foreground-background imbalance, especially for 3D images [49]. A common approach for
addressing class imbalance is to perform hard case mining [17, 45, 48, 53] that selects diffi-
cult samples during training. Another solution involves more complex reweighing schemes.
Rota Bulo et al. [41] implement loss max pooling to reweigh the distribution of each pixel.
Caliva et al. [7] and Kervadec et al. [24] compute weighted loss based on boundary distance.
Although the aforementioned literature has achieved great progress in class imbalance, their
effectiveness in preserving topology is not particularly evident.

Topology preservation: A range of classical algorithms in binary image processing [26,
27, 31, 59] that employ thinning and medial axis techniques have demonstrated their ability
to preserve topology. For topology preservation in non-binary image analysis, while some
random field-based methods [3, 19, 37, 38, 39, 43, 50, 52, 55] that utilize shape priors of
objects have been proven to be effective. Stuhmer et al. [47] and Kong et al. [25] leverage
tree structures in vessel segmentation. Andres et al. [2] investigate the role of closedness
constraints in the graph representation of natural images. Vasu et al. [51] jointly train a
road segmentation model and a pyramidal discriminator for topological correctness. These
approaches require prior assumptions and lack end-to-end topology-preserving solutions.

The closest method to ours is introduced by Shit et al. [44], who implement a differ-
entiable soft skeletonization module through pooling functions and construct a center line-
based Dice loss. However, their skeletonization algorithm is constrained by the box filter
size and incapable of extracting a fine skeleton. In practice, it is also observed that the re-
sult of soft skeletonization does not necessarily maintain the same topological structure as
the original object. Mosinska et al. [35] utilize the output of several filters derived from
a pre-trained VGG19 neural network to formulate the loss function. These specific filters
have been identified as exhibiting a preference for elongated shapes. However, this approach
shows fragility on more complex connections of arbitrary shapes. Hu et al. [20, 21], Yang
et al. [56] and Clough et al. [12] propose topology-aware cost functions based on persistent
homology and Betti numbers [14, 15]. Nevertheless, the high computational complexity of
topology analysis limits their applications on real image-size patches.
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[nput U-Net Prediction

MSE Loss BCE+Dice
Loss
Hard Pixel
Mining (HPM)

Label
Figure 2: Schematic overview of our training process. The network is trained through a
combination of binary cross-entropy and Dice loss. Meanwhile, HPM is performed over
prediction and ground truth. An additional loss of hard pixels is calculated as topological
constraints.

3 Methods

Our method is designed to address the topological vulnerability of deep segmentation net-
works in the face of tubular structures. An overview of the training process is presented in
Fig 2, in which a U-Net is trained for semantic segmentation. Our HPM module receives
both prediction and ground truth as its inputs and utilizes them to determine a set of hard
pixels. We use a hybrid loss combining binary cross-entropy (BCE) and Dice loss to train
the U-Net. Additionally, we compute the mean squared error (MSE) for these hard pixels,
so that positive hard pixels marked in green are used to preserve connectivity and negative
hard pixels marked in red are used to reduce noise. Assigning a higher penalty to hard pixels
within the overall loss function is crucial for training topology-preserving networks.

The remainder of this section is organized as follows: we give the mathematical for-
mulation of our cost functions in Sec. 3.1. Sec. 3.2 introduces our HPM module. Sec.3.3
explains several crucial details of the training algorithms. While we focus on a specific net-
work architecture, it is important to note that our method is generalizable and can be applied
to arbitrary segmentation models.

3.1 Cost Function

As mentioned before, the base model is trained with a combination of BCE and Dice loss.
We further add a HPM-based cost to enhance the model’s ability of topology preservation.
The overall loss function can be formulated as follows:

L = Lpce(p;¥) + Lpice(P;¥) + A - Lupm(H, P, Y), 1)

where p is the estimated likelihood map, y specifies the ground-truth, Lgcg and Lp;ce denote
binary cross-entropy and Dice loss, respectively. BCE directly optimizes probability distri-
butions to achieve high pixel-wise accuracy while Dice loss is more robust to class imbalance
and captures fine structures. Combining them leads to an improved performance which is
commonly used in medical image segmentation. The topological constraint introduced by
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HPM is denoted as Lypm:

1
|H]|

Y. (p[n] —ylh)?, 2

heH

Lupm(H,p,y)

where H is the hard pixel set. The hyper-parameter A controls the strength of topological
constraints and is empirically set to 0.5.

3.2 Hard Pixel Mining

In this section, we focus on how to obtain the hard pixel set H. We start from introducing
a threshold-based HPM in Sec. 3.2.1. In Sec. 3.2.2, we provide a brief overview of a per-
sistent homology-based approach for comparison. The proposed skeleton-based method is
elaborated in Sec. 3.2.3.

3.2.1 Threshold-based HPM

One of the simplest hard pixel mining strategies is to find all mis-segmented pixels that are
determined through a probability threshold. The threshold-based hard pixel mining, which
is called THPM in our experiments, can be formulated as:

Hy={h|(p®y) (] =1}, 3)

where p; is the predicted label map determined by a probability threshold ¢ which is set to 0.6
empirically, @ denotes XOR operator. As shown in Fig. 4(a), THPM selects a large number
of pixels located at the edge of the foreground as hard samples, which are actually trivial for
maintaining the correct topology. Adding penalty on these pixels may lead to a significant
decrease in pixel-level accuracy (see Sec. 4.3).

3.2.2 Persistent homology-based HPM

We also provide an approach named PHPM to mine hard pixels based on persistent ho-
mology, which captures all topological features of given dimensions for the given object and
generates its persistent diagram [14, 16]. Each point from the persistent diagram corresponds
to the birth and death of a topological feature. Similar to [20], we adopt cubical complex for
topology analysis because of its natural adaptability to grid-like data [1, 32, 54], in which
every birth or death of the topological feature can be localized to a certain grid called critical
point. Instead of directly matching and aligning the critical points like Hu et al. [20], we
consider critical points as hard pixels. PHPM can be formulated as follows:

Hy=J Ca(f(p.y.1)), )

deD

where the set D encompasses the dimensions of topological features that hold our interest,
C,(+) denotes the function to get the d-dim critical points of input image and f is a pre-
processing function to reduce the complexity of topology analysis. Specifically, f(p,y,?)
returns a matrix py with the same shape as input p and y. For each quadruplet (py, p;, p,y)
that consists of elements taken from the same position of pz, p;, p and y, we have:

py— {p, if p #; )

y, otherwise.
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The topology of a predicted likelihood map could be very complicated and most of the
topological features are negligible. We use function f to increase the intensity of all true
positive pixels to 1.0 and reduce the intensity of all true negative pixels to 0.0, so that the
topology analysis can pay more attention on mis-segmented pixels. Note that PHPM is an
improved version of [20]. A detailed introduction about PHPM and the comparison between
[20] and PHPM are provided in the supplementary materials.

We visualize the hard pixel set mined through PHPM in Fig. 4(b), where we can see that
PHPM only generates very sparse results. Furthermore, analyzing the topology of an image
patch is quite expensive, which makes it difficult to be applied on large image patches.

Ground Truth y p Prediction
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- L "'.\,.'l —
_ "
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Figure 3: Illustration of Skeleton-based HPM. Skeletons of prediction and ground truth are
used to extract negative hard pixels and positive hard pixels, respectively.

3.2.3 Skeleton-based HPM

To overcome the disadvantages of THPM, we further propose SHPM, a skeleton-based hard
pixel mining strategy. We extract thinner structures of the mis-segmented parts and ignore
topologically irrelevant pixels through several simple logical and morphological operations
as illustrated in Fig. 3. In specific, the skeletons of ground truth and binarized prediction are
extracted by a successive thinning algorithm [59] that iteratively removes pixels on borders of
object until the pattern remains unchanged. We use the skeleton of ground-truth to calculate
positive hard pixels as defined below:

Hpos = {h[ ((p: As(y)) ©s(y)) [A] = 1}, ©)

where A denotes AND operator, s(-) is the skeletonization function that returns a binary
matrix of the same dimension as the input image, where the values of skeletal points are set
to 1. Vice-a-versa, we formulate the mining of negative hard pixels as follows:

Hneg = {h| ((s(p) Ay) ®s(pi)) [A] = 1} ™
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The resulting hard pixel set is the union of the above two:
Hs = Hpos UHneg~ ®)

SHPM emphasizes the importance of skeleton-related mis-segmented pixels as shown in
Fig. 4(c). Because skeleton is a thinner structure compared to the original object and re-
mains the same topology, a reasonable prediction should cover the skeleton of the ground
truth. Conversely, the ground truth should include the skeleton of its predicted counterpart.
Through SHPM we can find the inconsistent parts among these structures. Unlike THPM
that penalizes all mis-classified pixels, SHPM disregards the insignificant false pixels located
at mask borders, so that we can give a higher penalty for incorrect topology.

L - ®

(a) (b) (c)
Figure 4: Comparison of mined hard pixel set with different HPM algorithms. Positive and

negative hard pixels are marked in green and red, respectively. (a) Threshold-based HPM.
(b) Persistent homology-based HPM. (c) Skeleton-based HPM.

3.3 Model Training

Although our proposed method is model-agnostic, we need to select a specific architecture to
validate its efficacy. We choose U-Net as our base model due to its wide applications in both
2D and 3D image segmentation [11, 40, 46]. Our network contains 6 double convolutional
layers with the first three comprising the encoder, where each layer is followed by a max-
pooling layer. Other layers constitute the decoder, with each layer being preceded by an
upsampling layer. Due to the computational complexity, the training data is fed into the
network in a patch manner. The patch size is 256 x 256 for 2D images and 128 x 128 x 72
for 3D images. We use stochastic gradient descent to train the base model with a learning rate
of 0.01. Topology preservation are performed on pre-trained models. When training with
additional loss functions, the learning rates start from 0.001 and follow a plateau schedule.

4 Experiments

4.1 Datasets

We evaluate our method on six public datasets. CREMI-A, CREMI-B, CREMI-C [18] and
ISBI12 [5] are 2D neuron image segmentation datasets, in which each of the first three
contains 125 images of size 1250 x 1250 and the last contains 60 images of size 512 x 512.
The Massachusetts Roads dataset [34] contains 1171 images of size 1500 x 1500 for road
segmentation. ICAS-d contains 100 down-sampled 3D images from a large coronary artery
segmentation dataset ImageCAS [58]. The images have a size of 128 x 128 x 72 voxels.
For all datasets, we perform a five-fold cross validation and report the mean performance
over the validation sets.
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Figure 5: Qualitative results for 2D images. From top to bottom each row shows a result for
the CREMI-A, CREMI-B, CREMI-C and ISBI12 neuron datasets, and the Massachusetts
road dataset. Columns from left to right are the raw images, the ground truths and the
predictions of different approaches. The images indicate that SHPM exhibits superior topo-
logical preservation capabilities. Some of the topological discrepancies are highlighted with
red boxes.

4.2 Evaluation Metrics

We employ volumetric, clustering-based and topology-based metrics to compare the per-
formance of various experimental settings. For volumetric metrics, we compute Dice co-
efficient (Dice) and the mean Intersection of Union (mlIoU). These measurements are
topology-agnostic. Two clustering-based metrics are used to compare the partitioning of
space by segmented tubular structures: Variation of Information (VOI) [33] and Adapted
Rand Error (ARE) [4]. They are topology-relevant because different topology can result
in distinct spatial partitions. ARE is defined as one minus the maximal F-score of the Rand
index, with the background zero component excluded. VOI is a measure of the distance
between two clusters through mutual information. To directly evaluate the topological dis-
agreements between prediction and ground truth, we calculate the mean of absolute Betti
errors over Betti numbers $-0 and -1, that count the number of connected components
and holes, respectively. It is worth noting that, unlike Hu et al. [20] and Shit et al. [44]
only performing topology-based evaluations on random small patches, all our evaluations
are performed on the whole images for both 2D and 3D datasets.
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Table 1: Quantitative experimental results.

Dataset Method Dice  mloU VOI ARE | B-0Error f3-1 Error
U-Net 0.9145 0.8425 | 0.3969 0.2337 2.176 23.960
U-Net + clDice | 0.9148 0.8431 | 0.3958 0.2310 2.200 23.552
CREMI-A  U-Net+ THPM | 0.9007 0.8195 | 0.3752 0.1076 2.016 8.960
U-Net + PHPM | 0.9133  0.8405 | 0.3819  0.2060 2.112 20.352
U-Net + SHPM | 0.9106 0.8326 | 0.3426 0.1042 1.648 7.240
U-Net 0.8545 0.7506 | 1.1442 0.6221 18.296 63.864

U-Net + clDice | 0.8547 0.7507 | 1.1432 0.6168 17.680 63.584

CREMI-B  U-Net+ THPM | 0.8461 0.7368 | 0.7979 0.4074 13.968 29.112
U-Net + PHPM | 0.8540 0.7502 | 1.0444 0.5724 15.672 56.056

U-Net + SHPM | 0.8509 0.7446 | 0.7537 0.3806 11.968 23.832

U-Net 0.8937 0.8083 | 0.6905 0.3693 6.699 46.577

U-Net + clDice | 0.8951 0.8105 | 0.6840 0.3607 6.626 45.967

CREMI-C  U-Net+ THPM | 0.8852 0.7943 | 0.5366 0.2143 5.569 18.260
U-Net + PHPM | 0.8934 0.8077 | 0.6383 0.3243 5.772 39.089

U-Net + SHPM | 0.8915 0.8046 | 0.4990 0.1981 4.520 12.106

U-Net 0.8304 0.7108 | 0.6901 0.1616 3.017 8.300

U-Net + cIDice | 0.8300 0.7102 | 0.6985 0.1706 2.750 7.883

ISBI12 U-Net + THPM | 0.8260 0.7058 | 0.7077  0.1027 3.250 7.433
U-Net + PHPM | 0.8313 0.7123 | 0.6805 0.1400 3.200 7.583

U-Net + SHPM | 0.8314 0.7128 | 0.6759 0.1160 2.900 6.750

U-Net 0.7317 0.5845 | 0.7025 0.3191 9.671 28.116

U-Net + clDice | 0.7307 0.5835 | 0.7520 0.3460 9.759 29.676
Roads U-Net + THPM | 0.7242 0.5744 | 0.5863 0.2501 9.062 22.096
U-Net + PHPM | 0.7295 0.5823 | 0.7339 0.3372 8.826 29.232
U-Net + SHPM | 0.7331 0.5858 | 0.5551 0.2381 7.510 20.332

U-Net 0.6129 0.4482 | 0.0094 0.0011 5.410 0.000

U-Net + clDice | 0.5867 0.4208 | 0.0098 0.0012 6.440 0.000

ICAS-d 3D) U-Net+THPM | 0.6115 0.4453 | 0.0094 0.0011 5.290 0.000
U-Net + PHPM | 0.6059 0.4407 | 0.0091 0.0012 4.590 0.000

U-Net + SHPM | 0.6316 0.4677 | 0.0093 0.0011 4.740 0.000

4.3 Quantitative and Qualitative Results

We compare the segmentation results of U-Net models with different constraints. Center-
lineDice (clDice) [44] is a differentiable skeletonization-based approach. THPM and PHPM
refer to constraints with threshold-based and persistent homology-based hard pixel mining,
respectively. Our proposed skeleton-based method is denoted by SHPM.

Table. 1 shows the quantitative results. Our method demonstrates high superiority in
topology-aware metrics, including two clustering-based metrics and two topology-based
metrics. The method most closely resembling ours in terms of preserving topology is THPM,
but it leads to noticeable decreases in volumetric metrics. On several datasets, clDice out-
performs ours in volumetric metrics, but its ability to preserve topology is limited. The im-
provement of PHPM in topology-preservation is not particularly satisfactory, possibly due to
sparse and inaccurate hard set.

Fig. 5 shows qualitative results of 2D datasets. The masks predicted by ours have more
consistent topology. For 3D images, our method generates more complete results comparing
to other methods as shown in Fig. 6. We also compare the training time as shown in Table. 2.
Training with SHPM is 6.6x and 26.9x faster than PHPM for 2D and 3D image patches.
Compared to training of original U-Net and with THPM, our training speed only decreases
slightly, which implies that our approach is also applicable to larger-scale training.
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Figure 6: Qualitative results for 3D images. We show 3 sample segmentation results from
ICAS-d datasets. Columns from left to right are the visualizations of reconstructed meshes
from ground truth and predictions of different approaches. The predictions by ours (U-
Net+SHPM) have fewer mis-connections and demonstrate a high level of integrity.

Table 2: Model training time for 100 iterations (s).

2D Patch (256 x 256) 3D Patch ( 128 x 128 x 72)
U-Net 1.61 24.21
U-Net + clDice 2.22 27.40
U-Net + THPM 1.65 24.33
U-Net + PHPM 11.83 718.59
U-Net + SHPM 1.78 26.73

5 Conclusion, Limitation & Future Work

We propose a novel loss function based on hard pixel mining to improve the topology preser-
vation performance of neural networks. We introduce and compare Threshold-based HPM
(THPM), Persistent homology-based HPM (PHPM) and Skeleton-based HPM (SHPM), demon-
strating the superiority of SHPM in mining topology-relevant hard pixels. We apply SHPM
into the training of neural networks and achieve superior quality in topology-aware metrics
without a significant compromise on pixel-wise accuracy. Our method is computationally ef-
ficient and can be seamlessly plugged into various learning-based segmentation frameworks.

While the experiments have successfully demonstrated the topology-preserving capabil-
ity of our model, our current implementation is quite simple and can be further improved.
For example, the binary thinning algorithm is implemented on CPU. A GPU-accelerated
skeletonization can further improve the training efficiency, especially for large batch size.
When the tubular structures are extremely thin, such as 1-pixel structures, the skeleton of
prediction can hardly be covered by the ground-truth mask, which makes it difficult to mine
accurate topology-aware hard pixels. In another case, when two patches with different labels
have very similar appearances, our methods might yield the same predictions. The enhance-
ment of model architecture such as introducing local attention mechanisms and hierarchical
structures can be considered in future works to address these issues.
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