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ABSTRACT

Recent advances in foundation models have brought promis-
ing results in computer vision, including medical image
segmentation. Fine-tuning foundation models on specific
low-resource medical tasks has become a standard prac-
tice. However, ensuring reliable and robust model adaptation
when the target task has a large domain gap and few anno-
tated samples remains a challenge. Previous few-shot domain
adaptation (FSDA) methods seek to bridge the distribution
gap between source and target domains by utilizing auxil-
iary data. The selection and scheduling of auxiliaries are
often based on heuristics, which can easily cause negative
transfer. In this work, we propose an Active and Sequential
domain AdaPtation (ASAP) framework for dynamic auxil-
iary dataset selection in FSDA. We formulate FSDA as a
multi-armed bandit problem and derive an efficient reward
function to prioritize training on auxiliary datasets that align
closely with the target task, through a single-round fine-
tuning. Empirical validation on diverse medical segmentation
datasets demonstrates that our method achieves favorable
segmentation performance, significantly outperforming the
state-of-the-art FSDA methods. Code is available at ASAP.

Index Terms— Few-shot domain adaptation, auxiliary
learning, active learning, medical image segmentation.

1. INTRODUCTION

Recent works like SwinUNet [1], MambaUNet [2] and
MONAI [3] develop medical-tailored foundation models
on large-scale medical image datasets. Intense interest has
emerged in adapting these foundation models for specific
medical image analysis tasks. However, the generalization
capability of foundation models is limited by the large vari-
ability in training data, due to complex modalities, intricate
anatomical structures, and wide-range object scales in medi-
cal images. Therefore, we seek to answer this critical ques-
tion: how to effectively adapt these foundation models to our
desired medical image processing tasks?

Unlike natural image analysis with large-scale labeled
datasets, in medical image analysis, annotating disease-
specific medical images is not only time-consuming but also

demands specialty-oriented skills, leading to the problem of
few-shot domain adaptation (FSDA). Most solutions to con-
ventional domain adaptation problems either assume access
to source data [4], which is not always feasible in real-world
medical scenarios with various regulatory standards and eth-
ical considerations, or they require a substantial amount of
unlabeled target data to reduce the distribution gap across
domains, as seen in unsupervised domain adaptation (UDA)
methods [5]. FSDA, on the other hand, addresses the situation
when only a limited number of target examples are available
for training, whether labeled or unlabeled. Previous FSDA
methods [6] propose to use intermediate/auxiliary domains
to facilitate domain adaptation. However, this multi-step do-
main adaptation strategy requires fine-tuning the model twice
or more. In this work, we propose to incorporate auxiliary
datasets to solve the FSDA problem in a source-free manner
through a single-round fine-tuning.

Training with auxiliary data introduces an inductive bias
that helps models capture meaningful representations and
reduces the risk of overfitting to spurious correlations [7].
Multi-task learning methods [8] cannot extend to a large
number of tasks because the complexity of the search space
will be exponentially explosive [9]. Other strategies in auxil-
iary learning and transfer learning hand-pick which auxiliary
data to use based on heuristics [10] or metrics [11] prior
to training, sometimes resulting in sub-optimal outcomes.
Recent dynamic auxiliary learning works [7] propose to dy-
namically combine auxiliary objectives through task or data
schedulers, but these methods involve complex and computa-
tionally demanding bi-level optimization steps.

To address the above issues, we propose an Active and
Sequential domain AdaPtation (ASAP) framework for FSDA.
Using a novel dynamic dataset selection strategy, the pro-
posed framework prioritizes training on auxiliary datasets
with similar solution spaces to the target task in a single-
round computational complexity. Specifically, we formulate
FSDA as a multi-armed bandit problem in active learning [12]
and relate the set of auxiliary datasets to the arms. We intro-
duce the classic trace upper confidence bound algorithm [13]
to solve the multi-armed bandit problem. By balancing the
trade-off between the exploration of unobserved arms and the
exploitation of high-reward arms, we actively and sequen-
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tially select the auxiliary dataset at each turn, maximizing
their benefits. The reward functions we design add minimal
memory and computational overhead.

Extensive experiments on three public medical datasets
validate the effectiveness of our proposed ASAP framework.
We efficiently adapt pre-trained UNet [14], SwinUNet [1]
and MambaUNet [2] from MONAI [3], a freely available
open-source medical resource platform, for various target
medical image segmentation tasks. Our method outperforms
the FSDA auxiliary learning methods with lower computation
costs. Our main contributions are as follows:

• An active and sequential domain adaptation framework:
we propose a novel framework that incorporates auxil-
iary datasets to effectively adapt foundation models to the
target medical segmentation task in a single-round fine-
tuning, optimizing the use of public medical resources.

• An exploration-exploitation balanced FSDA algorithm:
we design an efficient reward function and successfully
apply the multi-armed bandit algorithm to dynamic auxil-
iary dataset selection through the ASAP framework.

2. METHODOLOGY

In this section, we will elaborate on the proposed active and
sequential domain adaptation (ASAP) framework, shown in
Fig. 1. First, we clarify the setting of few-shot domain adap-
tation with auxiliary datasets. Then we formulate it as a multi-
armed bandit (MAB) problem and describe how we solve it.

2.1. Problem definition

For domain adaptation problems, the network is usually
first trained on an adequate source domain dataset DS .
We denote the pre-trained source model as Θs. Given a
small quantity of data belonging to a target domain dataset
DT = {(xt

i, y
t
i)}mi=1, the goal is to adapt Θs to achieve high

performance on DT with access to a set of available auxiliary
datasets DA = {Da1

,Da2
, ...,DaK

}. For all a ∈ A, Da is an
individual auxiliary dataset.

In this work, we formulate the auxiliary data selection
problem in FSDA as a Markov decision process by adopt-
ing the multi-armed bandit (MAB) setting [12]. MAB has
been used in sequential experiment design in active learning,
where the goal is to sequentially choose experiments to per-
form with the aim of maximizing some outcomes. The MAB
learning paradigm involves an agent interacts with an envi-
ronment over N turns by following a policy π. In our work,
the environment consists of the target dataset DT , the set of
auxiliary datasets DA, and the model fθ. The agent learns a
policy π that defines the selection strategy over all Da ∈ DA.
At each turn t, the agent selects one of the environment’s K
datasets Da ∈ DA to jointly trained with DT . The environ-
ment then updates the model fθ. Accordingly, the agent re-
ceives a reward Ra,t and uses it to update the policy π. Re-
wards for unplayed arms are not observed. The goal of the
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Fig. 1: Illustration of our active and sequential domain adap-
tation (ASAP) framework. The agent defines the policy π that
determines which arm to pull. The environment includes the
auxiliary data pool DA, the target dataset DT , and the model
fθ. At each turn t, ASAP executes the four shown steps.

agent is to adopt a policy π that selects actions that lead to the
largest cumulative reward over N turns, R =

∑N
t=1 Rt.

2.2. Deriving an efficient reward function
To ensure that the decision-making process adds minimal
memory and computational overhead, we derive rewards
from the model’s intrinsic information and the optimized
losses, rather than relying on an external model or metric that
requires extra training. To achieve positive transfer during
sequential adaptation, we design the reward with two consid-
erations in mind: positive for model convergence and positive
for joint training with the target task.

Formally, at turn t for the auxiliary dataset Da the reward
of positive for model convergence is defined as:

RPM
a,t = −La,t = −L(fθt ,Da). (1)

Let∇a = ∇θL(fθt ,Da) be the auxiliary dataset gradient and
∇T = ∇θL(fθt ,DT ) be the target dataset gradient, we de-
note the reward of positive for joint training with DT as:

RPT
a,t =

∇a · ∇T

||∇a||2||∇T ||2
. (2)

Overall, at turn t the reward of the auxiliary dataset Da is
defined as:

Ra,t = αRPM
a,t + (1− α)RPT

a,t , (3)

where α is a time-variant weight that decreases with each
selection turn. Considering that Ra,t relies on the loss and
gradients, which are intrinsic to the model, Ra,t is naturally
training-efficient.

2.3. The decision-making policy
To optimize a decision-making policy, we propose to adopt
a trace upper confidence bound (UCB) algorithm [13] where
the agent greedily selects arms according to their upper con-
fidence bound. Formally, after pulling the arm a at turn t, the
agent receives a observed reward Ra,t and then calculate the
estimated mean reward as:

R̂a = (1− β)R̂a + βRa,t, (4)



where β is the smoothing factor [15]. Accordingly, we define
the upper confidence bound based on Hoeffding’s inequality
[13] for arm a at turn t being played na times:

UCBa,t =

{
∞, if na = 0

R̂a +
√

2 ln t
na

, otherwise.
(5)

This allows us to balance the exploitation of arms with a high
predicted reward and the exploration of areas with high un-
certainty. The proposed algorithm is shown in Algorithm. 1.

Algorithm 1 The MAB decision-making policy

Require: DA,DT : Auxiliary and target datasets
Require: fθ: Parameterized model
Require: α, β: Decaying and smoothing factors

1: Initialize fθ0 = Θs

2: Initialize the information of each arm a ∈ A

3:

∀a ∈ A : na = 1,
∇a = ∇θL(fθ0 ,Da),∇T = ∇θL(fθ0 ,DT ),
RPM

a,0 = −L(fθ0 ,Da),RPT
a,0 = cos(∇a,∇T ),

R̂a = 0.5RPM
a,0 + 0.5RPT

a,0

4: for t = 1, 2, . . . , N do
5: Calculate the upper confidence bound for each arm

6: a∗ = argmaxa∈A

(
R̂a +

√
2 ln t
na

)
7: Select the auxiliary dataset Da∗

8: na∗ ← na∗ + 1
9: ∇T ← ∇θL(fθt−1 ,DT )

10: ∇a∗ ← ∇θL(fθt−1 ,Da∗)
11: Update model parameters w.r.t. ∇T +∇a∗

12: Update the reward of the pulled arm
13: Ra,t = αRPM

a,t + (1− α)RPT
a,t

14: R̂a ← (1− β)R̂a + βRa,t

15: Release memory∇a∗ ← 0

16: end for
17: return fθ

3. EXPERIMENTS AND RESULTS

To showcase the flexibility of our ASAP framework, we con-
duct extensive experiments on MRI and CT datasets covering
various modalities and anatomical regions.

3.1. Datasets and Implementation Details
For MRI experiments, we construct the auxiliary datasets
pool based on FeTS 2022 [16] (brain tumor segmentation)
and iSeg2019 [17] (brain tissue segmentation). The auxil-
iary task pool consists of 30 datasets, each with a sample
size exceeding 30. For the target datasets, we use two brain
3D MRI segmentation datasets: the periventricular leukoma-
lacia (PVL) dataset [10], characterized by tissue reduction
in periventricular and manually delineated on each slice of
the patient’s T2 MRI images, and the White Matter Hyper-
intensity (WMH) dataset [18] which segments white matter
hyperintensities on FLAIR MRI images. For CT experiments,
we construct 30 datasets from TotalSegmentator (TOS) [19]

as the auxiliary datasets, based on label diversity and den-
sity. TOS is a whole-body-segmented 3D CT dataset that
contains 117 main default tasks. For the target datasets, we
experiment with vessel and liver segmentation tasks from a
benchmark 3D CT dataset, the Medical Segmentation De-
cathlon (MSD) dataset [20]. For each auxiliary dataset, we
use at most 30 training examples. For each target task, all the
experiments are conducted under the 1-way 3-shot scenario
using 5-fold cross-validation. We experimented with 5, 3,
and 2 target samples, and found that using 3 samples yields
satisfactory results in few-shot settings while also reducing
the size requirements of the target dataset. We implement all
methods on pre-trained UNet [14], SwinUNet [1], and Mam-
baUNet [2], from MONAI [3]. For each kind of foundation
model, we use consistent hyperparameters for all compared
methods. The models are trained using a single A800 80GB
GPU for a maximum of 400 epochs with a learning rate of
0.0003 and weight decay of 1e-7.

3.2. Performance evaluation
We compare our framework with state-of-the-art few-shot
domain adaptation methods: 1) direct fine-tuning (FT) the
source model on the target dataset, 2) GMS [11] identifies one
best auxiliary dataset to aid the target based on gradient mag-
nitude similarity, 3) a mixed-batch multi-task learning (MTL)
framework [8] utilizes all auxiliary data simutaneously, 4)
a dynamic auxiliary learning (DAL) method [9] adaptively
samples the auxiliary data to jointly train with the target
dataset based on gradient alignment. We evaluate the tar-
get segmentation performance using the Dice score and the
mean IoU. A quantitative analysis of model adaptation per-
formance on MRI and CT datasets is detailed in Table 1.
The proposed ASAP framework outperforms all the baselines
on all datasets, across modalities and anatomical regions.
We also present the WMH and liver segmentation results
on MambaUNet of different methods, clearly demonstrating
the enhancements our method brings to the target few-shot
medical image segmentation tasks, as shown in Fig 2.

3.2.1. Effectiveness of exploring and exploiting

The a-priori dataset selection method GMS is inferior to ours
because it relies solely on exploiting the relations determined
prior to training, but never exploring, e.g., as observed in the
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Fig. 2: Visualization of different domain adaptation methods
performance of two specific target tasks: WMH segmentation
on MRI images and liver segmentation on CT images, both
using MambaUNet. The pixels highlighted in red represent
incorrect predictions.



Table 1: Results of different domain adaptation strategies on MRI (left) and CT (right) datasets for three models. The segmen-
tation evaluation metrics are the Dice score and the mean IoU score. Bold number: best score.

Target Method UNet SwinUNet MambaUNet

Dice (%) mIoU (%) Dice (%) mIoU (%) Dice (%) mIoU (%)

PVL

Direct FT 23.48 13.82 18.35 10.48 27.20 16.18
GMS (NIPS’ 20) 23.50 13.56 20.41 11.86 27.45 16.72
MTL (MIA’ 23) 20.79 11.70 14.62 8.41 19.02 11.09
DAL (NIPS’ 24) 26.76 15.99 19.65 11.26 26.92 16.23

ASAP (Ours) 27.95 16.80 22.16 13.02 30.06 18.48

WMH

Direct FT 57.03 40.78 64.24 48.79 62.35 45.51
GMS (NIPS’ 20) 52.86 39.40 64.54 50.91 65.78 50.36
MTL (MIA’ 23) 58.13 41.29 53.69 38.83 53.81 38.76
DAL (NIPS’ 24) 62.74 46.75 67.16 51.47 63.62 48.68

ASAP (Ours) 66.94 53.10 67.62 52.04 71.06 56.04

Target Method UNet SwinUNet MambaUNet

Dice (%) mIoU (%) Dice (%) mIoU (%) Dice (%) mIoU (%)

Vessel

Direct FT 48.70 33.13 41.31 26.64 49.08 33.39
GMS (NIPS’ 20) 48.74 33.85 36.16 22.51 46.62 40.94
MTL (MIA’ 23) 22.64 13.12 32.23 19.58 35.05 21.86
DAL (NIPS’ 24) 45.78 30.33 41.24 26.81 44.54 30.91

ASAP (Ours) 49.22 33.55 48.05 32.81 49.27 33.34

Liver

Direct FT 79.79 66.97 84.86 74.63 84.40 73.67
GMS (NIPS’ 20) 90.88 83.50 86.99 77.53 90.04 82.20
MTL (MIA’ 23) 81.15 71.52 85.56 75.80 91.26 84.11
DAL (NIPS’ 24) 91.66 84.22 84.06 73.05 87.71 78.50

ASAP (Ours) 92.10 85.61 87.27 78.67 92.91 86.95

vessel experiment on the right side of Table 1. In contrast,
the multi-task learning (MTL) framework continuously ex-
plores all auxiliary data but never exploits knowledge of their
relation to the target, leading to unsatisfactory results, e.g., as
observed in the WMH experiment on the left side of Table 1,
with significantly increasing training time–up to 34 times
longer than direct fine-tuning. By balancing the trade-off
between exploration and exploitation, our ASAP achieves a
24.39% gain on WMH compared to MTL, and a 13.18% gain
on vessel segmentation compared to GMS in Dice scores.

3.2.2. Effectiveness of the efficient reward function

Compared to static dataset selection methods GMS and MTL,
DAL offers a relatively better solution by dynamically select-
ing the auxiliary data based on gradient alignment. However,
our reward function, with the consideration ofRPM term, the
reward of positive for model convergence, serves as a more
effective guide to enable the model to deliver superior perfor-
mance. Meanwhile, the proposed reward functions only rely
on the losses and gradients, which are intrinsic to the model,
making it naturally training-efficient: it took 7.93 hours to
adapt the MambaUNet for the target task vessel segmenta-
tion, compared to 33.49 hours in MTL, 8.10 hours in DAL,
and 7.82 hours in GMS, the a-priori dataset selection method,
with the same batch size of 4 and input size of 32 x 240 x 240.
As per our policy, we update only the selected arm’s reward
during training, which keeps the additional complexity stable,
irrespective of the size of the auxiliary data pool.

3.2.3. Investigating the active and sequential training dy-
namics.

A closer look at the selected auxiliary tasks illustrates the ac-
tive and sequential adaptation training mechanism, visualized
in Fig 3. We show the selected auxiliary datasets at different
turns for target tasks WMH segmentation on MRI images and
liver segmentation on CT images. Interestingly, the policy
does not initially sample the task experientially similar to the
target. Instead, it sequentially selects the auxiliary dataset that
progressively aligns with the target. Despite lacking access to
the source domain, we can still effectively narrow the domain
discrepancy by following this step-by-step knowledge acqui-
sition, demonstrating the strength of the active and sequential
domain adaptation framework.

TargetThe Selected Auxiliary Dataset

WMHturn 0 turn 200 turn 400 

Liverturn 0 turn 200 turn 400 

Fig. 3: A 3D visualization of the active and sequential training
process. The figure shows the selected auxiliary datasets at
turn 0, turn 200, and turn 400, for two specific target tasks.
The images are presented alongside their ground truth.

4. CONCLUSION
We propose a novel active and sequential domain adaptation
(ASAP) framework to adapt foundation models for the few-
shot medical image segmentation tasks. With our desiderata
in mind, the proposed ASAP achieve: 1) no requirement for
access to the source domain or a substantial amount of target
data, 2) incorporation of auxiliary data with dynamic schedul-
ing of prioritized learning, adding minimal extra memory and
computational overhead, 3) effective and efficient adaptation
of foundational models, leading to strong performance on the
target task. The results of experiments on three benchmark
medical datasets show that the proposed method achieves
state-of-the-art performance in foundation model adaptation
problems within the realm of medical image processing.
We believe our proposed approach will better leverage public
medical resources, including foundation models and available
auxiliary datasets, to tailor a model for the desired few-shot
target task in a fast and scalable way.
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