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• Face rectification with image warping destroys local 
texture while increasing the semantic alignment.

• Each pixel on feature map describes a patch on original 
image. It saves texture information in channel dimension.

• Warping on feature maps is less harmful to texture 
information, which is important for recognition.
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Conclusion

Face rectification 

• reduces geometric variation of face images → makes it 
easier for CNN to recognize profile faces.

• is realized via image warping, which relocate pixels 
according to their semantic. (Side effect: Image warping is 
destructive to texture, which is important to recognition.)
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• Conduct face rectification on feature maps.

1. Compute transformation parameters from original 
images.

2. Apply image warping on feature maps at a selected 
stage with the pre-computed parameters.

• Combined with various face rectification methods: 
GridFace[1], STN-TPS[2]. 

Results

Table 1. Face identification accuracy.

• Conducting face rectification on feature maps at an 
appropriate stage can achieve better performance than on 
original images.

• Feature maps save texture information in channel 
dimension and thus are robust to spatial transformation 
(warping).Figure 1.  Face rectification on original images
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Figure 2.  Semantic correspondence of feature 
map and original image

On feature map, a pixel vector is computed 
from a patch on the original image and 
saves local texture information.

Figure 3.  Face rectification on feature maps
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Method
MultiPIE IJB-A

60° 75° 90° top-1

w/o face rect. 97.17 92.32 79.81 91.25

Grid@Img 97.99 94.86 86.77 91.45

Grid@Fmap-0 97.98 94.88 87.00 91.78

Grid@Fmap-1 98.04 94.91 87.60 92.01

TPS@Img 98.30 95.21 87.52 91.62

TPS@Fmap-0 98.39 95.26 87.48 92.09

TPS@Fmap-1 98.62 96.00 88.92 92.58

TPS@Fmap-2 98.00 94.71 86.65 91.40

TPS@Fmap-3 98.06 94.29 84.49 91.35

Method
MultiPIE IJB-A

60° 75° 90° top-1

w/o face rect. 94.69 87.96 72.05 90.47

TPS@Img 97.34 93.30 82.83 90.90

TPS@Fmap-0 97.24 93.43 82.10 90.84

TPS@Fmap-1 96.97 92.96 80.98 90.57

Table 2. Performance with CNN that uses 1x1 convolutional 
kernels in input layer and 1st stage.

• With both GridFace and STN-TPS, applying face rectification 
on feature maps at stage 1 is best in face recognition task.

• If convolution kernels in CNN part I are replaced with 1x1 
conv, where pixels on feature maps no longer contain 
texture information, applying rectification on feature maps 
brings no performance boost.

• Conducting face rectification on feature maps also has side 
effects. I have not figured out why.
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