

Abstract

- Face rectification with image warping destroys local texture while increasing the semantic alignment.
- Each pixel on feature map describes a patch on original image. It saves texture information in channel dimension.
- Warping on feature maps is less harmful to texture information, which is important for recognition.

Face rectification

- reduces geometric variation of face images \rightarrow makes it easier for CNN to recognize profile faces.
- is realized via image warping, which relocate pixels according to their semantic. (Side effect: Image warping is destructive to texture, which is important to recognition.)

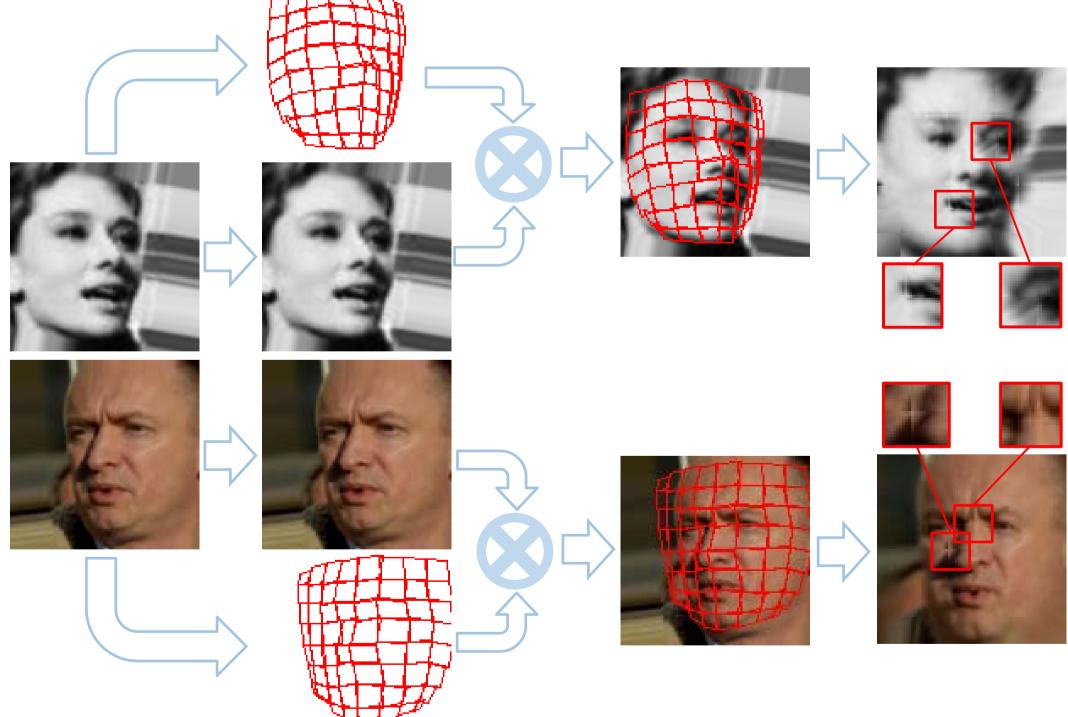


Figure 1. Face rectification on original images

On feature map, a pixel vector is computed from a patch on the original image and saves local texture information.

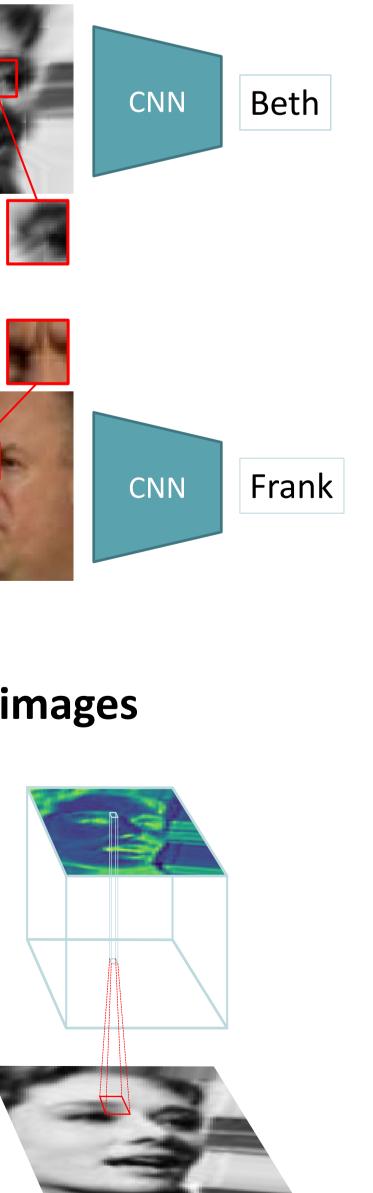


Figure 2. Semantic correspondence of feature map and original image

Face Rectification on Feature Maps for Recognition

Peng Lu

SIGS, Tsinghua University, China

Method

- Conduct face rectification on feature maps.
 - 1. Compute transformation parameters from original images.
 - 2. Apply image warping on feature maps at a selected stage with the pre-computed parameters.
- Combined with various face rectification methods: GridFace[1], STN-TPS[2].

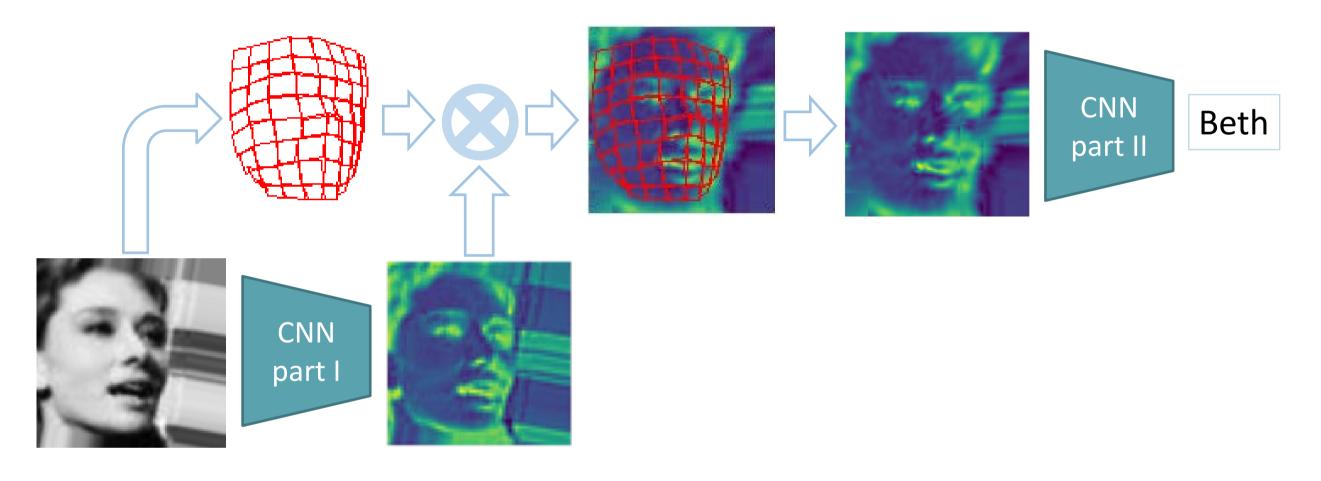


Figure 3. Face rectification on feature maps

Results

Method	MultiPIE			IJB-A
	60°	75°	90°	top-1
w/o face rect.	97.17	92.32	79.81	91.25
Grid@Img	97.99	94.86	86.77	91.45
Grid@Fmap-0	97.98	94.88	87.00	91.78
Grid@Fmap-1	98.04	94.91	87.60	92.01
TPS@Img	98.30	95.21	87.52	91.62
TPS@Fmap-0	98.39	95.26	87.48	92.09
TPS@Fmap-1	98.62	96.00	88.92	92.58
TPS@Fmap-2	98.00	94.71	86.65	91.40
TPS@Fmap-3	98.06	94.29	84.49	91.35

 Table 1. Face identification accuracy.

- brings no performance boost.
- effects. I have not figured out why.

Method	MultiPIE			IJB-A
	60°	75°	90°	top-1
w/o face rect.	94.69	87.96	72.05	90.47
TPS@Img	97.34	93.30	82.83	90.90
TPS@Fmap-0	97.24	93.43	82.10	90.84
TPS@Fmap-1	96.97	92.96	80.98	90.57

Table 2. Performance with CNN that uses 1x1 convolutional kernels in input layer and 1st stage.

- original images.
- Feature maps save texture information in channel (warping).

[1] Erjin Zhou, Zhimin Cao, and Jian Sun. Gridface: Face rectification via learning local homography transformations. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 3–19, 2018. [2] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In Advances in neural information processing systems, pages 2017–2025, 2015.

• With both GridFace and STN-TPS, applying face rectification on feature maps at stage 1 is best in face recognition task.

• If convolution kernels in CNN part I are replaced with 1x1 conv, where pixels on feature maps no longer contain texture information, applying rectification on feature maps

• Conducting face rectification on feature maps also has side

Conclusion

• Conducting face rectification on feature maps at an appropriate stage can achieve better performance than on

dimension and thus are robust to spatial transformation

References