
Debugging Neural Networks
Riccardo Mattesini
Tsinghua University
Shenzhen, China

mattesinir10@mails.tsinghua.edu.cn

Sebastian Beetschen
Tsinghua University
Shenzhen, China

beetschens10@mails.tsinghua.edu.cn

Bunchalit Eua-arporn
Tsinghua University
Shenzhen, China

eua-arpornb10@mails.tsinghua.edu.cn

Abstract—We present a new perspective to feature visualization
by synthesizing human interpretable images to analyze the
robustness of any given classifier. For this, we use a recent method
for feature visualization by employing a GAN as an image prior,
which has proven to create better results than hand-designed
image priors. We show that this method of feature visualization
can be used to indicate if a classifier, which is trained on a very
small and homogeneous dataset, is overfitted without the need
for data. Due to the extremely limited timeframe available, we
focused our project on the first experiment and expound the
theory behind it clearly.
As future work, we envision to complement our work and bring it
all together to an easy and quick to use tool to give systematically
insight into the inner workings of any classifier network.

Index Terms—feature visualization, activation maximization,
GAN

I. INTRODUCTION

Deep neural networks employ elaborate mathematical mod-
els to treat data in complex ways. Convolutional neural
networks (CNNs) uncover hidden features from the pixels
of an image. Feature Visualization makes use of Activation
Maximization (AM) to visualize these acquired features [1].
In the 1950s, Hubel and Wiesel studied a cat’s brain. While
showing the cat different images projected on a screen, they
recorded the firings of its neurons in the primary visual cortex.
[2] This experiment allowed the two scientists to visualize the
areas that each figure was ”highlighting” in the cat’s brain,
e.g. oriented edges were causing a high response from some
specific cells, called edge detector, and those images causing
the response are called preferred stimuli.
Analogue to the neuroscience scenario, identifying which
features each neuron in an artificial neural network has learned
to detect or what information its firing represents, is the
scope of Feature Visualization (FV). This result is achieved by
generating idealized examples of what the deep neural network
is trying to grasp from the data. The need for neural networks
to be interpretable to humans has lead researchers to develop a
variety of Deep Visualization (DV) techniques, e.g. activation
maximization, which aims at better understanding DNN by
exploiting this analogy between biological and artificial neural
networks.
Yet, an important remark is that in real life, combinations
of neurons of a neural network, more than a single neuron
itself, cooperate to represent images. We can think about these
combinations geometrically, by first defining an activation
space to be the space of all possible combinations of neuron

activations. In this space, the individual neuron’s activations
create a basis. Vice versa, when we combine some of these
neuron activations in this activation space, what we get as a
result is simply a vector. [3]
As we can see, there are many different approaches but,
however, as there is not yet a true insight of when and
why a model works, developing high-quality and reliable
DNN models relies, typically, on a series of trials and errors
approach. For this reason we want to create and present in
this paper a visual approach for better process, investigate and
understand deep CNNs.

II. RELATED WORK

The quest for better understanding the inner workings of
neural networks has a long history. Already the ancient Greeks
made thoughts about how the human brain works. However,
the first to conduct a scientifically modern study about how
neurons in the human brain activate in response to certain
stimuli are Halle Berry and Bill Clinton [4].
Similar to the neuroscientists, machine learning scientists have
made studies in recent years to better understand the inner
workings of deep neural networks. By now, a whole research
field has developed around the topic of feature visualization.
Most commonly, this is achieved with activation maximization,
which synthesizes preferred stimuli [5], [6], [7], [8], [9], [10].
Activation maximization starts from any given image and cal-
culates with back-propagation how every single pixel should
change in order to achieve the desired neuron activation.
However, studies have shown that doing so generates not
interpretable images. [5], [7]. The reason is that the space
of possible images is very large, which often produces images
that excite a neuron, but do not resemble realistic images and
are therefore not interpretable. Newer studies have constraint
the optimization to only produce images that are similar
to real images. Incorporating natural image priors into the
objective function has been showed to be successful to make
the synthesized picture interpretable. Until recently, most of
those image priors where hand designed such as Gaussian blur
[9], α-norm [9], [10], data-driven path priors [10] etc. Yet,
recently significant progress was made by employing learned
image priors [11], [12]. For that, an image generator DNN
is used as a prior and is trained to take a code as input and
output a synthetic image that resembles the real images from
a given dataset. It is important to note that both the image
generator network as well as the classifier network have fixed



parameters; the optimization only changes the input code of
the generator.
Even though synthesizing pictures with a learned image prior
is a powerful concept to have an insight of the inner workings
of a classifier network, there is still no easy and quick to use
tool which allows to get systematically insight of the workings
of any classifier network.

III. METHODS

Fig. 1. Basic architecture of the network [12]

Our work is based on the architecture in [12]. This model
works by having a vector of random noise as input. Then a
generative network generates a picture from this noise that is
subsequently running through a classifier network, activating
several output neurons of different classes. The generator can
generate a picture that is considered a perfect match by the
classifier by altering the input and maximizing the activation of
only one output neuron from the classifier. After optimization
of the input, the image output layer (ImageOut, in green)
between the generator and classifier will be inspected. Looking
at images from this layer allows us to get an insight into the
features, which are based upon the corresponding maximized
output neuron. To create as realistically looking pictures as
possible from an encoded feature vector, we use trained GANs
as our Deep Generator Network(DGN). Note that both the
DGN and target DNN being visualized have fixed parameters
(as they are both trained), and optimization only changes the
Deep generator network input code (red).

A. Activation Maximization

Let θ be the parameters of a classifier that maps an image
onto a probability distribution over the output classes. We can
formulate an equation to find an image x that maximizes the
activation of a neuron ali(θ, x) where i is a neuron indexed
and l is a given layer.

x = argmax
x

(ali(θ, x)) (1)

For generality, we will write a(θ, x) as ali(θ, x). Note again
that in our work the parameters θ is fixed, therefore this can
be formulated as

x = argmax
x

(a(x) −R(x)) (2)

Where R(x) is a regularization term as mentioned in the
related work [9], [10] . To optimize this equation, we use
gradient ascent with an update rule as

xt+1 = xt + ε1
∂a(xt)

∂xt
+ ε2

∂R(xt)

∂xt
(3)

Where ε is the step size and is chosen empirically. In our
work, as the image x is actually from the Deep Generator
Network(G) which received inputs z, and we want to optimize
only by changing z, we can then rewrite the equation as

z = argmax
z

(a(G(z)) −R(z)) (4)

and
zt+1 = zt + ε1

∂a(G(zt))

∂zt
+ ε2

∂R(zt)

∂zt
(5)

For our DNN, we denoted it as Φ and we want to optimize the
input z of DGN such that G outputs is an image that highly
activates a neuron h in Φ, we then can finally formulate the
equation to find z that highly activate neuron h as

z = argmax
z

(Φh(G(z)) −R(z)) (6)

B. Generative Adversarial Networks (GAN)

GAN is a deep learning approach created in 2014 by
Goodfellow [13]. In this work, we use trained GAN as DGN
in Fig.1 to generate images. To train the GAN in order to
generate the image, GAN consist of 2 parts which are
1. Generator
2. Discriminator
From the framework of GAN presented in Fig.2, the generator
generates images and the discriminator tells how close the
image, generated from the generator, to the target image.

Fig. 2. GAN Framework Source:https://medium.com/zeroth-ai/understanding-
artificial-intelligence-b9b58f9b25c2

To generate images, we use noise z as an input to Generator
G and we get an output as images x = G(z) where z is a
latent feature of the image. For example shape, color, surface
ect.

For Discriminator, it acts as a classifier by learning to
differentiate the received data which one is real and which
one is from the Generator. Then it will give a feedback back
to Generator so that the Generator can learn that the generated
image is good or not.



Fig. 3. Simple model of GANs

When training the Discriminator D, if D(x) = 1, means
that the Discriminator classify the input as real image and
D(x) = 0, means that the Discriminator classify the input as
generated image. We have an objective function according to
the image below which can be separated into two parts.

max
D

V (D) =

Ex∼pdata(x)[logD(x)] + Ez∼pdata(z)[log(1 −G(z))] (7)

The first term is for real data. It is shown how good the
Discriminator tell it is real. If the Discriminator makes correct
discrimination with D(x)=1 a lot, this part will have a high
value. The second term showed how good the Discriminator
can tell that the picture is from Generator D(x)=0. If the
discriminator makes correct discrimination that the images is
from the generator, the second term will also have high value.

For the Generator, we followed the equation of

min
G
V (G) = Ez∼pdata(z)[log(1 −G(z))] (8)

We want the Discriminator to classify the generated image as
real image (D(G(z)) = 1).

We can write it together as min max function

min
G

max
D

V (D,G)) =

Ex∼pdata(x)[logD(x)] + Ez∼pdata(z)[log(1 −G(z))] (9)

For G we want to minimize V and for D we want to maximize
V. This two models will be trained separately. During training,
we will train one model by fixing the other parameters and
then swap the trained and fixed model accordingly.

IV. DATASET

As suggested by our TA, since this project period spans
over only four weeks, we would probably have not enough
time to write our own code and test it in a proper way.
Moreover, the most reliable sources are based on CaffeNet
[14] and translating it into PyTorch (or equivalent) would have
required a great effort and time. We therefore thought it would
have been more efficient to fine-tune the CaffeNet model,
whereas varying the in-class data distribution. ImageNet is an
image dataset organized according to the WordNet hierarchy.
Each meaningful concept in WordNet, possibly described by
multiple words or word phrases, is called a ”synonym set” or
”synset”. There are more than 100,000 synsets in WordNet,
majority of them are nouns (80,000+). Images of each concept
are quality-controlled and human-annotated. [15] CaffeNet,
which is used in this paper, is actually a variant of AlexNet.
The architecture is shown in Fig. 4. We evaluate our approach

Fig. 4. Architecture of CaffeNet Source:https://medium.com/coinmonks/paper
-review-of-alexnet-caffenet-winner-in-ilsvrc-2012-image-classification-
b93598314160

on two datasets (more and less diverse) separately and then
perform cross validation on the intermediate images of the
generator network to explore which images are generated when
differently trained classifiers are used. For each dataset, 70%
of the data is used for training, 20% for validation and 10%
for testing.

V. EXPERIMENTS/RESULTS/DISCUSSIONS

The core idea of the experiment is to use only 100 images
per selected class of ImageNet. In addition to the small size,
the classes are selected to be homogeneous. In this case, the
similarity between the few images used in training can be
easily compared with the synthesized images. The expected
consequences of having small dataset are:

• The network might overfit and start converging to a
similar solution, even if the weights are re-initialized or
the generation of the images start with different noise).

• The network picks up local information from a couple
of pictures from the training data and reproduces it in
different places of the generated images.

Fig. 5. Training of classifier network with our selected dataset

Indeed as expected, with only 100 images per class, the
classifier network tends to memorize the samples it has seen.
As demonstrated in Fig. 6, the realistically looking images are
present mostly because the dataset was small.
An interesting observation is the appearance of a boy when
maximizing the output neuron with the label of ball, Fig. 7.
It is important to mention that this class does not contain any
pictures which include other objects than balls, we verified that



Fig. 6. Experiment of 100 images per class. Samples of images used for
classifier training - left panel, for 100K iterations in this case. Notice how
visualized images are either mixture or accurate reproduction of training data

by hand. The most likely explanation of this result is a cross-
talk between the neurons as it happens in the fully connected
architecture of GAN DNNs between the consecutive layers. In
this experiment, the classifier network was trained on classes
of dog, cat, ball, female and male faces. Therefore, there is
a probability that features learned from the male and female
faces classes during the training were passed to the ball class.
Further study of this issue would be of interest for future work.

VI. FUTURE WORK

Due to the time constraints, we present in this paper only
the initial part of our project, the backbone of what we plan
to continue develop in the near future. As a whole, we would
like to build an easy and quick to use tool which allows to
get systematically insight of the workings of any classifier
network. We will make use of different GANs and allow the
user to test his own classifier in order to check its strengths
and weaknesses.
We want the user to be able to choose among on different
datasets pre-trained GANs and provided his own classifier,
give him a feedback on various aspects of it (robustness,
effectiveness, etc.). The user would also be able to have
an insight of what happens inside the neural network he is
using, making use of the previous explained mechanisms, like
activation maximization, for him to understand where are the
key points and weaknesses. This can be done by maximizing
one single neuron or more generally a group of n neurons

Fig. 7. The visualization of the ImageOut layer for the classifier trained on
the small dataset (100 images per class) fr 10K iterations, the target class is
a tennis ball.

that we think may work together or have some connections
responsible of a certain output. This topic, is central not only
for the whole project, but also for start breaking down the
black-box of neural networks.

VII. CONCLUSION

In conclusion, development of DNNs rely on a trials and
errors approach that does not allow the developer to create
a robust and reliable product, as happened for example with
Google Photo’s image classifier, which classified Afro Amer-
ican people as ’gorillas’. [16] This was a big problem, espe-
cially for Google’s public image, which was solved purging
the ’gorilla’ label. The employment of such a drastic solution
shows how, even a multinational company like Google, with
thousands of engineers working on this classifier, was not
able to find a better solution than deleting the label [16].
However, recalling the discussion on Fig. 7, we mentioned
that the appearance of the boy could be a cross-talk between
the neurons as it happens in the fully connected architecture of
GAN DNNs, between the consecutive layers. For this problem,
the suggested approach would be to find units in the generator
that are ’responsible’ for the generation of particular objects,
in this case, the shape of humans [17]. [17] introduces two
crucial steps of dissection and intervention. This technique
allows to find a set of units that are responsible for visual
artifacts in GAN generated images and to fix those artifacts
by ablation, thus, improving the image quality.
Summing up, understand how deep neural networks work is
a major concern in the field of ML and having a reliable tool
which provides an easy-to-use approach to tackle this problem
is still far from being available. Our proposed idea has still



some imperfections that of course have to be solved. Moreover,
other problems like over-fitting or lack of ”originality” may be
a result of small data-sets, Fig. 6. Also, as shown in 7, some
features and ”errors” may come from mixed features, from
interference between layers or neurons that learn features that
belong to other classes. Those problems need to be taken into
account and solutions or explanations need to be provided in
order to provide a stable basis for the whole project. Lastly, a
period of testing should be planned, in order to exploit other
problems that may arise and that we do not expect, e.g. Fig.
6.

REFERENCES

[1] C. Molnar, Interpretable Machine Learning, 2019,
https://christophm.github.io/interpretable-ml-book/.

[2] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu, “Towards better analysis
of deep convolutional neural networks,” CoRR, vol. abs/1604.07043,
2016. [Online]. Available: http://arxiv.org/abs/1604.07043

[3] C. Olah, L. Schubert, and A. Mordvintsev, “Feature visualization,”
Distill, 2017. [Online]. Available: https://distill.pub/2017/feature-
visualization/

[4] R. Q. Quiroga, L. Reddy, G. Kreiman, C. Koch, and
I. Fried, “Invariant visual representation by single neurons in
the human brain,” nature, vol. 435, 2005. [Online]. Available:
https://www.nature.com/articles/nature03687

[5] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are
easily fooled: High confidence predictions for unrecognizable images,”
CVPR, 2015. [Online]. Available: https://arxiv.org/pdf/1412.1897.pdf

[6] D. Erhan, Y. Bengio, A. Courville, and P. Vincent, “Visualizing
higher-layer features of a deep network,” 2009. [Online]. Available:
http://www.iro.umontreal.ca/ lisa/publications2/index.php/publications/show/247

[7] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside
convolutional networks: Visualising image classification models
and saliency maps,” ICLR workshop, 2014. [Online]. Available:
https://arxiv.org/pdf/1312.6034.pdf

[8] A. Mahendran and A. Vedaldi, “Visualizing deep convolutional neural
networks using natural pre-images,” CVPR, 2016. [Online]. Available:
https://arxiv.org/pdf/1512.02017.pdf

[9] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson,
“Understanding neural networks through deep visualization,” Deep
Learning Workshop, ICML conference, 2015. [Online]. Available:
https://arxiv.org/pdf/1506.06579.pdf

[10] D. Wei, B. Zhou, A. Torrable, and W. Freeman, “Understanding
intra-class knowledge inside cnn,” 2015. [Online]. Available:
https://arxiv.org/pdf/1507.02379.pdf

[11] A. Nguyen, J. Yosinski, Y. Bengio, A. Dosovitskiy, and J. Clune, “Plug
& play generative networks: Conditional iterative generation of images
in latent space,” CoRR, vol. abs/1612.00005, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00005

[12] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune,
“Synthesizing the preferred inputs for neurons in neural networks via
deep generator networks,” CoRR, vol. abs/1605.09304, 2016. [Online].
Available: http://arxiv.org/abs/1605.09304

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
2014.

[14] Y. Jia. (2019) Caffe. [Online]. Available:
https://caffe.berkeleyvision.org/gathered/examples/imagenet.html

[15] P. U. Stanford Vision Lab, Stanford University. (2019) Imagenet.
[Online]. Available: http://www.image-net.org/

[16] A. Hern. (2019) Google’s solution to acciden-
tal algorithmic racism: ban gorillas. [Online]. Avail-
able: https://www.theguardian.com/technology/2018/jan/12/google-
racism-ban-gorilla-black-people

[17] D. Bau, J.-Y. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Free-
man, and A. Torralba, “Gan dissection: Visualizing and understanding
generative adversarial networks,” 2018.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc., 2012,
pp. 1097–1105. [Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf

[19] A. Nguyen, J. Yosinski, and J. Clune, “Understanding neural networks
via feature visualization: A survey,” CoRR, vol. abs/1904.08939, 2019.
[Online]. Available: http://arxiv.org/abs/1904.08939

[20] D. Bau, J. Zhu, H. Strobelt, B. Zhou, J. B. Tenenbaum, W. T. Freeman,
and A. Torralba, “GAN dissection: Visualizing and understanding
generative adversarial networks,” CoRR, vol. abs/1811.10597, 2018.
[Online]. Available: http://arxiv.org/abs/1811.10597

[21] J. Yosinski, J. clune, A. Nguyen, T. Fuchs, and
H. Lipson, “Understanding neural networks through deep
visualization,” Deep Learning Workshop, 2015. [Online]. Available:
https://arxiv.org/pdf/1506.06579.pdf

[22] A. Nguyen, J. Yosinski, and J. Clune, “Multifaceted feature
visualization: Uncovering the different types of features learned by
each neuron in deep neural networks,” 2016. [Online]. Available:
https://arxiv.org/pdf/1602.03616.pdf

[23] M. A. Alcorn, Q. Li, Z. Gong, C. Wang, L. Mai, W.-S. Ku, and
A. Nguyen, “Strike (with) a pose: Neural networks are easily fooled
by strange poses of familiar objects,” 2019. [Online]. Available:
https://arxiv.org/pdf/1811.11553.pdf


