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Abstract 

  

In this project, we explored the effectiveness of the GSP NLMS algorithm on 

modeling time vertex graph genetic data. Analyzing the change in gene expression 

patterns over time reveals many features of the mechanistic drivers characterizing 

cellular responses. However, due to the cost of microarray experiments and the limited 

availability of biological material, most microarray time-series experiments are short, 

and not many experiments on modeling such data were done. To simulate missing genes 

in noisy data, the NLMS algorithm is being compared with the LMS algorithm and the 

RLS algorithm on modeling band-limited graph signal with a reduced number of nodes. 

The performance of NLMS on steady-state graph signal and time vertex graph signal is 

being evaluated using MSE, MSD, run time, and convergence speed. In both scenarios, 

the NLMS algorithm can converge faster than the LMS algorithm and have a lower run 

time than the RLS algorithm under similar MSD and MSE performance. 

 

1. Introduction 

 

The cell is the basic unit of all living tissue, each cell has a certain function, and this 

function is determined by the gene expression process. Gene expression is the process 

done by cells to build protein, and proteins dictate cell function. Recently, Microarray 

technology has enabled the interrogation of gene expression data in a global and parallel 

fashion; Microarray technology has become the most popular platform in the era of 

systems biology [1]. The measurement of gene expression is an important key element 

in the study of life sciences. Analyzing the level of a gene expression in a cell can 

provide valuable information in terms of identifying viral infection of a cell (viral 

protein expression), determining the susceptibility of an individual to cancer (oncogene 

expression), and finding if a bacterium is resistant to penicillin (beta-lactamase 

expression). Also, analyzing the gene expression levels over time can infer more 

information about the mechanism of the biological process [2]. The authors in [3] 

showed that the oxygen-dependent genes are not part of the previously described 

environmental stress response (ESR) consisting of genes that respond to diverse types 

of stress. However, due to the cost of microarray experiments and the limited 

availability of biological material, most microarray time-series experiments are short 

(3-8 time points). Besides, the nature of the biological data is noisy and irregular, which 

makes many computational models fall short of modeling biological data. Previous 

research [4] tried to build a model that can uncover the hidden patterns of the regularity 

networks and the transcription process using short time-series gene expression data. 

However, these models still unable to infer many of the biological information that 

governs the cellular system. Thus, in this project, we applied a model that can 

reconstruct the short time series expression data into a longer time series, which can 



enable further traditional time series methods to analyze the gene expression data more 

effectively and has better results than analyzing short time-series data. This will not 

only accelerate the biological research process but also the drug discovery and 

development process because the analysis of the gene expression level can indicate 

whether the cell is influenced by the targeted drug or not.  

The motivation behind defining the gene interaction network on a graph is that the 

graph structure exploits the dependencies among genes in an interaction network, which 

has significant importance in uncovering hidden patterns in the complex biological 

processes. Graph signal processing (GSP) tools such as frequency/spectral domain 

representation, bandlimited properties, sampling, and reconstruction strategies on 

graphs have shown promising results in processing irregular data. Recently, applying 

adaptive filtering to graph signal estimation problems has enabled time-sequential 

reconstruction and time-varying graph signal tracking in noisy environments [5]. 

However, many of these algorithms have some drawbacks such as slow runtime or large 

computational complexity. We explored the effectiveness of the accurate and efficient 

GSP normalized least mean square (NLMS) algorithm [5] on genetic data [6]; the 

NLMS algorithm has shown promising results in time-sequential reconstruction of 

climate data. To the best of our knowledge, NLMS has not been used to model gene 

expression.      

 

2. Background Material 

 

2.1 Gene Expression  

The cell is the basic unit of all living tissue, in most human cells there is a structure 

called the nucleus. It contains the genome, in humans, the genome is split between 23 

pairs of chromosomes, each chromosome contains a long strand of DNA, tightly 

packaged around proteins called histones. Within the DNA there are sections called 

genes, these genes contain the instructions for making proteins. When a gene is 

switched on an enzyme called RNA polymerase attaches to the start of the gene. It 

moves along the DNA making a strand of messenger RNA (mRNA) out of free basis in 

the nucleus, the DNA code determines the order in which the free basis is added to the 

messenger RNA and this process is called transcription. Before the messenger RNA can 

be used as a template for the production of proteins, it needs to be processed, this 

involves removing and adding sections of RNA, the messenger RNA then moves out 

of the nucleus into the cytoplasm. Protein factories in the cytoplasm called ribosomes 

bind to the messenger RNA, the ribosome reads the code in the messenger RNA to 

produce a chain made up of amino acids, there are 20 different types of amino acids. 

Transfer RNA molecules carry the amino acids to the ribosome, the messenger RNA, 

and is read three bases at a time. As each triplet is read a transfer RNA delivers the 

corresponding amino acid, this is added to a growing chain of amino acids. Once the 

last amino acid has been added, the chain folds into a complex 3D shape, to form the 

protein.   

 

2.2 Gene Expression Level  



Measurement of expression is done by detecting the final gene product (for many 

genes, this is the protein); however, it is often easier to detect one of the precursors, 

typically mRNA, and to infer gene-expression levels from these measurements. 

 

2.3 Graph Theory  

A graph is formulated as G = {V, E} where V is the set of N nodes, and E is the set 

of edges. There are two types of graphs: directed and undirected. A directed graph is 

when the edge between two points include a direction indicator; undirected graphs have 

no direction indications. In the undirected unweighted graph, which is the type of graph 

used in this project, the adjacency matrix is a mathematical representation of a graph, 

denoted as A, which is an N by N matrix, with Aij = 1 if (vi, vj) are connected, and Aij= 

0 if (vi, vj) are not connected. The degree matrix D is a diagonal matrix indicating the 

number of edges attached to each node. 

 

2.4 Graph Construction Methods 

There are several popular constructions to transform a given set x1, . . . , xn of data 

points with pairwise similarities sij or pairwise distances dij into a graph. When 

constructing similarity graphs the goal is to model the local neighborhood relationships 

between the data points, such as the ε-neighborhood graph, k-nearest neighbor graphs, 

and the fully connected graph [4]. 

 

2.5 Adaptive Signal Processing 

In a supervised adaptive filter system one has a desired signal d[k] ∈ R, an input 

x[k] ∈ RN, and the parameter vector h⃗ ̂0[k] ∈ RN, which is an estimate of the possibly 

time-varying unknown system parameters h⃗ w[k] ∈ RN. From this simple 

configuration an instantaneous error signal is defined as 

. 

 

2.6 Graph Signal Processing 

After extracting the adjacency matrix A and degree matrix D, the Graph Laplacian 

matrix is calculated by subtracting the adjacency matrix from the degree matrix:          

L=D-A. 

To transform the data from the time domain to the spectral domain, use the graph 

Fourier transform (GFT) of the graph signal (GS). In this project it is the gene 

expression level of each node. A GS is defined as GS x∈RN. The GFT of the GS is its 

projection onto a set of orthonormal vectors, for which use the orthonormal 

eigenvectors of the L matrix, the GFT is giving as the formula below:  

𝒔 = 𝐔𝐓𝒙. 

To transform the GS from the spectral domain, after we estimate it, we use the 

Inverse graph Fourier transform as in the formula below:  

𝒙 = 𝐔𝒔. 



A graph signal is bandlimited or spectrally sparse when its frequency-domain 

representation S has zero entries, we changed our data to be bandlimited by the strategy 

mentioned in [5]. We applied the sampling technique as in [5] to ensure a reduced 

number of nodes used in our model. 

 

2.7 The GSP LMS Algorithm 

The GSP LMS algorithm [7] is a popular adaptive GSP algorithm due to its 

simplicity.  The main idea of the GSP LMS algorithm is to apply the least mean square 

method onto graph signal using spectral domain techniques. It is a convex optimization 

problem defined as the following: 

. 

The x⃗ w[k] is the noisy reference obtained by adding gaussian noise to the original 

data  x⃗ 0[k]. Ds is the sampling matrix.  The prediction in the spatial domain is done 

through iGFT of the prediction  s f[k] in the spectral domain. The update function in 

spatial domain is obtained in [3] and is shown as the following: 

. 

Here x̂0[k] is our prediction in the spatial domain. The convergence factor µL is a 

constant 0 < µL < 2 that acts as step size to balance the convergence behaviour and 

reducing the steady-state error of the algorithm.   

 

2.8 The GSP RLS Algorithm 

The GSP RLS algorithm [8] is changing the objective function of the LMS 

algorithm form LMS to weight Least-Squares:  

. 

The forgetting factor βR is in the range 0 βR ≤1 and has similar functionality as µL 

in the LMS algorithm. We will be using the RLS algorithm to compare the performance 

of the NLMS algorithm. For detailed analysis of the RLS algorithm, please refer to [8]. 

 

3.  Methodology 

 

3.1 Approach Overview 

The data we are using is synthetic data generated by GeneNetWeaver [6]. The data 

comes as a GS with steady-state GS and time series GS and is discussed in detail in the 

data section. We reconstruct the data into a time vertex graph and compute the Laplacian 

matrix for GSP. Then we transform the data into its spectral domain by Graph Fourier 

Transform. To obtain a spare representation of the GS, we generate a band-limited GS 

through spectral-domain filtering. Then spectral-domain sampling strategy used in [5] 

is applied to sample several nodes in the graph to use in our model, and the unsampled 

nodes are dropped during the modeling. After the previous preprocessing steps, we 

iteratively apply the GSP NLMS algorithm to model the GS in the spectral domain. 



Lastly, the spectral domain results are converted back to the special domain through 

inverse graph Fourier Transform. To compare the performance of the GSP NLMS 

algorithm, the MSE, MSD, runtime, and convergence time for sampled and unsampled 

data are calculated for evaluation. Comparison is being made among other GSP 

algorithms, namely the GSP LMS algorithm [7] and the GSP RLS [8] algorithm. We 

average the results of the models across 200 runs to eliminate outliers. 

 

3.2 The GSP NLMS Algorithm 

The GSP NLMS algorithm was first introduced by [5] and applied to temperature 

data. In [5], NLMS was used for estimating time-series temperature data fitted to a 

separately generated graph that is not part of the data. In this project, we propose to 

apply the GSP NLMS algorithm on genetic data that is inherently defined on a graph. 

Intuitively, the GSP NLMS algorithm is the following constrained convex problem of 

minimizing the distance between the current and the updated estimate in the spectral 

domain: 

. 

This is a convex optimization problem and the analytical solution is given using 

gradient decent [5]. Similar to the GSP LMS algorithm in [7], the GSP NLMS algorithm 

is aimed to minimize the squared error which is defined as in the following equation: 

. 

Here x⃗ w[k]  is the noisy reference and x⃗ ̂0[k]  is our prediction in the spatial 

domain. x⃗ w[k] is obtained by adding gaussian noise to the original signal x⃗ 0[k]. The 

sapling matrix Ds makes sure we obtain the reduced number of nodes used in our model. 

Based on the derivation of the iterative solution of NLMS, given in [5] and using GFT 

to transform the error into the spectral domain, the next step prediction results in the 

spectral domain is 

. 

Applying inverse GFT, the special domain next step prediction results in the spectral 

domain is 

. 

The convergence factor µN is a constant 0 < µN < 2 that acts as step size similar to µL 

in the GSP LMS algorithm. 

 

 



 

 

4. Data description 

The Synthetic data is generated by GeneNetWeaver [6], which is given us as a GS 

and each gene is represented as a node. A subnetwork is extracted from the complete 

dataset and the structure is from known transcriptional networks (Escherichia coli, 

Saccharomyces cerevisiae, etc.) as shown in Figure 1. GeneNetWeaver [6] also 

generates the time series GS that comes along with the graph.  

To generate the data, GeneNetWeaver [6] simulated the generated in silico 

regulatory networks to produce synthetic gene expression datasets. In other words, each 

measurement point is generated by applying multifactorial perturbations to the network. 

One may think of each experiment as a gene expression profile from a different patient, 

For example, they simulated multifactorial perturbations by slightly increasing or 

decreasing the basal activation of all genes of the network simultaneously by different 

random amounts.  

Figure 2 represents the gene expression level as a graph signal defined on the gene 

network, each plot represents different measurement point, each color shade represents 

a different quantity of the expression level as shown on the color column.   

 
Figure 1. Graph network structure of 30 different yeast genes generated by GNW 

 

 

 



 

Figure 2. Graph signal representation of 3 time points at t =0, t = 125, and t = 251 

from the time series generated by GNW. 

 

5. Experimental study 

 

5.1 Steady State GSP modelling 

For comparing the performance of the GSP LMS, GSP RLS, and GSP NLMS 

algorithms on modelling steady state graph signal, we used a steady state GS of 30 

nodes generated by GeneNetWeaver [6]. For this project, |S| = 29, which means only 

sampling 29 nodes in our modelling, and |F| = 28 for band-limited GS. The step size is 

μL = μN = 1 and βR = 0.1 based on grid search of best performing step size in MSD 

measure. The MSD and MSE of modelling steady state GS is shown in Figure 3 and 

Figure 4. Table 1 summarizes the run time of modeling a steady-state GS for 50 

iterations. To eliminate outliers, the experiment is being repeated 200 times, and the 

averaged reconstruction of the GS is being used to evaluate the performance.  

 

Table 1. The time in seconds for the algorithms to execute 50 iterations, averaged across 

200 runs. 

LMS RLS NLMS 

46.2795e-006 1.5220e-003 45.6065e-006 

 

 

 



 

Figure 3. MSD of modeling steady state GS. 

 

Figure 4. MSE of modeling steady state GS. 

 

 

5.2 Time Series GSP modelling 

 

To model time series GS we used a GS of 30 nodes and 251 time steps generated 

by GeneNetWeaver[6]. Again, the GSP NLMS algorithms is being compared with the 

GSP LMS and GSP RLS in MSD, MSE, and run time. The hyperparameter set up 

follows the previous section where |S| = 29, |F| = 28, μL = μN = 1, and βR = 0.1. Figure 

5 and Figure 6 gives a visualization of adaptive estimates across time on a sampled 

node and on an unsampled node. From Figure 5, we can see that all three algorithms 



model the original data well. To see the detailed comparison of the three models, we 

calculate the MSD at each time step for each node, and the summed MSD across the 30 

nodes at each time step is shown in Figure 7 and Figure 8. Also, the run time is being 

calculated to compare the performance of three algorithm in Table 2. Again, the 

experiment is being repeated 200 times and the model is being averaged to eliminate 

outliers. Here we are dealing with time series data, so each iteration is a single time 

step, so the algorithms runs 251 iterations to predict 251 time steps. 

 

Table 2. The time in seconds for the algorithms to execute, averaged across 200 runs. 

LMS RLS NLMS 

227.8310e-006 5.8737e-003    213.8850e-006 

 

 

Figure 5. Adaptive estimates across time on a sampled node. 

 

 



 

Figure 6. Adaptive estimates across time on an unsampled node. 

 

Figure 7. The sum of the MSD on the 29 sampled nodes at each iteration. 

 

 



 
Figure 8. The MSD on the unsampled node at each iteration. 

  

6 Discussions 

 

6.1 Steady State GSP modelling 

From Figure 3, we can see that the LMS algorithm converges at iteration 24, the 

RLS algorithm converges at iteration 10, and the NLMS algorithm converges at 

iteration 11. The fast convergence behavior of the NLMS comparing to LMS is not 

obvious for the MSE because of the way the MSE and MSD are defined in the project. 

In this project, MSD is the deviation from the actual signal, where MSE is the error 

between our prediction and the noisy signal. In principle the NLMS is a normalized 

version of LMS, so the error mechanism of the two algorithms are similar. In this project 

the noise behavior is not the same as the actual signal, so adding the noise and 

measuring MSE in this way does not reflect how the algorithms model the actual GS. 

Because the 3 algorithms have different computational complexities, comparing the 

number of iterations does not indicate the actual run time, so the runtime is measured 

as well. From the comparison of run time in Table 1, even though RLS converges in 

less number of iteration, due to the higher computational complexity of RLS comparing 

to the LMS and the NLMS, the NLMS algorithm converges the fastest among the three 

algorithms.  

 

6.2 Time Series GSP modelling 

From the MSD plots in Figure 7 and Figure 8, the GSP NLMS algorithm has the 

lowest MSD on sampled data among all three algorithms. The three algorithms 

performed similarly on the unsampled nodes; this is due to the small size of our input 

graph. As the size of the graph increase, the intuition is that more nodes and edges of 

the model will let the sampled nodes include more information about the unsampled 

nodes in the spectral domain. So, combining the good performance of the NLMS 



algorithm in the sampled data, the lower MSD of the NLMS algorithm on unsampled 

data should be more obvious than the LMS and the RLS when we use a larger model 

size. This study will be conducted in the follow-up work. 

  

6.3 Potential Improvements and Future Work 

The modeling of unsampled nodes could be seen as underlying gene expression 

process such as inferring causality from the temporal response pattern modeling. We 

could use the traditional time-series methods for further analysis of the result. We could 

also explore the difference between applying these traditional time-series methods on 

the original data and the predicted data, to see if results from applying the traditional 

time-series methods on the original data will infer the same hidden patterns of the 

biological processes when applying these methods on the predicted values.  

The original graph of the regularity network was directed. However, for the 

complexity of the GFT for directed graphs in this project, we removed the directions 

from the graph. This might have affected the results of the applied GSP NLMS 

algorithm. Thus, to develop this model we can use directed GFT in the follow-up work, 

to examine whether the directions of the graph will improve the result of the applied 

method or not. Another approach is to change the square of the NLMS algorithm into a 

fractional number 1<p<2, and make this into a GSP NLMP algorithm. Also the added 

noise is gaussian, it would be more interesting if we model the noise using non gaussian 

distribution such as alpha stable distribution. 

 

7 Conclusions 

 

The GSP NLMS has faster convergence speed and run speed than the GSP LMS 

with similar performance at MSE and MSD. The GSP NLMS has faster computation 

time than the GSP RLS with similar performance at MSE and MSD. The model can be 

further used for other irregular data such as social networks data and traffic data. The 

model performance improves as the graph size increase and the graph get more 

connected. The model can be further improved by considering the direction of the edges 

representing genetic interactions. 
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