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Learning From Data
Lecture 1: Introduction

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

March 1, 2024
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Today’s Lecture

▶ About This Class
▶ What is Machine Learning?
▶ Course Preview: a Brief History of Machine Learning
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About this Class

http://yangli-feasibility.com/home/classes/lfd2024spring/

Course Goal
▶ In-depth understanding of key concepts, algorithms for machine

learning.
▶ Practical applications of learning from data.

http://yangli-feasibility.com/home/classes/lfd2024spring/
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Course Material

The primary course materials are the lecture slides.

Reference Text :
▶ (Recommended) Machine Learning Lecture Notes by Andrew Ng:

https://cs229.stanford.edu/main_notes.pdf
▶ Pattern Recognition and Machine Learning, 2nd Edition, by

Christopher Bishop

https://cs229.stanford.edu/main_notes.pdf
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Staffs
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Grading

Your overall grade will be determined roughly as follows:
ACTIVITIES PERCENTAGES

Midterm 15 %
Final Project 25 %

Problem sets (written & programming) 60 %

Homework advice
▶ Form study groups (2-3 people) to discuss homework problems. Do

homework independently, indicate your study group members on
your submitted file.

▶ Use ”Online Learning” Q&A discussion board!
▶ Come to office hours
▶ Attend recitations
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Class Policy

Late homeworks
▶ 2 free chances to turn in a late homework assignment (except for

the final project).
▶ Late homework must be handed in within 3 days of the deadline.
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Class Policy

How to give credits
▶ Write your collaborators’ names in the homework (this includes

receiving/giving explicit help from/to others on any part of the
homework)

▶ Note any online resource (e.g. wiki, github, stackoverflow) you’ve
used for the assignment

Homework plagiarism (copying) is not tolerated!
Ask for help early and often!
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Final Group Project
Apply recent machine learning techniques on real-world problems, or
explore theoretical problems related to learning from data.

Previous class projects
▶ Camera lens super-resolution (Dinjian Jin& Xiangyu Chen)

results are shown in figure 2. We can see that SRGAN has a more perceptual quality than VDSR
for super-resolution. For the low light environment, both methods cannot perform well for
restoration. Also, the input low resolution of SRGAN network is a color image, but we just show
the grey low-resolution image for simplicity.

5.2 VDSR And SRGAN Results

Figure 5: Comparison of SR result using VDSR network and SRGAN network respectively. These data are

captured by our own device. So no ground truth for high-resolution.

5.3 Different layers’ output of VDSR

As we can see in the training processes,the different layer’s output of VDSR network focused
on the different details of the picture.Through the residual network the details will add to the low
resolution picture.Finally we can yield the high resolution result.

Comparison between two super-resolution models: SRGAN and VDSR
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Final Group Project
Apply recent machine learning techniques on real-world problems, or
explore theoretical problems related to learning from data.

Previous class projects
▶ A Gaussian Process Regression Based Approach for Predicting

Building Cooling and Heating Consumption (Xiaoting Wang &
Yiqian Wu)

Figure 2: 1-month prediction of electricity consumption

6 Conclusion
In this project, we successfully showed that the kernel-based Gaussian process regres-
sion model we proposed can predict electricity consumption of a certain building with
high accuracy rate. Firstly, several relevant features are selected to predict electricity
consumption of the campus building GUND. In the preprocessing step, data normal-
ization is conducted to avoid biases and speed up the calculations in gradient descent
convergency. Secondly, zero mean function and SEard covariance function are chosen to
perform Gaussian process. The corresponding hyperparameters of the utilized covariance
function are trained by maximizing the marginal likelihood function. Finally, prediction
is conducted with the trained hyperparameters.

The prediction results show that the majority of the predictive mean are in the 95%
confidence region of the observed values. The accuracy of prediction is also evaluated
by R2 value. The R2 values of train set and test set are 0.9947 and 0.8398, respectively.
Therefore, the proposed Gaussian process regression model is found feasible for the
energy consumption prediction, and additional comparison to other machine learning
methods will be conducted to demonstrate the effectiveness of Gaussian process in the
future.

7

1-month prediction of electricity consumption
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Final Group Project
Apply recent machine learning techniques on real-world problems, or
explore theoretical problems related to learning from data.

Previous class projects
▶ Missing Data Imputation for Multi-Modal Brain Images (Wangbin

Sun)

 
Figure 3 Samples from the dataset with MRI (first row) and PET (second row) 

 

Methods 
We propose a cyclical auto-encoder structure to tackle the problem. Figure 4 illustrates the situation when the number 
of modalities is two. Latent layer z is the expected representation. 

 

 
Figure 4 Our proposed model for two modalities 

 

Here, we denote the modality 1 as "1 and modality 2 as 21 for each subject 3. When input "1, Encoder 1 & Decoder 
2 generates reconstruction 21  and then Encoder 2 & Decoder transforms 21 to "1. Thanks to the cyclical structure, 
input 21 could also be processed to "1 and 21. In our structure, one subject with complete modalities could be utilized 
twice in training, while for those with missing modalities, they are also usable. It could be considered as data 
augmented, which is crucial in cases when data gathering is expensive, such as medical imaging. 

There are three parts in our loss function. Each part has its own assumption. The overall loss function is the weighted 
sum of all these three losses. 

4 = 4recon + <#4corr + <*4dist 

The first part is reconstruction loss Arecon. Reconstruction is our main target in this project. We shall impute the 
missing ones as close to the ground truth as possible. Whatever modality is input, we obtain two reconstruction result 
"1  and 21 . Since we have the ground truth "1  and 21 , both results could be measured against expected output. 
Reconstruction loss is measured by Structural SIMilarity (SSIM) (Simoncelli et al. 2004), and two separate loss are 
added equally to form 4recon. SSIM borrows from human visual system, considering luminance, contrast and structure. 
Thus, it is consistent with how people see the similarity between two images. This metric is calculated by sliding 
windows, take the average as last. 

4recon = 1 −
2CD	CE	 + 	F# 2GDE + F*

CD* + CE
*	 + 	F# GD* + GE* + F*

�

Modality 1

z
1

z
2

Modality 2

Encoder 1 Decoder 2

Decoder 1 Encoder 2

MRI (top) and PET (bottom) scans of normal and Alzheimer patient brains
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Section I: What is Machine Learning?
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The age of big data

How does a computer program learn “knowledge” from data ? i.e.
machine learning
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What is Machine Learning?

Design programs that can ...
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What is Machine Learning?

Design programs that can
▶ learn rules from data for some task
▶ adapt to changes
▶ improve performance with experience.

(from ”Machine Learning Theory” by Avrim Blum )
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Machine Learning Tasks
▶ Classification

Ada+BUs/Ada+IDBNs intends to demonstrate the effec-
tiveness of the joint feature learning, feature selection, and
classifier construction.

For all baseline methods, we employed the traditional
DBN implementation in [8] with a five-hidden-layer struc-
ture, where a two-node soft-max output layer (the high-
est layer) was used. Thus, the numbers of nodes are
2, 1000, 1000, 500, 500, from the highest hidden layer
to the lowest one, respectively; and the numbers of nodes in
the visual layer is 24× 24 = 576.

As shown in Fig. 3, the proposed BDBN framework out-
performed all baseline methods impressively in terms of
the average classification rate (0.967), the average hit rate
(0.891), the average false positive rate (0.025) and the aver-
age F1 score (0.834) of the 6 basic expressions, i.e., anger,
disgust, fear, happiness, sadness, surprise 5.

0.7
0.8
0.9

Classification Rate 

0

0.5

1
Hit Rate 

0
0.1
0.2

False Positive Rate

ang dis fear hap sad sur
0.5

1
F1 Score

 

 

BDBN GDBN Ada+BUs Ada+IDBNs

Figure 3. From top to bottom, performance comparison on the CK-DB in
terms of a) classification rate, b) hit rate, c) false positive rate, and d) F1
score for 6 basic expressions. Best viewed in color.

Furthermore, we compared the proposed BDBN method
with the state-of-the-art methods evaluated on CK+ or the
original Cohn-Kanade database [11] 6 including methods
employing LBP features [36, 23] and Gabor wavelet fea-
tures [1]. To make a fair comparison, we only compared
with the methods with a similar experimental setting: the
last frame [1] or the last 3 frames [36, 23] in each image
sequence were employed for training/testing. Among the
compared methods, Common and Specific Patches (CSPL)
method [36] employed multi-task learning; and AdaGa-
bor [1] employed an AdaBoost, for feature selection, re-
spectively. For these methods in comparison, we used their
experimental results reported in their papers. As shown in
Table 1, BDBN framework outperformed all the methods in
comparison [1, 36, 23]. This demonstrated that the features

5We did not recognize the “contempt” and “neutral” for a fair com-
parison with the state-of-the-art methods evaluated on the original Cohn-
Kanade database [11].

6Cohn-Kanade database [11] is an early version of CK+ and contains a
subset of CK+ data (i.e., 320 image sequences with expression labels [23]).

learned and selected through BDBN contain more discrim-
inative information for facial expression recognition.
Table 1. Performance comparison on the CK+ database in terms of aver-
age classification rate for 6 expressions. LOSO: leave-one-subject-out.

Methods CSPL [36] AdaGabor [1] LBPSVM [23] BDBN

Validation Setting 10-Fold LOSO 10-Fold 8-Fold

Performance 0.899 0.933 0.951 0.967

4.2.2 Analysis of Patches Selection Results on the CK+
Database

We are curious about what information each selected patch
provides. For each expression, patches selected by the fi-
nal strong classifiers through BDBN learning are marked by
boxes in Fig. 4. In addition, we only show those patches that
were selected more frequently in the 8-fold experiments.
Specifically, patches enclosed in red boxes were selected
in all the 8 runs across different subjects. These patches,
we believe, contain the most discriminative information to
recognize the corresponding expression. Those patches en-
closed in blue boxes were selected in more than 4 runs.

Most of the selected patches, especially those enclosed
in red boxes, are located around lip, eye, nose, and eye-
brow, which coincides with the psychological studies [3].
It is also interesting that the patches selected for the ex-
pressions are closely related to a set of facial Action Units
(AUs) [5], which can be used to describe the corresponding
expression. For example, as shown in Fig. 4, the patches
selected for recognizing the sadness expression are either
located around the lip, which is closely related with AU 15
(Lip Corner Depressor), or around the eye corners and eye-
brows, which are related to AU 4 (Brow Lowerer) and AU 1
(Inner Brow Raiser), respectively. The combination of AU
1, AU 4 and AU 15 describes the sadness expression [17].
Similar results can be found in other expressions.

(a) Ang (b) Dis (c) Fea (d) Hap (e) Sad (f) Sur

Figure 4. An analysis of the selected features for the six basic expressions
in CK+ database. Red color means selection with the highest frequency,
i.e., the feature was selected in all 8 runs; while blue color stands for rela-
tively lower selection frequency, i.e., the feature was selected in more than
4 runs. Best viewed in color.

Another interesting discovery is that the number of
selected patches decreases as BDBN learning continues.
Starting from dozens patches selected in the first iteration,
fewer and fewer patches are chosen. Finally, a small set
of features (usually less than 7) was employed in the fi-
nal strong classifier. Furthermore, the discriminative pow-
ers of the selected features were strengthened drastically.
As shown in Fig. 5, an 80-dimensional vector is employed
to store the individual recognition rates of all features

Facial expression recognization (Liu et al. CVPR 2014)

“The voice quality of this phone is amazing.” (Positive)

“The earphone broke in two days.” (Negative)

Product review sentiment classification
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Machine Learning Tasks
▶ Classification

Ada+BUs/Ada+IDBNs intends to demonstrate the effec-
tiveness of the joint feature learning, feature selection, and
classifier construction.

For all baseline methods, we employed the traditional
DBN implementation in [8] with a five-hidden-layer struc-
ture, where a two-node soft-max output layer (the high-
est layer) was used. Thus, the numbers of nodes are
2, 1000, 1000, 500, 500, from the highest hidden layer
to the lowest one, respectively; and the numbers of nodes in
the visual layer is 24× 24 = 576.

As shown in Fig. 3, the proposed BDBN framework out-
performed all baseline methods impressively in terms of
the average classification rate (0.967), the average hit rate
(0.891), the average false positive rate (0.025) and the aver-
age F1 score (0.834) of the 6 basic expressions, i.e., anger,
disgust, fear, happiness, sadness, surprise 5.
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BDBN GDBN Ada+BUs Ada+IDBNs

Figure 3. From top to bottom, performance comparison on the CK-DB in
terms of a) classification rate, b) hit rate, c) false positive rate, and d) F1
score for 6 basic expressions. Best viewed in color.

Furthermore, we compared the proposed BDBN method
with the state-of-the-art methods evaluated on CK+ or the
original Cohn-Kanade database [11] 6 including methods
employing LBP features [36, 23] and Gabor wavelet fea-
tures [1]. To make a fair comparison, we only compared
with the methods with a similar experimental setting: the
last frame [1] or the last 3 frames [36, 23] in each image
sequence were employed for training/testing. Among the
compared methods, Common and Specific Patches (CSPL)
method [36] employed multi-task learning; and AdaGa-
bor [1] employed an AdaBoost, for feature selection, re-
spectively. For these methods in comparison, we used their
experimental results reported in their papers. As shown in
Table 1, BDBN framework outperformed all the methods in
comparison [1, 36, 23]. This demonstrated that the features

5We did not recognize the “contempt” and “neutral” for a fair com-
parison with the state-of-the-art methods evaluated on the original Cohn-
Kanade database [11].

6Cohn-Kanade database [11] is an early version of CK+ and contains a
subset of CK+ data (i.e., 320 image sequences with expression labels [23]).

learned and selected through BDBN contain more discrim-
inative information for facial expression recognition.
Table 1. Performance comparison on the CK+ database in terms of aver-
age classification rate for 6 expressions. LOSO: leave-one-subject-out.

Methods CSPL [36] AdaGabor [1] LBPSVM [23] BDBN

Validation Setting 10-Fold LOSO 10-Fold 8-Fold

Performance 0.899 0.933 0.951 0.967

4.2.2 Analysis of Patches Selection Results on the CK+
Database

We are curious about what information each selected patch
provides. For each expression, patches selected by the fi-
nal strong classifiers through BDBN learning are marked by
boxes in Fig. 4. In addition, we only show those patches that
were selected more frequently in the 8-fold experiments.
Specifically, patches enclosed in red boxes were selected
in all the 8 runs across different subjects. These patches,
we believe, contain the most discriminative information to
recognize the corresponding expression. Those patches en-
closed in blue boxes were selected in more than 4 runs.

Most of the selected patches, especially those enclosed
in red boxes, are located around lip, eye, nose, and eye-
brow, which coincides with the psychological studies [3].
It is also interesting that the patches selected for the ex-
pressions are closely related to a set of facial Action Units
(AUs) [5], which can be used to describe the corresponding
expression. For example, as shown in Fig. 4, the patches
selected for recognizing the sadness expression are either
located around the lip, which is closely related with AU 15
(Lip Corner Depressor), or around the eye corners and eye-
brows, which are related to AU 4 (Brow Lowerer) and AU 1
(Inner Brow Raiser), respectively. The combination of AU
1, AU 4 and AU 15 describes the sadness expression [17].
Similar results can be found in other expressions.

(a) Ang (b) Dis (c) Fea (d) Hap (e) Sad (f) Sur

Figure 4. An analysis of the selected features for the six basic expressions
in CK+ database. Red color means selection with the highest frequency,
i.e., the feature was selected in all 8 runs; while blue color stands for rela-
tively lower selection frequency, i.e., the feature was selected in more than
4 runs. Best viewed in color.

Another interesting discovery is that the number of
selected patches decreases as BDBN learning continues.
Starting from dozens patches selected in the first iteration,
fewer and fewer patches are chosen. Finally, a small set
of features (usually less than 7) was employed in the fi-
nal strong classifier. Furthermore, the discriminative pow-
ers of the selected features were strengthened drastically.
As shown in Fig. 5, an 80-dimensional vector is employed
to store the individual recognition rates of all features

Facial expression recognization (Liu et al. CVPR 2014)

“The voice quality of this phone is amazing.” (Positive)

“The earphone broke in two days.” (Negative)

Product review sentiment classification
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Machine Learning Tasks

▶ Regression

Algorithmic trading: forecast close
price, highs and lows

Early-day pandemic case prediction
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Machine Learning Tasks

▶ Regression

Algorithmic trading: forecast close
price, highs and lows

Early-day pandemic case prediction
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Machine Learning Tasks

▶ Recognition (e.g. speech
recognition)

▶ Image
denoising/super-resolution

▶ Anomaly detection: finding
abnormal operational activity
for network security.

Can you name some other tasks?
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Machine Learning Tasks

▶ Recognition (e.g. speech
recognition)

▶ Image
denoising/super-resolution

▶ Anomaly detection: finding
abnormal operational activity
for network security.

Can you name some other tasks?
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Machine Learning Tasks

▶ Recognition (e.g. speech
recognition)

▶ Image
denoising/super-resolution

▶ Anomaly detection: finding
abnormal operational activity
for network security.

Can you name some other tasks?
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Machine Learning Tasks

▶ Recognition (e.g. speech
recognition)

▶ Image
denoising/super-resolution

▶ Anomaly detection: finding
abnormal operational activity
for network security.

Can you name some other tasks?
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Machine Learning Experience

▶ Dataset: a collection of input, X = {x(1), . . . , x(m)} and optionally,
the corresponding output (labels) Y = {y(1), . . . , y(m)}

▶ Each input (data point) x(i) is represented by n features

Example: features of an iris flower
sepal
length

sepal
width

petal
length

petal
width

spieces

5.1 3.5 1.4 0.2 Setosa
4.9 3.0 1.4 0.2 Setosa
6.4 3.5 4.5 1.2 Versicolor
5.9 3.0 5.0 1.8 Virginica
...

...
...

...
...
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Machine Learning Experience

▶ Dataset: a collection of input, X = {x(1), . . . , x(m)} and optionally,
the corresponding output (labels) Y = {y(1), . . . , y(m)}

▶ Each input (data point) x(i) is represented by n features

Example: features of an iris flower
sepal
length

sepal
width

petal
length

petal
width

spieces

5.1 3.5 1.4 0.2 Setosa
4.9 3.0 1.4 0.2 Setosa
6.4 3.5 4.5 1.2 Versicolor
5.9 3.0 5.0 1.8 Virginica
...

...
...

...
...
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Machine Learning Performance

▶ Quantitatively evaluate the ability of a machine learning algorithm
for a given task, e.g.
▶ Mean square error (MSE): 1

m
∑m

i=1(y(i) − f(x(i)))2

▶ Mean absolute error (MAE): 1
m
∑m

i=1 1{y(i) ̸= f(x(i))}

▶ Must perform well on new, previously unseen input!
▶ Separate test dataset from training data
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yang (李阳)
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Different Types of Learning

Supervised learning
Given some input and output (label) training data, learn the machine f
from training data

x f y

Supervised learning tasks:
▶ Classification: y is discrete
▶ Regression: y is continuous (predict stock market closing price,

image captioning, automated video transcription)
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Different Types of Learning

Unsupervised learning
No labels are given in prior, find hidden structure or pattern from the data

x f y

Unsupervised learning tasks:
▶ Data clustering
▶ Anomaly detection
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Different Types of Learning
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x f y
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Different Types of Learning

Reinforcement learning
The learning machine is presented in an interactive manner to a dynamic
environment, and need to make sequential decisions

agent

environment

observation
reward action

▶ Robotic agent (self-driving car, AlphaGo)
▶ AI Chatbot (Reinforcement learning from Human Feedback)
▶ Intelligent control system



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
22/47

Different Types of Learning

Reinforcement learning
The learning machine is presented in an interactive manner to a dynamic
environment, and need to make sequential decisions

agent

environment

observation
reward action

▶ Robotic agent (self-driving car, AlphaGo)
▶ AI Chatbot (Reinforcement learning from Human Feedback)
▶ Intelligent control system



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
23/47

Inference vs Prediction

Given training data of x and y,

Inference
knowing the structure of f, find good models to describe f. i.e. model the
data generation process

← focus of statistics

Prediction
given future data samples of x, predict the corresponding output data y
using f.

← focus of machine learning
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A Brief History of Machine Learning
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Development of Statistical Methods (<1950)
▶ (1805): Adrien-Marie Legendre proposed the least squares method

for data fitting. (e.g. linear regression)
f(x) = b + w1x1 + w2x2 = wTx + b

Learn model f by minimizing the loss function (MSE):

J(w, b) = 1
2

∑m
i=1(f(x(i))− y(i))2

Can be generalize to nonlinear least squares
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Development of Statistical Methods (<1950)

▶ (1812): Pierre-Simon Laplace defined Bayes Theorem, based on
earlier works of Thomas Bayes.

P(X|Y) = P(Y|X)P(X)
P(Y)

The foundation of Bayesian estimation, a core approach in estimating
model parameters from data.
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Development of Statistical Methods (<1950)

▶ (1901): Karl Pearson invented principal component analysis
(PCA), a classic tool in exploratory data analysis and dimension
reduction.

PCA
Convert observations of possibly correlated variables into a set of linearly
uncorrelated variables called principal components.
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Development of Statistical Methods (<1950)
▶ (1935): Ronald A. Fisher fit the Probit model using maximal

likelihood estimation for binary classification problem (a.k.a.
Logistic Regression )

Regression model
linear

f(x) = wTx + b

logistic

f(x) = 1

1 + e−z(wTx+b)
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Simple Learning Algorithms (1950)

▶ (1957): Frank Rosenblatt invented the Perceptron algorithm, the
first artificial nueral network

Hardware implementation: Mark I Perceptron
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The perceptron learning algorithm
Given x, predict y ∈ {0, 1}

f(x) =
{
1 if wTx + b ≥ 0

0 otherwise

-0.5 0.5

x
1

-0.5

0.5

1

x
2

w
T
x+b < 0

w
T
x+b > 0
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The perceptron learning algorithm

Training a perceptron
For each x, compare y and the prediction f(x)
▶ When prediction is correct: wt+1 = wt
▶ When prediction is incorrect:

▶ predicted ”1”: wt+1 := wt − αx
▶ predicted ”0”: wt+1 := wt + αx



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
30/47

The perceptron learning algorithm

Training a perceptron
For each x, compare y and the prediction f(x)
▶ When prediction is correct: wt+1 = wt
▶ When prediction is incorrect:

▶ predicted ”1”: wt+1 := wt − αx
▶ predicted ”0”: wt+1 := wt + αx



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
31/47

Simple Learning Algorithms (1960s)
▶ Rise of Connectionism: an approach to explain mental phenomena

using artificial neural networks (ANN)

Learning always involves modifying the connection weights

ANN with a hidden layer
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Simple Learning Algorithms (1960s)
▶ (1967): Cover and Hart invented Nearest Neighbor Classification

and the start of Pattern Recognition One of the first non-parametric
learning algorithms

When k=3, target is classified as 1; When k=5,
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The “AI Winter”(1970s)

▶ (1969): Minsky and Papert’s 1969 book
Perceptrons presented limitations to what
perceptrons could do
▶ Single-layer network can not solve the

XOR problem
▶ Difficult to update weights in neural

networks with multiple hidden layers The XOR problem

Virtually no research at all was done in connectionism for 10 years
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Rediscovery of Backpropagation (1980s)
▶ (1976) David Rumelhart, Geoff Hinton and Ronald J. Williams

rediscovered of Backpropagation (first proposed by Linnainmaa in
1970) an efficient way to calculate the derivative of the loss function
with respect to the weights of the network

Allows efficient training of multi-layer perceptrons.

Many hidden units increase expressiveness of ANNs
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Rediscovery of Backpropagation (1980s)

▶ (1989) Christopher Watkins proposed Q-learning, fundation of
modern Reinforcement Learning

Q-learning
Given any Markov decision process, learn a
policy, which tells an agent what action to take
under what circumstances (states). States set: {free, wall,

goal, }
Action set: {Left,
Right,Top, Down}

yang (李阳)
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Rise of Data Driven Methods (1990s)

▶ (1992): Corinna Cortes and Vladimir Vapnik discovered Support
Vector Machine

Single-layer perceptron may have
infinite solutions

Support Vector Classifier

Give accuracy comparable to neural networks with elaborated features in
a handwriting task
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Kernel Methods (2000s)

Kernel method: learn feature representations of data from pairwise
similarity, defined by some (family of) kernel functions

▶ (1998) Kernel principal component analysis (kernel PCA) was
proposed by Schölkopf

▶ (2010) Radio Basis Function (RBF) kernel for SVM proposed by
Yin-Wen Chang et. al.
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Deep Neural Networks (2010s-Present)

Notable events and achievements in computer vision and NLP:
▶ (2006) First GPU-implementation CNN by K. Chellapilla et al.
▶ (2009) Nvidia GPUs were used for deep learning, drastically speedup

training
▶ (2012) ImageNet dataset by Feifei Li’s team, greatly facilitated

vision recognition research
▶ (2013) Word2Vec word embedding model released by Google
▶ (2014) Generative Adversarial Network (GAN) was invented by Ian

Goodfellow and his colleagues
▶ (2016) Further development in CNN: e.g. ResNet (image

classification) and UNet (semantic segmentation)
▶ (2017) Transformer (multi-head attention) was proposed by Google

Brain
▶ ...
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Deep Reinforcement Learning (2013-Present)

Deep reinforcement learning demonstrates human-level game play

Screenshots of Atari 2600 Challenge

▶ (2013) AI plays Atari games
▶ (2016) AlphaGo beats human at Go
▶ (2018) AlphaStar reaches grandmaster level at Starcraft
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Self-supervised Learning & Foundation Model
self-supervised learning: a type of supervised learning where labels
comes from the data itself

BERT masked language model

▶ Pretrain a model on self-supervised tasks (e.g. Masked Language
Model (2018), Masked auto-encoder (2021)

▶ Use the model representation for downstream tasks
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Self-supervised Learning & Foundation Model
foundation models are large deep learning models trained on massive
data such that it can be applied across a wide range of tasks. e.g.
GPT-n (2020-Present), DALL-E (2021)
Often used as a starting point to develop new ML models, rather than

train from scratch.
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Challenges in Deep Learning

▶ Overfitting
▶ Lack of interpretability
▶ Vulnerable to adversarial attack
▶ Dependency on data quantity & quality
▶ Training large models are costly (GPT-4 has about 1.8 trillion

parameters )
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Machine Learning Research
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Important Challenges in Machine Learning Research

Curse of dimensionality

In high dimensional space, the possible configuration of x is much larger
than the number of training examples.
▶ Semi-supervised learning: learn from a small set of labeled data

and a rich set of unlabeled data.

▶ Active learning: a type of semi-supervised learning that
interactively queries the user to obtain labels at new datapoints.

▶ Self-supervised learning : leverage inherent structures or
relationships within the input data to create meaningful features



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
43/47

Important Challenges in Machine Learning Research

Curse of dimensionality

In high dimensional space, the possible configuration of x is much larger
than the number of training examples.
▶ Semi-supervised learning: learn from a small set of labeled data

and a rich set of unlabeled data.
▶ Active learning: a type of semi-supervised learning that

interactively queries the user to obtain labels at new datapoints.

▶ Self-supervised learning : leverage inherent structures or
relationships within the input data to create meaningful features



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
43/47

Important Challenges in Machine Learning Research

Curse of dimensionality

In high dimensional space, the possible configuration of x is much larger
than the number of training examples.
▶ Semi-supervised learning: learn from a small set of labeled data

and a rich set of unlabeled data.
▶ Active learning: a type of semi-supervised learning that

interactively queries the user to obtain labels at new datapoints.
▶ Self-supervised learning : leverage inherent structures or

relationships within the input data to create meaningful features



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.
44/47

Heterogeneous Learning
Real world applications encounter a lot of heterogeneities in data
modalities, representations and tasks.
e.g. Road traffic status are partially observed by heterogeneous sources:

▶ Static sensors
▶ Mobile sensors
▶ Real-time social

media content
related to traffic
condition

▶ Accident report
▶ …

Transfer learning, multi-modal learning and foundational models are
motivated by this challenge.
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Machine learning theories

Provides theoretical supports on why machine learning algorithms work,
improves learning performances, and discovers potential pitfalls.

Open theoretical questions

▶ How data quality affects learning performance
▶ Understand deep neural networks through information theory ...
▶ Understanding the generalizing capability of transformer-based

models
▶ How well pre-trained model adapt to future task
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Summary

Machine learning: learn rules from data, adapt to changes and improves
performance with experience.

▶ Machine learning themes in history
▶ Statistical methods
▶ Perceptrons and ANN
▶ SVM, kernel methods, ensemble methods
▶ Deep neural networks
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Next Lecture: Linear Space Methods

▶ Linear Regression
▶ Logistic Regression
▶ Optimization methods
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