Learning From Data Lecture 12: Reinforcement Learning

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

May 31, 2024

Reinforcement Learning

- ► What's reinforcement learning?
- ► Mathematical formulation: Markov Decision Process (MDP)
- Model Learning for MDP, Fitted Value Iteration
- Deep reinforcement learning (Deep Q-networks)

Motivation

Markov Decision Process

Reinforcement Learning: Autonomous Car, Helicopter

Stanley, Winner of DARPA Grand Challenge (2005) Inverted autonomous helicopter flight (2004)

Other applications include robotic control, computational economics, health care...

AlphaGo beat World Go Champion Kejie (2017)

Nature paper on by AlphaGo team

Deep Reinforcement Learning: OpenAl

OpenAl beats Dota2 world champion (2017)

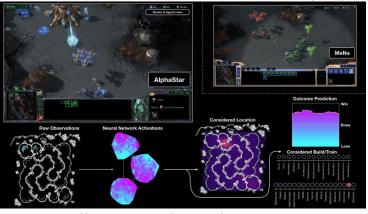
OpenAl first ever to defeat world's best players in competitive eSports. Vastly more complex than traditional board games like chess & Go.

3:15 AM - Aug 12, 2017

0

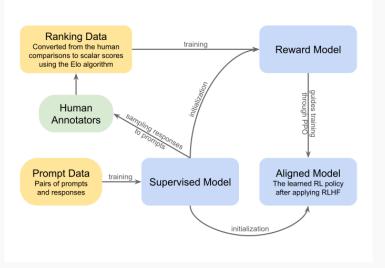
Multi-Agent Reinforcement Learning: AlphaStar

AlphaStar reached Grandmaster level in StarCraft II (2019)



 $\verb|https://www.nature.com/articles/s41586-019-1724-z|$

Align an intelligent agent to human preferences. (2019)



What is reinforcement learning?

Sequential decision making

To deciding, from <u>experience</u>, the <u>sequence of actions</u> to perform in an <u>uncertain environment</u> in order to achieve some <u>goals</u>.

- e.g. play games, robotic control, autonomous driving, smart grid
- Do not have full knowledge of the environment a priori
- ▶ Difficult to label a sample as "the right answer" for a learning goal

What is reinforcement learning?

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, $\underline{1984}$)

An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing

Reinforcement Learning and MDP Model Learning for MDP

What is reinforcement learning?

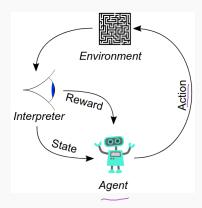
A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

- ► An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing
- ▶ The agents take actions to maximize the cumulative "reward"

Learning From Data

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

- ► An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing
- The agents take actions to maximize the cumulative "reward"



Markov Decision Process

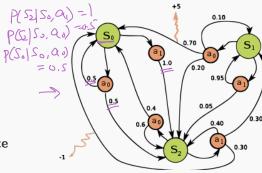
A Markov decision process

$$(S, \underline{A}, \{P_{sa}\}, \underline{\gamma}, \underline{R})$$

- S: a set of states (environment)
- ► A: a set of **actions**
- $P_{sa} := P(s_{t+1}|s_t, a_t)$: state transition probabilities. Markov property:

$$P(\underline{s_{t+1}}|\underline{s_t},\underline{a_t}) = P(\underline{s_{t+1}}|\underline{s_t},\overline{a_t},\ldots,s_0,a_0) .$$

- $ightharpoonup R: S \times A \rightarrow \mathbb{R}$ is a **reward** function
- $\gamma \in [0,1)$: discount factor



$$S = \{S_0, S_1, S_2\}$$

$$A = \{a_0, a_1\}$$

$$R(s_1, a_0) = 5, R(s_2, a_1) = -1$$

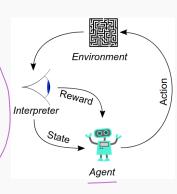
$$S_{ct}$$

		S_0	S_1	S_2
<u></u>	S_0, a_0	0.5	0	0.5
YIN =	S_0, a_1	0	0	1
1001	S_1, a_0	0.7	0.1	0.2
((T hT)	S_1, a_1	0	0.95	0.05
016,46	S_2, a_0	0.4	0.6	0
	S_2, a_1	0.3	0.3	0.4

Markov Decision Process: Overview

At time step t = 0 with initial state $s_0 \in S$ for t = 0 until done:

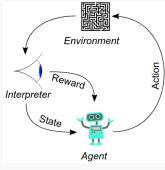
- Agent selects action at a_b ∈ A
 Environment yields reward $r_t = R(s_t, a_t)$
- Environment samples next state $s_{t+1} \sim P_{sa}$
- \triangleright Agent receives reward r_t and next state s_{t+1}



Markov Decision Process: Overview

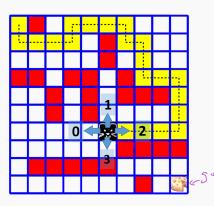
At time step t = 0 with initial state $s_0 \in S$ for t = 0 until done:

- Agent selects action at $a_t \in A$
- Environment yields reward $r_t = R(s_t, a_t)$
- Environment samples next state $s_{t+1} \sim P_{sa}$
- Agent receives reward r_t and next state s_{t+1}



A **policy** $\pi: S \to A$ specifies what action to take in each state

Goal: find optimal policy π^* -that maximizes cumulative discounted reward



https://www.samyzaf.com/ML/rl/qmaze.html

Goal: get to the bottom-right corner of the nxn maze

- S: position of the agent (mouse)
- ► A: {Left, Right, Up, Down}

$$\underline{P_{sa}(s')} = \begin{cases} 1 & \underline{s'} \text{ is next move} \\ 0 & \text{otherwise} \end{cases}$$

$$R(a,s) = \begin{cases} \boxed{0.05} & \text{move to free cell} \\ -1 & \text{move to wall/block} \\ 1 & \text{move to goal} \end{cases}$$

 $ightharpoonup \gamma \in [0,1)$: discount factor

Yang Li yangli@sz.tsinghua.edu.cn

MDP Example: Maze Solver

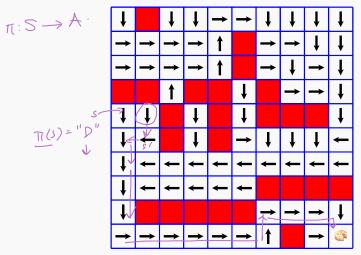
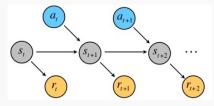


Figure: An optimal policy function $\pi(s)$ learned by the solver.

https://www.samyzaf.com/ML/rl/qmaze.html

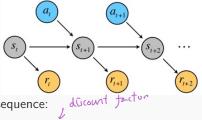
Markov Decision Process

Consider a sequence of states $\underline{s_0,s_1},\ldots$ with actions a_0,a_1,\ldots ,



Markov Decision Process

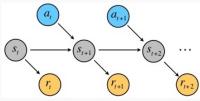
Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



Total payoff of a sequence:

$$R(s_0, a_0) + \sqrt{R(s_1, a_1) + \sqrt{2}R(s_2, a_2) + \dots}$$

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



Total payoff of a sequence:

$$R(s_0, a_0) + \gamma R(s_1, \underline{a_1}) + \gamma^2 R(s_2, \underline{a_2}) + \dots$$

For simplicity, let's assume rewards only depends on state s, i.e.

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

Future reward at step t is discounted by γ^t

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(\underline{s_0}) + \gamma R(\underline{s_1}) + \gamma^2 R(\underline{s_2}) + \dots]$$

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

A **policy** is any function $\pi \colon S \to A$.

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

A **policy** is any function $\pi: S \to A$.

A value function of policy π is the expected payoff if we start from s, take actions according to π : I expected total payoff

$$V^{\pi}(s) \triangleq \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = S, \pi]$$

$$V^{\pi}(s) \triangleq \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = \mathbf{S}, \pi]$$

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

A **policy** is any function $\pi: S \to A$.

A **value function** of policy π is the expected payoff if we start from s, take actions according to π :

$$V^{\pi}(s) \triangleq \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

Given π , value function satisfies the **Bellman equation**: Why?

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$
where $V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s') = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$V^{\pi}(s') = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

Value function of π at s:

$$V^{\pi}(s) = \mathbb{E}[R(s_0, \underline{\pi(s_0)} + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \dots | s_0 = s, \pi]$$

Assume action is known:

$$\begin{split} \underline{V^{\pi}(s)} &= \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi] \\ &= \mathbb{E}[R(s)] + \gamma \mathbb{E}[R(s_1) + \gamma R(s_2) + \dots | s_0 = s, \pi] \\ &= R(s) + \gamma \mathbb{E}_{s' \sim P_{s,\pi(s)}}[\underline{V^{\pi}(s')}] \\ &= R(s) + \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s') \in \text{discrete state S} \\ &\text{or } R(s) + \gamma \int_{s'} P_{s,\pi(s)}(s') V^{\pi}(s') ds' \in \text{continuous} \end{split}$$

For a finite state space, given R, P_{sa}, π , we can find $V^{\pi}(s)$ using Bellman's equation:

$$V^{\pi}(s) = R(s) + \gamma \sum_{s' \in \overline{S}} P_{s\pi(s)}(s') V^{\pi}(s')$$

 $V^{\pi}(s)$ can be solved as |S| linear equations with |S| unknowns.

$$V^{T}(S_{1}), V^{T}(S_{2}), \dots V^{T}(S_{N})$$

$$0 = -V^{T}(S_{1}) + R(S_{1}) + \gamma P_{ST}(S_{2}) V^{T}(S_{2}) + \gamma P_{ST}(S_{3}) V^{T}(S_{3}) \dots + \gamma P_{ST}(S_{N}) V^{T}(S_{N})$$

$$\wedge \begin{cases} 0 = -V^{T}(S_{1}) + R(S_{1}) + \gamma P_{ST}(S_{2}) V^{T}(S_{2}) + \gamma P_{ST}(S_{3}) V^{T}(S_{3}) & \dots + \gamma P_{ST}(S_{N}) V^{T}(S_{N}) \end{cases}$$

Optimal value and policy

We define the optimal value function

$$\underline{V^*(s)} = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')$$

$$= R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{s\underline{a}}(s') V^*(s')$$

We define the optimal value function

$$\underbrace{V^*(s)}_{\pi} = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')$$
$$= R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') \underbrace{V^*(s')}_{S'}$$

Let $\pi^*:S\to A$ be the policy that attains the 'max':

$$\pi^*(s) = \underset{\underline{s} \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

We define the optimal value function

$$\underbrace{V^{*}(s)}_{\pi} = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')
= R(s) + \max_{a \in A} (\sum_{s' \in S} P_{sa}(s') V^{*}(s')$$

Let $\pi^*: S \to A$ be the policy that attains the 'max':

$$\sqrt[\pi^*]{(s)} \qquad \qquad \pi^*(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

Then for every state s and every policy π , we can show

$$V^*(s) = V^{\pi^*}(s) \geq V^{\underline{\pi}}(s)$$

 π^* is the optimal policy for any initial state s

Proposition 1

For every state s,

$$V^*(s) = V^{\pi^*}(s)$$

Proof. i) Show
$$V^*(s) \ge V^{\pi^*}(s)$$

$$V^*(s) = \max_{\underline{x}} \underline{V}(s) \ge V^{\pi^*}(s) \quad \text{by definition}$$

Suppose $V^{+}(s) > V^{+}(s)$, then there must exists T', such that $V^{+}(s) = V^{+}(s)$.

Then
$$V^{\pi'}(s) > V^{\pi'}(s)$$

By Bellman's equation
$$R(s) + \chi \sum_{s \in S} P_{s\pi(s)}(s') V^{\pi(s)} > R(s) + \chi \sum_{s \in S} P_{s\pi(s)} V^{\pi(s)}$$

$$\sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi(s)} > \sum_{s \in S} P_{s\pi(s)} V^{\pi(s)}$$

Assume the MDP has finite state and action space.

```
1. For each state s, initialize V(s) := 0
2. Repeat until convergence {
            Update V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')
              for every state s
```

Assume the MDP has finite state and action space.

```
1. For each state s, initialize V(s) := 0
2. Repeat until convergence {
           Update V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')
              for every state s
```

Two ways to update V(s):

Synchronous update:

```
Set V_0(s) := V(s) for all states s \in S
For each s \in S:
           V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V_0(s')
```

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

Two ways to update V(s):

Synchronous update:

```
Set V_0(s) := V(s) for all states s \in S
For each s \in S: V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V_0(s')
```

Asynchronous update:

```
For each s \in S:

V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') \underline{V(s')}
```

Solving finite-state MDP: policy iteration

```
2. Repeat until convergence {

[a. Let V := V^{\pi} \longrightarrow Solve linear system based on Rellman's equations of the system and some system based on Rellman's equations.
         b. For each state s,
                \pi(s) := \operatorname{argmax}_{s \in A} \sum_{s'} P_{sa}(s') V(s')
```

```
1. Initialize \pi randomly
2. Repeat until convergence {
    a. Let V:=V^{\pi}
    b. For each state s,
    \pi(s):=\operatorname{argmax}_{a\in A}\sum_{s'}P_{sa}(s')V(s')
}
```

Step (a) can be done by solving Bellman's equation.

Both value iteration and policy iteration will converge to V^* and π^*

Value iteration vs. policy iteration

- Policy iteration is more efficient and converge faster for small MDP
- ▶ Value iteration is more practical for MDP's with large state spaces

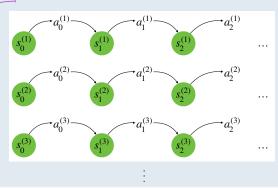
Discrete states Continuous states

Learning a model for finite-state MDP

Suppose the reward function R(s) and the transition probability P_{sa} is not known. How to estimate them from data?

Experience from MDP

Given policy π , execute π repeatedly in the environment:



Estimate P_{sa}

Maximum likelihood estimate of state transition probability:

$$P_{sa}(s') = P(s'|\underline{s},\underline{a}) = \frac{\#\{s \xrightarrow{a} |\underline{s'}\}}{\#\{s \xrightarrow{a} \cdot\}}$$

If
$$\#\{s \stackrel{a}{\rightarrow} \cdot\} = 0$$
, set $P_{sa}(s') = \frac{1}{|S|}$

Estimate R(s)

Let $R(s)^{(t)}$ be the immediate reward of state s in the t-th trail,

$$R(s) = \mathbb{E}[R(s)^{(t)}] = \frac{1}{m} \sum_{t=1}^{m} R(s)^{(t)}$$

```
1. Initialize \pi randomly, V(s) := 0 for all s
2. Repeat until convergence {
    a. Execute \pi for m trails
    b. Update P_{sa} and R using the accumulated experience
    c. V := ValueIteration(P_{sa}, R, V)
    b. Update \pi greedily with respect to V := \pi(s) := argmax_{a \in A} \sum_{s'} P_{sa}(s') V(s')
}
```

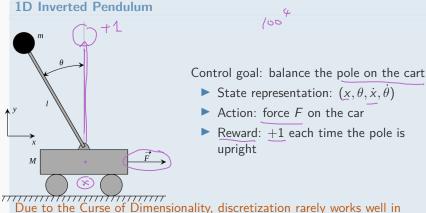
ValueIteration(P_{sa} , R, V_0)

```
1. Initialize V=V_0
2. Repeat until convergence { Update V(s):=R(s)+\max_{a\in A}\gamma\sum_{s'\in S}P_{sa}(s')V(s') for every state s }
```

Continuous state MDPs

An MDP may have an infinite number of states:

- A car's state : $(x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})$
- A helicopter's state : $(x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$



Due to the Curse of Dimensionality, discretization rarely works well in continuous state with more than 1-2 dimensions

Value function approximation

How to approximate V directly without resorting to discretization?

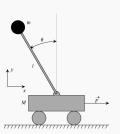
Main ideas:

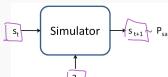
- Obtain a *model* or *simulator* for the MDP, to produce **experience tuples**: $\langle \overline{s, a, s', r} \rangle$
- Sample $\underline{s^{(1)}, \ldots, s^{(m)}}$ from the state space S, estimate their optimal expected total payoff using the model, i.e. $v^{(1)} \approx V(s^{(1)}), v^{(2)} \approx V(s^{(2)}), \ldots$
- Approximate V as a function of state s using supervised learning from $(s^{(1)}, y^{(1)}), (s^{(2)}, y^{(2)}), \ldots$ e.g.

$$V(s) = \theta^T \phi(s)$$

Obtaining a simulator

A **simulator** is a black box that generates the next state s_{t+1} given current state s_t and action a_t .



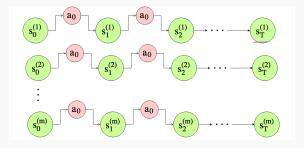


Use physics laws. e.g. equation of motion for the inversed pendulum problem:

$$\begin{bmatrix}
(m+M)\ddot{x} + \underline{m}L(\dot{\theta}^2\sin\theta - \underline{\theta}\cos(\theta)) = F \\
g\sin\theta + \ddot{x}\cos\theta = L\ddot{\theta}
\end{bmatrix}$$

- Use out-of-the-shelf simulation software
- Game simulator

Execute m trails in which we repeatedly take actions in an MDP, each trial for T timesteps.



Learn a prediction model $\underline{s_{t+1}} = h_{\theta} \begin{pmatrix} s_t \\ a_t \end{pmatrix}$ by picking

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \left\| s_{t+1}^{(i)} - \underbrace{h_{\theta}}_{\text{c}} \left(\begin{bmatrix} s_{t}^{(i)} \\ a_{t}^{(i)} \end{bmatrix} \right) \right\|^2$$

Popular prediction models

- ▶ Linear function: $h_{\theta} = As_t + Ba_t$
- Linear function with feature mapping: $h_{\theta} = A\phi_s(s_t) + B\phi_a(a_t)$
- ► Neural network

Build a simulator using the model:

- $lackbox{ Deterministic model: } s_{t+1} = h_{\theta} \left(egin{bmatrix} s_t \\ a_t \end{bmatrix} \right)$
- Stochastic model: $s_{t+1} = h_{\theta} \left(\begin{bmatrix} s_t \\ a_t \end{bmatrix} \right) + \epsilon_t \quad \epsilon_t \sim \mathcal{N}(0, \Sigma)$

Yang Li yangli@sz.tsinghua.edu.cn

How to approximate V directly without resorting to discretization?

Main ideas:

- Obtain a model or simulator for the MDP
- ▶ Sample $s^{(1)}, \ldots, s^{(m)}$ from the state space S, estimate their optimal expected total payoff using the model, i.e. $y^{(1)} \approx V(s^{(1)}), y^{(2)} \approx V(s^{(2)}), \dots$
- ▶ Approximate V as a function of state s using supervised learning from $(s^{(1)}, y^{(1)}), (s^{(2)}, y^{(2)}), \dots$ e.g.

$$V(s) = \theta^T \phi(s)$$

Value function for continuous states

Update for finite-state value function:

$$V(s) := R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s')V(s')$$

Update we want for continuous-state value function:

$$V(s) := R(s) + \gamma \max_{a \in A} \int_{\underline{s'}} P_{sa}(s') V(s') ds'$$
$$= R(s) + \gamma \max_{a \in A} \mathbb{E}_{\underline{s'} \sim P_{sa}} [V(s')]$$

(model) For each sample state s, we compute $y^{(i)}$ to approximate $R(s) + \gamma \max_{a \in A} \mathbb{E}_{s' \sim P_{s(i)}}[V(s')]$ using finite samples drawn from P_{sa}

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:

- Obtain a model or simulator for the MDP
- \triangleright Sample $s^{(1)}, \ldots, s^{(m)}$ from the state space S, estimate their optimal expected total payoff using the model, i.e. $v^{(1)} \approx V(s^{(1)}), v^{(2)} \approx V(s^{(2)}), \dots$
- Approximate V as a function of state s using supervised learning from $(s^{(1)}, v^{(1)}), (s^{(2)}, v^{(2)}), \dots$ e.g.

$$V(s) = \theta^T \phi(s)$$

Fitted value iteration

Algorithm: Fitted value iteration (Stochastic Model)

```
1. Sample \underline{s^{(1)},\ldots,s^{(m)}}\in\underline{S} 2. Initialize \theta:=0 yalva function \emptyset are matter
2. Repeat {
     a. For each sample s^{(i)}
              For each action a:
                           Sample s_1',\ldots,s_k'\sim |\overline{P_{s^{(i)},a}}| using a model
                           Compute Q(a) = \frac{1}{k} \sum_{i=1}^{k} R(s^{(i)}) + \gamma V(s'_i)
                                             \uparrow estimates R(s^{(i)}) + \gamma \mathbb{E}_{s' \sim P}, [V(s')]
                                              where V(s) := \theta^T \phi(s)
              y^{(i)} = \max_a Q(a)
               \uparrow estimates R(s^{(i)}) + \gamma \max_{s} \mathbb{E}_{s' \sim P_{s'}}[V(s')]
                \theta := \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{i=1}^{m} (\theta^T \phi(s^{(i)}) - y^{(i)})^2 \quad \text{where the position}
      b. Update \theta using supervised learning:
      }
```

If the model is deterministic, set k = 1

After obtaining the value function approximation V, the corresponding policy is

$$\pi(s) = \operatorname*{argmax}_{s \sim P_{sa}}[V(s')])$$

Estimate the optimal policy from experience:

```
For each action a:

1. Sample s_1', \ldots, s_k' \sim P_{s,a} using a model

2. Compute Q(a) = \frac{1}{k} \sum_{j=1}^k R(s) + \gamma V(s_j')
\pi(s) = \operatorname{argmax}_a Q(a)
```

Instead of linear regression, other learning algorithms can be used to estimate V(s).

Deep Reinforcement Learning

Two Outstanding Success Stories

Atari AI [Minh et al. 2015]

- ▶ Plays a variety of Atari 2600 video games at superhuman level
- Trained directly from image pixels, based on a single reward signal

AlphaGo [Silver et al. 2016]

- A hybrid deep RL system
- Trained using supervised and reinforcement learning, in combination with a traditional tree-search algorithm.

Learning From Data

Deep Reinforcement Learning

Main difference from classic RL:

- ► Use deep network to represent value function
- Optimize value function end-to-end
- ► Use stochastic gradient descent

Q-Value Function

Given policy π which produce sample sequence $(s_0, a_0, r_0), (s_1, a_1, r_1), \ldots$

ightharpoonup Value function of π :

$$\underline{V^{\pi}(s)} = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t \middle| s_0 = s, \pi\right]$$

► The **Q-value function** $Q^{\pi}(\underline{s},\underline{a})$ is the expected payoff if we take a at state s and follow π

$$Q^{\pi}(\underline{s},\underline{a}) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r_t \middle| s_0 = s(\underline{a_0} = \underline{a}) \pi\right]$$

► The optimal Q-value function is:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = \max_{\underline{\pi}} \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \middle| s_0 = s, a_0 = a, \pi \right]$$

Q-Learning

Bellman's equation for Q-Value function:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}}[r + \gamma \max_{a'} Q^*(s',a')|s,a]$$

$$= r + \mathbb{E}_{s,s}[\gamma \max_{a'} Q^*(s',a')|s,a]$$

Value iteration is not practical when the search space is large.

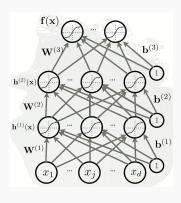
e.g. In an Atari game, each frame is an 128-color 210×160 image, then $|S|=128^{210\times 160}$

Uses a function approximation:

$$Q(s,a;\theta) \approx Q^*(s,a)$$

In deep Q-learning, $Q(s, a; \theta)$ is a neural network

Neural Network Review



Training goal: $\min_{\theta} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})$

Forward propagation

Initialize $h^{(0)}(x) = x$

For each layer $l = 1 \dots d$:

- $a^{(l)}(x) = W^{(l)}h^{(l-1)}(x) + b^{(l)}$
- $h^{(I)}(x) = g(a^{(I)}(x))$

Evaluate loss function $L(h^{(d)}(x), y)$

Backward propagation

Compute gradient $\frac{dL}{dh^{(d)}}$ For each layer $l = d \dots 1$:

Update gradient for parameters in layer

Q-Networks

Training goal: find $Q(s, a; \theta)$ that fits Bellman's equation:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}}[r + \gamma \max_{a'} Q^*(s',a')|s,a]$$

Forward Pass

Loss function:

$$L_i(\theta_i) = \mathbb{E}_{s,a}[(y_i - \underline{Q(s,a;\theta_i)}^2)]$$

where
$$y_i = \mathbb{E}_{s' \sim \mathcal{E}}[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a]$$

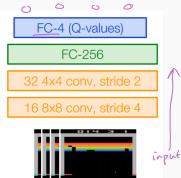
Backward Pass

Update parameter $\underline{\theta}$ by computing gradient

$$abla_{ heta_i} L_i(heta_i) = \mathbb{E}_{s,a,s' \sim \mathcal{E}} \left[\left(r + \gamma \max_{a'} Q(s',a'; heta_{i-1}) - Q(s,a; heta_i)
ight)
abla_{ heta} Q(s,a; heta_i)
ight]$$

Deep Q-Network Architecture

- Input: 4 consecutive frames
- Preprocessing: convert to grayscale, down-sampling, cropping. Final dimension $84 \times 84 \times 4$
- ▶ Output: Q-value functions for 4 actions $Q(s, a_1), Q(s, a_2),$ $Q(s, a_3), Q(s, a_4)$



Experience Replay

Challenge of standard deep Q-learning: correlated input

- invalidate the i.i.d. assumption on training samples
- current policy may restrict action samples we experience in the environment

Experience replay

- Store past transitions (s_t, a_t, r_t, s_{t+1}) within a sliding window in the replay memory D.
- ► Train Q-Network using random mini-batch sampled from *D* to reduce sample correlation
- Also reduces total running time by reusing samples

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights for episode =1, M do
                 Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
                 for t = 1, T do
                                 With probability cleent a random action a_t to there is explored to the variety of the probability cleent a random action a_t to the probability cleent action a_t to the probability cleent action a_t to the probability cleent a random action a_t to the probability cleent action a_t to the probability cleent action a_t to the probability cleent action a_t and a_t and a_t are cleent action a_t and a_t are cl
                                  Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
                                  Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
                                   Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
                                 Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
                                  Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \widehat{\theta}))^2 according to equation 3
                 end for
 end for
```

Parameter ϵ controls the exploration vs. optimization trade-off

Reinforcement Learning Demo

See Demo.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html