Learning From Data Lecture 11: Unsupervised Learning III

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

May 24, 2024

Today's Lecture

Unsupervised Learning (Part III)

- Independent Component Analysis (ICA)
- **Canonical Correlation Analysis (CCA)**

[Independent Component Analysis](#page-2-0)

The cocktail party problem

- \triangleright n microphones at different locations of the room, each recording a mixture of n sound sources
- \blacktriangleright How to "unmix" the sound mixtures?

<http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html>

EEG Analysis

- \blacktriangleright Electrodes on patient scalp measure a mixture of different brain activations
- \blacktriangleright Finding independent activation sources helps removing artifacts in the signal

 uV

VEOG

FC5 www.

 $Cz \wedge \wedge$ P_Z **MAM**

÷

F3 Monday millen

million.

Brian imaging

- \triangleright Different brain matters: gray matter, white matter, cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
- \triangleright An MRI scan is a mixture of magnetic response signals from different brain matters

Problem Model

Case: $n = 2$

- \triangleright Observed random variables: x_1, x_2
- Independent sources: $s_1, s_2 \in \mathbb{R}$

 $x_1 = a_{11}s_1 + a_{12}s_2$ $x_2 = a_{21}s_1 + a_{22}s_2$

Problem Model

Case: $n = 2$

- \triangleright Observed random variables: x_1, x_2
- Independent sources: $s_1, s_2 \in \mathbb{R}$

 $x_1 = a_{11}s_1 + a_{12}s_2$ $x_2 = a_{21}s_1 + a_{22}s_2$

A is called the **mixing matrix**

 $\begin{bmatrix} a_{i_1} & a_{i_2} \\ a_{2i_1} & a_{2i_2} \end{bmatrix}$

$$
\underline{x} = \underline{A}\underline{s}
$$

Problem Model

 $Case: n = 2$

- \triangleright Observed random variables: x_1, x_2
- Independent sources: $s_1, s_2 \in \mathbb{R}$

 $x_1 = a_{11}s_1 + a_{12}s_2$ $x_2 = a_{21}s_1 + a_{22}s_2$

A is called the **mixing matrix**

$$
x = As
$$

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)} = As^{(i)})$

Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)} = As^{(i)})$

Let $W = A^{-1}$ be the **unmixing matrix** Goal of ICA: Find W, such that given $x^{(i)}$, the sources can be recovered by $s^{(i)} = W_X^{(i)}$ $W =$ $\sqrt{ }$ $\Big\}$ $-w_1^T -$. . . $-w_n^T -$ 1

Is W unique for a given set of observations ?

Assume data is **non Gaussian**, ICA has two ambiguities:

 \triangleright Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$ $x = As$ $x_j = \sum_{i=1}^{n} \alpha_i$ is s $6s_i^i \leftrightarrow s_i^i$ $=\sum_{i=1}^{n} (c_j \alpha_j;)(\frac{1}{c_j} s_i) \qquad (\frac{c_j}{c_j} \neq \infty).$ $\frac{1}{2}$ α'_{11} 55

Assume data is **non Gaussian**, ICA has two ambiguities:

- \triangleright Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[\mathsf{s}_i^2] = 1$
- \triangleright Order of the sources s_1, \ldots, s_n : Let P be a permutation matrix, then we have $x = APP^{-1}s$.

$$
x = AP^{-1}Ps
$$

$$
A' = S'
$$

Assume data is **non Gaussian**, ICA has two ambiguities:

- \triangleright Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[\mathsf{s}_i^2] = 1$
- \triangleright Order of the sources s_1, \ldots, s_n : Let P be a permutation matrix, then we have $x = APP^{-1}s$.

8/25

ICA Ambiguities

$$
\mathbb{E}[x \times y] = \mathbb{E}[(A^2)(y \times y)] = \mathbb{E}[2x \times y] = \mathbb{E}[(x \times y)] = \mathbb{E}[xy \times y]
$$

$$
\mathbb{E}[x \times y] = \mathbb{E}[(x \times y)] = 0
$$

Assume data is **non Gaussian**, ICA has two ambiguities:

- \triangleright Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[\mathsf{s}_i^2] = 1$
- \triangleright Order of the sources s_1, \ldots, s_n : Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Assume data is **non Gaussian**, ICA has two ambiguities:

- In Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[\mathsf{s}_i^2] = 1$
- \triangleright Order of the sources s_1, \ldots, s_n : Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Why is Gaussian data problematic?

- \blacktriangleright The distribution of any rotation of Gaussian x has the same distribution as x.
- As long as at least one s_j is non-Gaussian, given enough data, we can recover the *n* independent sources.

Densities and Linear Transformations
 $S \sim \text{Whifom}(b_1)$ $P_S(s) = \begin{cases} 4 & 0 \le s \le 1 \\ 0 & 0, \dots \end{cases}$
 $A = \sum_{k=1}^{s} A_k = 2s$, $P_k(s) = P_k(2s) = \text{Unifom}(0,2)$ = Uniform (0,2)
= { $\frac{1}{6}$ (3 x x s2
= { $\frac{1}{6}$ 0 s x s2
P_s(LDL) {W = Ps(S) | A⁻¹ = 1 · 0 · 5 **Theorem 1** If random vector s has density p_s , and $x = As$ for a square, invertible matrix A, then the density of \overline{x} is $\overline{\mathbf{C}}$

$$
p_{x}(x) = p_{s}(\widetilde{Wx}) \cdot \underbrace{|W|}_{\widetilde{Ue} \text{ to } m}
$$

where $W = A^{-1}$.

$$
\frac{A \in \mathbb{R}^{2\times 2}}{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}} = \frac{A}{\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}} = \frac{A^{-1}}{A}
$$
\n
$$
\text{det}(A) = |A| = \text{vol}(C)
$$

rant

 \mathbf{A} \mathbf{A} \mathbf{A} \mathbf{A}

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

$$
p(s) = \prod_{j=1}^n p_s(s_j)
$$

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

$$
p(s) = \prod_{j=1}^n p_s(s_j)
$$

The density of observation $x = As$ is:

$$
p_{x}(x) = p_{s}(s) |W| = \prod_{j=1}^{n} p_{s}(s_{j}) |W| = \prod_{j=1}^{n} p_{s}(w_{j}^{T}x) |W|
$$

 \mathcal{A}

ICA Algorithm

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

The density of observation $x = As$ is:

$$
p_{x}(x) = p_{s}(s)|W| = \prod_{j=1}^{n} p_{s}(s_{j})|W| = \prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|W|
$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the non-Gaussian cdf for p_s , then $p_{s}(s) = g'(s)$

 $p(s) = \prod^{n} p_s(s_j)$ $j=1$

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

$$
p(s) = \prod_{j=1}^n p_s(s_j)
$$

The density of observation $x = As$ is:

$$
p_{x}(x) = p_{s}(s)|W| = \prod_{j=1}^{n} p_{s}(s_{j})|W| = \prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|W|
$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the *non-Gaussian* cdf for p_s , then

$$
p_s(s)=g'(s)
$$

This appears to be a heuristic choice, yet it can be justified rigorously in other interpretations.

Given i.i.d. training samples $\{x^{(1)},...,x^{(m)}\}$, the log likelihood is

$$
I(W) = \sum_{i=1}^{m} log(p_{x}(x^{(i)})) = \sum_{i=1}^{m} log(\prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|W|)
$$

=
$$
\sum_{i=1}^{m} \left(\sum_{j=1}^{n} log(\frac{w}{w_{j}}^{T}x^{(i)}) + log|W| \right)
$$

Given i.i.d. training samples $\{x^{(1)},...,x^{(m)}\}$, the log likelihood is

$$
I(W) = \sum_{i=1}^{m} log(p_{x}(x^{(i)})) = \sum_{i=1}^{m} log(\prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|W|)
$$

=
$$
\sum_{i=1}^{m} \left(\sum_{j=1}^{n} log g'(w_{j}^{T}x^{(i)}) + log |W| \right)
$$

Stochastic gradient ascent learning rule for sample $x^{(i)}$:

$$
W := \underline{W} + \alpha \left(\begin{bmatrix} 1 - 2g(w_1 \tau_X(i)) \\ \vdots \\ 1 - 2g(w_n \tau_X(i)) \end{bmatrix} x^{(i)T} + \underline{(W^T)}^{-1} \right)
$$

Check this at home!

Theoretical Motivation of ICA

- \triangleright Originally proposed by Jutten & Herault (1991) ¹90 years later than PCA
- Equivalent to learning projection directions w_1, \ldots, w_n that
- Kurtois
	- I maximize the **sum of <u>non-gaussianity</u>** of the projected signals

	Initially minimize the mutual information of the projected signals independent **Indity minimize the mutual information** of the projected signals under the constraint that $w_1^T x, \ldots, w_n^T x$ are uncorrelated. ²

¹Christian Jutten, Jeanny Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991 ²Hyvärinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms

and applications." Neural networks 13.4-5 (2000): 411-430.

ICA vs PCA

[Canonical Correlation Analysis](#page-24-0)

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Example: two sets of measurements of 406 cars:

▶ Specification: Engine displacement (Disp), horsepower (HP), weight $(Wgt)(w)$ $(1-1)$

Measurement: Acceleration (Accel), MPG

find important features that explain covariation between sets of variables

► Random vectors
$$
X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}
$$
 and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
\n► Covariance matrix $\Sigma_{XY} = cov(X, Y)$

$$
\triangleright \text{ Random vectors } X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix} \text{ and } Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}
$$

- \triangleright Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- \blacktriangleright CCA finds vectors a and b such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$
\rho = \text{corr}(a^T X, b^T Y)
$$

$$
\triangleright \text{ Random vectors } X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix} \text{ and } Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}
$$

- \triangleright Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- \blacktriangleright CCA finds vectors a and b such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$
\rho = \text{corr}(a^T X, b^T Y)
$$

 $U = a^T X$ and $V = b^T Y$ are called the first pair of canonical **variables**

$$
\triangleright \text{ Random vectors } X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix} \text{ and } Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}
$$

- \triangleright Covariance matrix Σ_{XY} = cov(X, Y)
- \blacktriangleright CCA finds vectors a and b such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$
\rho = \text{corr}(a^T X, b^T Y)
$$

- $U = a^T X$ and $V = b^T Y$ are called the first pair of canonical **variables**
- Subsequent pairs of canonical variables maximizes ρ while being uncorrelated with all previous pairs

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle $(m \times n)$ matrices M.

$$
\underline{M} = U \Sigma V^{T} = \sum_{i=1}^{r} \underbrace{\sigma_{i} u_{i} v_{i}^{T}}_{i} \underline{\sigma_{i} u_{i} v_{i}^{T}}
$$
\n
$$
\begin{aligned}\nU \in \mathbb{R}^{m \times m}, \ V \in \mathbb{R}^{n \times n} \text{ are orthogonal matrices} \\
\sum \in \mathbb{R}^{m \times n} \text{ is a rectangular diagonal matrix.} \\
\sum \text{Examples:} \\
\Sigma = \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \\ 0 & 0 & 0 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \\ 0 & 0 & 0 \end{bmatrix} \\
\text{Diagonal entries } \underbrace{\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{k}, \ k = \min(n, m) \text{ are called}}\n\end{aligned}
$$

singular values of M.

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for $M\in \mathbb{R}^{m\times n}$ if and only if there exist unit-length $\overline{\mathbb{\mu}} \in \mathbb{R}^m$ and $\mathbb{\nu} \in \mathbb{R}^n$ such that

$$
\frac{Mv}{\mu^T u} = \underline{\sigma u}
$$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for $M\in \mathbb{R}^{m\times n}$ if and only if there exist unit-length $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

> $Mv = \sigma u$ $M^T u = \sigma v$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Connection to eigenvalue decomposition Given SVD of matrix $M = U \Sigma \overline{V}^T$, $M^{T}M = (V\Sigma^{T}U^{T})(U\Sigma V^{T}) = V(\Sigma^{T}\Sigma)V^{T} \leftarrow V$ is an eigenvector of $M^T M$ with eigenvalue σ_i^2 \blacktriangleright $MM^{\mathsf{T}} = (U \Sigma V^{\mathsf{T}})(V^{\mathsf{T}} \Sigma^{\mathsf{T}} U) = U(\Sigma \Sigma^{\mathsf{T}})U^{\mathsf{T}} \leftarrow u_i$ is an eigenvector of MM^T with eigenvalue σ_i^2

The original problem:

$$
(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\text{argmax}} \text{corr}(a^T X, b^T Y) \tag{1}
$$

The original problem:

$$
(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \operatorname{corr}(a^T X, b^T Y)
$$
(1)
Assume $\mathbb{E}[x_1] = \dots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \dots = \mathbb{E}[y_{n_2}] = 0$,

$$
\operatorname{corr}(a^T X, b^T X) = \frac{\mathbb{E}[(a^T X)(b^T Y) \bar{\mathbb{I}}] \ge \mathbb{E}[\operatorname{Var}[X] \bar{\mathbb{I}}]}{\sqrt{\mathbb{E}[(a^T X)^2] \mathbb{E}[(b^T Y)^2]}} = \frac{a^T \bar{\mathbb{E}}[x]^T \bar{\mathbb{I}}}{\sqrt{a^T \Sigma_{XX} a} \sqrt{b^T \Sigma_{YY} b}}
$$

The original problem:

$$
(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\text{argmax}} \text{corr}(a^T X, b^T Y) \tag{1}
$$

Assume $\mathbb{E}[x_1] = \cdots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \cdots = \mathbb{E}[y_{n_2}] = 0$,

$$
\frac{\text{corr}(a^T X, b^T X)}{\text{Var}(a^T X)^2} = \frac{\mathbb{E}[(a^T X)(b^T Y)^T]}{\sqrt{\mathbb{E}[(a^T X)^2]\mathbb{E}[(a^T Y)^2]}}
$$
\n
$$
= \frac{a^T \Sigma_{XY} b}{\sqrt{a^T \Sigma_{XX} a} \sqrt{b^T \Sigma_{YY} b}}
$$

[\(1\)](#page-34-0) is equivalent to:

$$
(a_1, b_1) = \operatorname*{argmax}_{a \in \mathbb{R}^{n_1}, b \in R^{n_2}} a^T \Sigma_{XY} b
$$

$$
a^T \Sigma_{XX} a = b^T \Sigma_{YY} b = 1
$$
 (2)

CCA Derivations max $ar2xp$ $(*)$ AC R_{n} ⁿ $st. \quad \alpha$ ⁷ $\sum_{x} x \alpha = b$ ⁷ $\sum_{x} r$ $b = 1$ $a^T \Sigma_x y b = a^T (\Sigma_{xx} \overbrace{2_{xx}}^{\frac{1}{2}}) \Sigma_x y (\Sigma_{xx} \overbrace{y}^{\frac{1}{2}}) b$ = $(\sqrt{\sum_{x}})^{\top} \sqrt[n]{2} x^{\frac{1}{2}} \sqrt[n]{2^{\top} (\sum_{y} \frac{1}{2})^{\top}}$ $=\frac{1}{\left(\alpha^{\mathsf{T}}\sum_{\mathbf{y}\in\mathbb{Z}}\frac{-\frac{1}{2}}{\alpha^{\mathsf{T}}}\right)}\left(\sum_{\mathbf{y}\in\mathbb{Z}}\sum_{\mathbf{y}\in\mathbb{Z}}\sum_{\mathbf{y}\in\mathbb{Z}}\left(\sum_{\mathbf{y}\in\mathbb{Z}}\frac{1}{2}\beta\right)\right)}$ $A^{T} \Sigma_{\neq \neq} a = \underbrace{a^{T} \Sigma_{\neq \neq \neq}}_{\infty} \sum_{k=0}^{C^{T}} a_{k} = C^{T}C = 1 \Rightarrow ||C||^{2}=1$ $\overline{2}$ $\frac{1}{c+1}$ \Rightarrow $\Vert d\Vert^2=1$ $h^T \overline{\lambda} y y b = d^T A = 1$ Therefore (*) is equivalent to max c^TId CER", dER" $s + 1|C||^2 = 1$ $\left\| d\right\|^2$.

Define
$$
\Omega \in R^{n_1 \times n_2}
$$
, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$
\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}
$$

$$
c = \sum_{XX}^{\frac{1}{2}} a
$$

$$
d = \sum_{YY}^{\frac{1}{2}} b
$$

[\(2\)](#page-34-1) can be written as

$$
(c_1, d_1) = \operatorname*{argmax}_{\substack{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2} \\ ||c||^2 = ||d||^2 = 1}} c^T \Omega d \tag{3}
$$

Define
$$
\Omega \in R^{n_1 \times n_2}
$$
, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$
\Omega = \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}}
$$
\n
$$
c = \Sigma_{XX}^{\frac{1}{2}} a \qquad C = \Sigma_{YX}^{\frac{1}{2}} a
$$
\n
$$
d = \Sigma_{YY}^{\frac{1}{2}} b \qquad d = \Sigma_{YY}^{\frac{1}{2}} b.
$$

[\(2\)](#page-34-1) can be written as

$$
(c_1, d_1) = \underset{\substack{c \in \mathbb{R}^{n_1}, \, d \in \mathbb{R}^{n_2} \\ ||c||^2 = ||d||^2 = 1}}{\text{argmax}} \quad c^T \Omega d \tag{3}
$$

 (c_1, d_1) can be solved by SVD, then the first pair of canonical variables are

$$
a_1 = \sum_{XX}^{-\frac{1}{2}} c_1, \quad b_1 = \sum_{YY}^{-\frac{1}{2}} d_1
$$

$$
(c_1, d_1) = \operatorname*{argmax}_{\substack{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2} \\ ||c||^2 = ||d||^2 = 1}} c^T \Omega d
$$

Proposition 1

 c_1 and d₁ are the left and right unit singular vectors of Ω with the largest singular value.

$$
(c_1, d_1) = \operatorname*{argmax}_{\substack{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2} \\ ||c||^2 = ||d||^2 = 1}} c^T \Omega d
$$

Proposition 1

 c_1 and d₁ are the left and right unit singular vectors of Ω with the largest singular value.

Theorem 2

 c_i and d_i are the left and right unit singular vectors of Ω with the ith largest singular value.

Input: Covariance matrices for centered data X and Y:

 \blacktriangleright Σ_{XY} , invertible Σ_{XX} and Σ_{YY} Dimension $k \le \min(n_1, n_2)$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

Output: CCA projection matrices A_k and B_k :

$$
\blacktriangleright \text{ Compute } \underline{\Omega} = \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}}
$$

 \triangleright Compute SVD decomposition of Ω

$$
\Omega = \begin{bmatrix} \cdot & \cdot & \cdot \\ c_1 & \cdot & \cdot & c_{n_1} \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \cdot & \cdot & \\ & & \cdot & \cdot \\ \hline & & & \sigma \\ \hline & & & \sigma \end{bmatrix} \begin{bmatrix} -d_1^T - \\ \cdot & \cdot & \cdot \\ -d_{n_2}^T - \cdot & \cdot \\ -d_{n_2}^T - \cdot & \cdot \end{bmatrix}
$$

\n
$$
\mathbf{A}_k = \Sigma_{XX}^{-\frac{1}{2}}[c_1, \dots, c_k] \text{ and } \mathcal{B}_k = \Sigma_{YY}^{-\frac{1}{2}}[d_1, \dots, d_k]
$$

 $(M>1)$

Discussion of CCA

Deep Canonical Correlation Analysis (DCCA)

Let
$$
F_X = f(X; \theta_1)
$$
, $G_Y = g(Y; \theta_2)$,

- Center features: \vee $\bar{F}_X = F_X - \frac{1}{m} F_{X}^T \mathbf{1},$ $\bar{G}_Y = G_Y - \frac{1}{m} G_Y^T \mathbf{1}$
- \triangleright Define CCA Loss: υ

$$
\theta_f^*, \theta_g^* = \underset{\theta_f, \theta_g}{\text{argmax }} \text{CCA}(\overline{F}_X, \overline{G}_Y)
$$

Maximize the total correlation of the top k components \implies Maximize the sum of top k singular values of $Ω = Σ_{XX}^{-\frac{1}{2}} Σ_{XY} Σ_{YY}^{-\frac{1}{2}}$ $L_{CCA}(F_X, G_Y) = -tr(\Omega^T \Omega)^{\frac{1}{2}}$

$$
\blacktriangleright \text{ Update } \frac{\delta L_{CCA}(F_X, G_Y)}{\delta F_X}, \frac{\delta L_{CCA}(F_X, G_Y)}{\delta G_Y}
$$

Applications of CCA/DCCA

 \blacktriangleright Multiview clustering Chaudhuri, Kamalika, et al. "Multi-view clustering via canonical (A, B) correlation analysis." ICML 2009. $[Ax, By] \Rightarrow k$ -means... \blacktriangleright Multimodal learning

Sun, Zhongkai, et al. "Learning relationships between text, audio, and video via deep canonical correlation for multimodal language analysis." AAAI 2020.

Multimodal sentiment analysis

Recognize speaker's emotion from videos using 3 modalities \blacktriangleright image text \blacktriangleright audio (CMU-MOSEI dataset)

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector **x**, transform it to a low-dimensional vector **y** through a projection matrix U:

$$
y = U^T x
$$

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector **x**, transform it to a low-dimensional vector **y** through a projection matrix U:

$$
y = U^T x
$$

▶ PCA, ICA and CCA are all unsupervised linear subspace learning methods.

