Learning From Data Lecture 11: Unsupervised Learning III

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

May 24, 2024

Today's Lecture

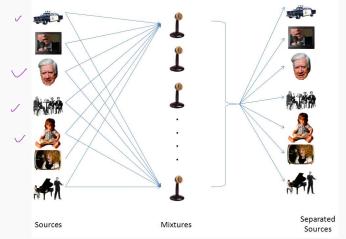
Unsupervised Learning (Part III)

- ► Independent Component Analysis (ICA)
- ► Canonical Correlation Analysis (CCA)

Independent Component Analysis

The cocktail party problem

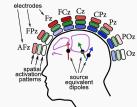
- ▶ n microphones at different locations of the room, each recording a mixture of n sound sources
- ► How to "unmix" the sound mixtures?

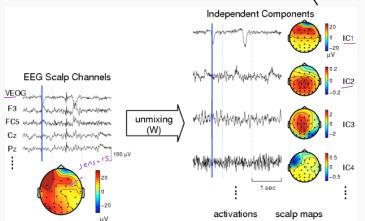


Sample audio: https://cnl.salk.edu/~tewon/Blind/blind_audio.html, http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html

EEG Analysis

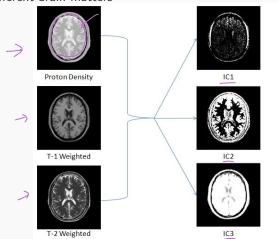
- ► Electrodes on patient scalp measure a mixture of different brain activations
- Finding independent activation sources helps removing artifacts in the signal





Brian imaging

- ▶ Different brain matters: gray matter, white matter, cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
- ► An MRI scan is a mixture of magnetic response signals from different brain matters



Problem Model

Case: n = 2

- ▶ Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$

$$x_2 = a_{21}s_1 + a_{22}s_2$$

Problem Model

Case: n=2

- \triangleright Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$
$$x_2 = a_{21}s_1 + a_{22}s_2$$

 \boldsymbol{A} is called the \boldsymbol{mixing} \boldsymbol{matrix}

Problem Model

Case: n=2

- ▶ Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$
$$x_2 = a_{21}s_1 + a_{22}s_2$$

A is called the mixing matrix

$$x = As$$

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)} = As^{(i)})$

Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)}=As^{(i)})$

Let $W = A^{-1}$ be the **unmixing matrix**

Goal of ICA: Find W, such that given $x^{(i)}$, the sources can be recovered by $s^{(i)} = Wx^{(i)}$

$$W = \begin{bmatrix} -w_1^T - \\ \hline w_1^T - \\ -w_n^T - \end{bmatrix} \Rightarrow \omega_j^T \zeta^{(i)} = S^{(i)}$$

Is W unique for a given set of observations?

ICA Ambiguities

Assume data is **non Gaussian**, ICA has two ambiguities:

 \triangleright Variance of the sources: We can fix the magnitude of s_i by setting

Variance of the sources. We can fix the magnitude of
$$s_i^*$$
 by setting
$$\mathbb{E}[s_i^2] = 1$$

$$\downarrow S_j^! \iff S_j^! \iff S_j^! \implies \downarrow S_j$$

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- Order of the sources $s_1, ..., s_n$: Let P be a permutation matrix, then we have $x = APP^{-1}s$.

$$x = AP^{-1}Ps$$
.

Assume data is **non Gaussian**, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- Order of the sources $s_1, ..., s_n$: Let P be a permutation matrix, then we have $x = APP^{-1}s$.

ICA Ambiguities

Assume data is **non Gaussian**, ICA has two ambiguities:

- \triangleright Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- \triangleright Order of the sources s_1, \ldots, s_n : Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Why is Gaussian data problematic?

Why is Gaussian data problematic?

Example:
$$S = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$$
 $S \sim \mathcal{N}(0, I)$. $X = AS$. $\sim \mathcal{N}(0, AA^T)$.

Let R be some rotation matrix

Let $X' = ARS \sim \mathcal{N}(0, (AR)(AR)^T) = \mathcal{N}(0, AA^T)$.

Therefore, at least one X_j needs to be non-Gaussian.

ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- ▶ Order of the sources $s_1, ..., s_n$: Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Why is Gaussian data problematic?

- ► The distribution of any rotation of Gaussian *x* has the same distribution as *x*.
- As long as at least one s_j is non-Gaussian, given enough data, we can recover the n independent sources.

Densities and Linear Transformations

$$S \sim \text{Uniform (6,1)} \quad P_{S}(5) = \begin{cases} 1 & 0 \leq S \leq 1 \\ 0 & 0 \leq w \end{cases}$$

 $X = AS = 2S, \quad P_{X}(4) = P_{X}(2S) = \text{Uniform (0,12)}$

$$= \begin{cases} 1 & 0 \leq S \leq 1 \\ 0 & 0 \leq W \end{cases}$$

$$= \text{Uniform } \{0_1 2\} \qquad P_{\times}(\times) = P_{\times}(As) = 0.5$$

$$= \begin{cases} \frac{1}{2} & 0 \leq X \leq 2 \\ 0 & 0 \leq W \end{cases} \quad P_{S}(W_{\times}) \cdot |W| = P_{S}(S) |A^{-1}| = 1 \cdot 0.5$$

If random vector s has density p_s , and x = As for a square, invertible matrix A, then the density of x is

$$p_{x}(x) = p_{s}(\widehat{Wx}) \cdot |\underline{W}|$$
determinant

where $W = A^{-1}$.

$$\frac{A \in \mathbb{R}^{2\times 2}}{\left[\begin{array}{c} \times 1 \\ \times 2 \end{array}\right] = \left[\begin{array}{c} \alpha_1 & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right] \left[\begin{array}{c} S \\ S_2 \end{array}\right]} = A^{-1}$$

$$\det(A) = |A| = Vol(C)$$

ICA Algorithm

The joint distribution of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$p(s) = \prod_{j=1}^n p_s(s_j)$$

ICA Algorithm

The joint distribution of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$p(s) = \prod_{j=1}^{n} p_{s}(s_{j})$$

The density of observation x = As is:

$$p_{x}(x) = p_{s}(s)|W| = \prod_{j=1}^{n} p_{s}(s_{j})|W| = \prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|W|$$

(d)

ICA Algorithm

The joint distribution of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$p(s) = \prod_{j=1}^{n} p_s(s_j)$$

The density of observation x = As is:

$$p_x(x) = p_s(s)|W| = \prod_{j=1}^n p_s(s_j)|W| = \prod_{j=1}^n p_s(w_j^T x)|W|$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the non-Gaussian cdf for p_s , then

$$p_s(s) = g'(s) = g(s)g(1-s)$$

The joint distribution of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$p(s) = \prod_{j=1}^n p_s(s_j)$$

The density of observation x = As is:

$$p_x(x) = p_s(s)|W| = \prod_{j=1}^n p_s(s_j)|W| = \prod_{j=1}^n p_s(w_j^T x)|W|$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the *non-Gaussian* cdf for p_s , then

$$p_s(s)=g'(s)$$

This appears to be a heuristic choice, yet it can be justified rigorously in other interpretations.

Given i.i.d. training samples $\{x^{(1)}, \dots, x^{(m)}\}$, the log likelihood is

$$I(W) = \sum_{i=1}^{m} log(p_{x}(x^{(i)})) = \sum_{i=1}^{m} log(\prod_{j=1}^{n} p_{s}(w_{j}^{T} x)|W|)$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} log g'(w_{j}^{T} x^{(i)}) + log |W|\right)$$

ICA Algorithm

Given i.i.d. training samples $\{x^{(1)}, \dots, x^{(m)}\}$, the log likelihood is

$$I(W) = \sum_{i=1}^{m} log(p_x(x^{(i)})) = \sum_{i=1}^{m} log(\prod_{j=1}^{n} p_s(w_j^T x)|W|)$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} log g'(w_j^T x^{(i)}) + log |W|\right)$$

Stochastic gradient ascent learning rule for sample $x^{(i)}$:

$$W := \underline{W} + \alpha \left(\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + \underline{(W^T)}^{-1} \right)$$

Check this at home!

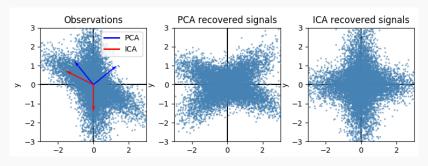
- Originally proposed by Jutten & Herault (1991) ¹90 years later than PCA (tailedness) PCA
- **Equivalent** to learning projection directions w_1, \ldots, w_n that
 - maximize the **sum of non-gaussianity** of the projected signals

independent minimize the mutual information of the projected signals under the constraint that $w_1^T x, \dots, w_n^T x$ are uncorrelated.

¹Christian Jutten, Jeanny Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991 ²Hyvärinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms

and applications." Neural networks 13.4-5 (2000): 411-430.

ICA vs PCA



PCA	ICA
approximately Gaussian data	non-Gaussian data
removes correlation (low order	removes correlations and higher
dependence) mesa. cov	order dependence
ordered importance	all components are equally impor-
	tant
orthogonal	not orthogonal

Canonical Correlation Analysis

Canonical Correlation Analysis

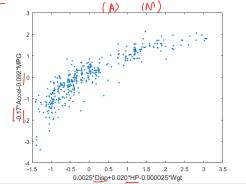
Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Example: two sets of measurements of 406 cars:

- Specification: Engine displacement (Disp), horsepower (HP), weight (Wgt) (W)
- Measurement: Acceleration (Accel), MPG



find important features that explain covariation between sets of variables

▶ Random vectors
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$$
 and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$

ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$

CCA Definitions

- ▶ Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
- ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- CCA finds vectors \underline{a} and \underline{b} such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$\rho = corr(a^T X, b^T Y)$$

CCA Definitions

- ▶ Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
- ▶ Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- CCA finds vectors a and b such that the random variables $\underline{a}^T X$ and $\underline{b}^T Y$ maximize the correlation

$$\rho = corr(a^T X, b^T Y)$$

 $V = a^T X$ and $V = b^T Y$ are called **the first pair of canonical** variables

CCA Definitions

- ▶ Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
- ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- CCA finds vectors a and b such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$\rho = corr(a^T X, b^T Y)$$

- $V = a^T X$ and $V = b^T Y$ are called **the first pair of canonical** variables
- ightharpoonup Subsequent pairs of canonical variables maximizes ho while being uncorrelated with all previous pairs

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle $(\underline{m \times n})$ matrices M.

$$\underline{\underline{M}} = U \Sigma V^{T} = \sum_{i=1}^{r} \underbrace{\sigma_{i} \underline{u_{i}} v_{i}^{T}}_{\downarrow v_{i} \downarrow \downarrow \downarrow}$$

- $V \in \mathbb{R}^{m \times m}, \ V \in \mathbb{R}^{n \times n}$ are orthogonal matrices
- ▶ $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix. Examples:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ \hline 0 & 0 & 0 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \end{bmatrix}$$

Diagonal entries $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_k$, $k = \min(n, m)$ are called singular values of M.

Review: Singular Value Decomposition

A non-negative real number $\underline{\sigma}$ is a singular value for $M \in \mathbb{R}^{m \times n}$ if and only if there exist unit-length $\underline{u} \in \mathbb{R}^m$ and $\underline{v} \in \mathbb{R}^n$ such that

$$\underline{Mv} = \underline{\sigma u}$$
$$M^{\mathsf{T}} u = \underline{\sigma v}$$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for $M \in \mathbb{R}^{m \times n}$ if and only if there exist unit-length $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

$$Mv = \sigma u$$
$$M^{\mathsf{T}} u = \sigma v$$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Connection to eigenvalue decomposition

- Given SVD of matrix $M = U\Sigma V^T$, $M^T M = (V\Sigma^T U^T)(U\Sigma V^T) = V(\Sigma^T \Sigma)V^T \leftarrow v_i \text{ is an eigenvector}$ of $M^T M$ with eigenvalue σ_i^2
 - \blacktriangleright $MM^T = (U\Sigma V^T)(V^T\Sigma^T U) = U(\Sigma\Sigma^T)U^T \leftarrow u_i$ is an eigenvector of MM^T with eigenvalue σ^2

CCA Derivations

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \operatorname{corr}(a^T X, b^T Y)$$
 (1)

CCA Derivations

The original problem:

$$(a_{1}, b_{1}) = \underset{a \in \mathbb{R}^{n_{1}}, b \in \mathbb{R}^{n_{2}}}{\operatorname{argmax}} \operatorname{corr}(a^{T}X, b^{T}Y) \qquad (1)$$
Assume $\mathbb{E}[x_{1}] = \cdots = \mathbb{E}[x_{n_{1}}] = \mathbb{E}[y_{1}] = \cdots = \mathbb{E}[y_{n_{2}}] = 0,$

$$\operatorname{corr}(a^{T}X, b^{T}X) = \frac{\mathbb{E}[(a^{T}X)(b^{T}Y)^{T}]}{\sqrt{\mathbb{E}[(a^{T}X)^{2}]\mathbb{E}[(b^{T}Y)^{2}]}} = \alpha^{T} \frac{\mathbb{E}[XY]}{\sqrt{\mathbb{E}[XY]}} = \frac{a^{T}[XX]}{\sqrt{\mathbb{E}[XY]}}$$

$$= \frac{a^{T}[XX]}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[XX]}} = \frac{a^{T}[XX]}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[XX]}} = \frac{a^{T}[XX]}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[XX]}} = \frac{a^{T}[XX]}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[XX]}} = \frac{a^{T}[XX]}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[XX]}} \frac{b}{\sqrt{\mathbb{E}[X]}} \frac{b}{\sqrt{\mathbb{E}[X]}} \frac{b}{\sqrt{\mathbb{E}[X]}} \frac{b}{\sqrt{\mathbb{E}$$

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}}{\operatorname{argmax}} \operatorname{corr}(a^T X, b^T Y)$$
(1)

Assume $\mathbb{E}[x_1] = \cdots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \cdots = \mathbb{E}[y_{n_2}] = 0$,

$$\underbrace{corr(a^{T}X, b^{T}X)} = \frac{\mathbb{E}[(a^{T}X)(b^{T}Y)^{T}]}{\sqrt{\mathbb{E}[(a^{T}X)^{2}]\mathbb{E}[(a^{T}Y)^{2}]}}$$
$$= \frac{a^{T}\Sigma_{XY}b}{\sqrt{a^{T}\Sigma_{XX}a}\sqrt{b^{T}\Sigma_{YY}b}}$$

(1) is equivalent to:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \underbrace{a^T \Sigma_{XY} b}$$
$$a^T \Sigma_{XX} a = b^T \Sigma_{YY} b = 1$$
 (2)

18/25

Derivations

$$\max_{\alpha \in \mathbb{R}^{n_1}} \max_{b \in \mathbb{R}^{n_2}} (x)$$

$$\sum_{k \in \mathbb{R}^{n_2}} \sum_{k \in \mathbb{R}^{n_2}} (x)$$

$$\sum_{k \in \mathbb{R}^{n_2}} \sum_{k \in \mathbb{R}^{n_2}}$$

Define $\Omega \in R^{n_1 \times n_2}$, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$
$$c = \sum_{XX}^{\frac{1}{2}} a$$
$$d = \sum_{YY}^{\frac{1}{2}} b$$

(2) can be written as

$$(c_{1}, d_{1}) = \underset{c \in \mathbb{R}^{n_{1}}, d \in \mathbb{R}^{n_{2}}}{\operatorname{argmax}} c^{T} \Omega d$$

$$||c||^{2} = ||d||^{2} = 1$$
(3)

Define $\Omega \in R^{n_1 \times n_2}$, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$

$$c = \sum_{XX}^{\frac{1}{2}} a \qquad \qquad C = \sum_{XX}^{\frac{1}{2}} a$$

$$d = \sum_{YY}^{\frac{1}{2}} b \qquad \qquad d = \sum_{Y}^{\frac{1}{2}} b.$$

(2) can be written as

$$(c_1, d_1) = \underset{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2}}{\operatorname{argmax}} c^{T} \underline{\Omega} \underline{d}$$

$$||c||^2 = ||d||^2 = 1$$
(3)

 (c_1,d_1) can be solved by SVD, then the first pair of canonical variables

$$a_1 = \Sigma_{XX}^{-\frac{1}{2}} c_1, \quad b_1 = \Sigma_{YY}^{-\frac{1}{2}} d_1$$

$$(c_1,d_1) = \mathop{\mathsf{argmax}}\limits_{egin{subarray}{c} c \in \mathbb{R}^{n_1}, \, d \in \mathbb{R}^{n_2} \ ||c||^2 = ||d||^2 = 1 \ \end{array}$$

Proposition 1

 c_1 and d_1 are the left and right unit singular vectors of Ω with the largest singular value.

20/25

$(c_1,d_1) = \mathop{\mathsf{argmax}}_{c \in \mathbb{R}^{n_1}, \ d \in \mathbb{R}^{n_2}} c^T \underline{\Omega} d$ $||c||^2 = ||d||^2 = 1$

Proposition 1

 c_1 and d_1 are the left and right unit singular vectors of $\underline{\Omega}$ with the largest singular value.

Theorem 2

 c_i and $\underline{d_i}$ are the left and right unit singular vectors of Ω with the ith largest singular value.

20/25

CCA Algorithm

Input: Covariance matrices for centered data X and Y:

- ightharpoonup Σ_{XY} , invertible Σ_{XX} and Σ_{YY}

Output: CCA projection matrices $\underline{A_k}$ and B_k :

- $\qquad \qquad \mathsf{Compute} \ \underline{\Omega} = \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}}$
- ► Compute SVD decomposition of Ω (M→ N)

$$\Omega = \begin{bmatrix} | & \dots & | \\ | & \dots & | \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} -d_1^T - & & \\ \vdots & & & \\ -d_{n_2}^T - & & \end{bmatrix}$$

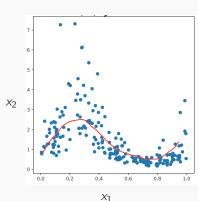
$$\underline{\underline{A_k}} = \Sigma_{XX}^{-\frac{1}{2}}[c_1, \dots, c_k]$$
 and $\underline{\underline{B_k}} = \Sigma_{YY}^{-\frac{1}{2}}[d_1, \dots, d_k]$

Discussion of CCA

- CCA only measures linear dependencies
- ► Non-linear generalizations:
 - ► Kernel CCA (KCCA)
 - Deep CCA (DCCA)
 - ► Maximal HGR Correlation

Alternative Conditional Expertation

Non-linear dependency between x_1 and x_2



[Canonical Correlation Analysis] 9(4:02) View 1 Superised eare. LCCA (Fr. tr.) + LCE (Fx. L)

Andrew, Galen, et al. "Deep to canonical correlation analysis."

International conference on machine learning. PMLR, 2013.

Let $F_X = f(X; \theta_1)$, $G_Y = g(Y; \theta_2)$,

- Center features: $\vec{F}_X = F_X \frac{1}{m} F_X^T \mathbf{1},$ $\vec{G}_Y = G_Y - \frac{1}{m} G_Y^T \mathbf{1}$
- ▶ Define CCA Loss: ✓

$$\theta_f^*, \theta_g^* = \operatorname*{argmax}_{\theta_f, \theta_g} \mathit{CCA}(\bar{f}_X, \bar{G}_Y)$$

Maximize the total correlation of the top k components \Longrightarrow Maximize the sum of top k singular values of

$$\underline{\Omega} = \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}} : \qquad \text{trace norm}$$

$$L_{CCA}(F_X, G_Y) = -\underline{tr(\Omega^T \Omega)}^{\frac{1}{2}}$$

▶ Update $\frac{\delta L_{CCA}(F_X,G_Y)}{\delta F_X}$, $\frac{\delta L_{CCA}(F_X,G_Y)}{\delta G_Y}$

Applications of CCA/DCCA

- ► Multiview clustering

 Chaudhuri, Kamalika, et al. "Multi-view clustering via canonical correlation analysis." ICML 2009.

 (A, B)
- ► Multimodal learning

 Sun, Zhongkai, et al. "Learning relationships between text, audio, and video via deep canonical correlation for multimodal language analysis."

 AAAI 2020.

Multimodal sentiment analysis

Recognize speaker's emotion from videos using 3 modalities

- ▶ image
- ► text
- audio

(CMU-MOSEI dataset)

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector x, transform it to a low-dimensional vector \mathbf{y} through a projection matrix \underline{U} :

$$y = U^T x$$

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector \mathbf{x} , transform it to a low-dimensional vector \mathbf{y} through a projection matrix U:

$$y = U^T x$$

 PCA, ICA and CCA are all unsupervised linear subspace learning methods.

Name	What is U ?	goal	subspace
PCA	principal component	remove (low order) cor-	single
_	(U)	relation (ovariance)	
ICA	unmixing matrix (W)	remove (high order) cor-	single
×	Wx=(A-1)x=5	relation	
CCA	canonical projection	maximize correlation	paired
	matrices (A, B)	between feature pairs	