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Today’s Lecture

Unsupervised Learning (Part III)
I Independent Component Analysis (ICA)
I Canonical Correlation Analysis (CCA)
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Independent Component Analysis
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The cocktail party problem
I n microphones at different locations of the room, each recording a

mixture of n sound sources
I How to “unmix" the sound mixtures?

Sample audio: https://cnl.salk.edu/~tewon/Blind/blind_audio.html,
http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html
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EEG Analysis

I Electrodes on patient scalp measure a mixture
of different brain activations

I Finding independent activation sources helps
removing artifacts in the signal
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Brian imaging
I Different brain matters: gray matter, white matter, cerebrospinal

fluid (CSF), fat, muscle/skin, glial matter etc.
I An MRI scan is a mixture of magnetic response signals from

different brain matters

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



6/25

Introduction Independent Component Analysis Canonical Correlation Analysis

Problem Model

Case: n = 2
I Observed random variables: x1, x2

I Independent sources: s1, s2 ∈ R

x1 = a11s1 + a12s2

x2 = a21s1 + a22s2

A is called the mixing matrix

x = As

The blind source separation (cocktail party) problem

Given repeated observation {x (i); i = 1, . . . ,m}, recover sources s(i) that
generated the data (x (i) = As(i))
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Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation {x (i); i = 1, . . . ,m}, recover sources s(i) that
generated the data (x (i) = As(i))

Let W = A−1 be the unmixing matrix
Goal of ICA: Find W , such that given x (i), the sources can be recovered
by s(i) = Wx (i)

W =

−wT
1 −
...

−wT
n −


Is W unique for a given set of observations ?
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ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:
I Variance of the sources: We can fix the magnitude of si by setting

E[s2
i ] = 1

I Order of the sources s1, . . . , sn :
Let P be a permutation matrix, then we have x = APP−1s.

Why is Gaussian data problematic?

I The distribution of any rotation of Gaussian x has the same
distribution as x .

I As long as at least one sj is non-Gaussian, given enough data, we
can recover the n independent sources.
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Densities and Linear Transformations

Theorem 1
If random vector s has density ps , and x = As for a square, invertible
matrix A, then the density of x is

px (x) = ps(Wx) · |W |

where W = A−1.
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ICA Algorithm

The joint distribution of independent sources s = {s1, . . . , sn}:

p(s) =
n∏

j=1
ps(sj)

The density of observation x = As is:

px (x) = ps(s)|W | =
n∏

j=1
ps(sj)|W | =

n∏
j=1

ps(wT
j x)|W |

Choose the sigmoid function g(s) = 1
1+e−s as the non-Gaussian cdf for

ps , then
ps(s) = g ′(s)

This appears to be a heuristic choice, yet it can be justified rigorously in
other interpretations.
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ICA Algorithm

Given i.i.d. training samples {x (1), . . . , x (m)}, the log likelihood is

l(W ) =
m∑

i=1
log(px (x (i))) =

m∑
i=1

log(
n∏

j=1
ps(wT

j x)|W |)

=
m∑

i=1

( n∑
j=1

log g ′(wT
j x (i)) + log |W |

)

Stochastic gradient ascent learning rule for sample x (i):

W := W + α


1− 2g(w1

T x (i))
...

1− 2g(wn
T x (i))

 x (i)T
+ (W T )

−1


Check this at home!
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Theoretical Motivation of ICA

I Originally proposed by Jutten & Herault (1991) 190 years later than
PCA

I Equivalent to learning projection directions w1, . . . ,wn that
I maximize the sum of non-gaussianity of the projected signals
I minimize the mutual information of the projected signals

under the constraint that wT
1 x , . . . ,wT

n x are uncorrelated. 2

1Christian Jutten, Jeanny Herault, Blind separation of sources, part I: An adaptive
algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991

2Hyvärinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms
and applications." Neural networks 13.4-5 (2000): 411-430.
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ICA vs PCA

PCA ICA
approximately Gaussian data non-Gaussian data
removes correlation (low order
dependence)

removes correlations and higher
order dependence

ordered importance all components are equally impor-
tant

orthogonal not orthogonal
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Canonical Correlation Analysis
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Canonical Correlation Analysis
Canonical correlation analysis (CCA) finds the associations among
two sets of variables.

Example: two sets of measurements of 406 cars:
I Specification: Engine displacement (Disp), horsepower (HP), weight

(Wgt)
I Measurement: Acceleration (Accel), MPG

find important features that explain covariation between sets of variables
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CCA Definitions

I Random vectors X =

 x1
...

xn1

 and Y =

 y1
...

yn2


I Covariance matrix ΣXY = cov(X ,Y )

I CCA finds vectors a and b such that the random variables aT X and
bT Y maximize the correlation

ρ = corr(aT X , bT Y )

I U = aT X and V = bT Y are called the first pair of canonical
variables

I Subsequent pairs of canonical variables maximizes ρ while being
uncorrelated with all previous pairs
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Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle (m × n)
matrices M.

M = UΣV T =
r∑

i=1
σiuivT

i

I U ∈ Rm×m, V ∈ Rn×n are orthogonal matrices
I Σ ∈ Rm×n is a rectangular diagonal matrix.

Examples:

Σ =


σ1 0 0
0 σ2 0
0 0 σ3
0 0 0

 Σ =

σ1 0 0 0
0 σ2 0 0
0 0 σ3 0


Diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σk , k = min(n,m) are called
singular values of M.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



17/25

Introduction Independent Component Analysis Canonical Correlation Analysis

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for M ∈ Rm×n if and
only if there exist unit-length u ∈ Rm and v ∈ Rn such that

Mv = σu
MT u = σv

u is called the left singular vector of σ, v is called the right singular
vector of σ

Connection to eigenvalue decomposition
Given SVD of matrix M = UΣV T ,
I MT M = (VΣT UT )(UΣV T ) = V (ΣTΣ)V T ← vi is an eigenvector

of MT M with eigenvalue σ2
i

I MMT = (UΣV T )(V TΣT U) = U(ΣΣT )UT ← ui is an eigenvector
of MMT with eigenvalue σ2

i
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CCA Derivations

The original problem:

(a1, b1) = argmax
a∈Rn1 ,b∈Rn2

corr(aT X , bT Y ) (1)

Assume E[x1] = · · · = E[xn1 ] = E[y1] = · · · = E[yn2 ] = 0,

corr(aT X , bT X ) =
E[(aT X )(bT Y )T ]√
E[(aT X )2]E[(aT Y )2]

=
aTΣXY b√

aTΣXX a
√

bTΣYY b

(1) is equivalent to:

(a1, b1) = argmax
a ∈ Rn1 , b ∈ Rn2

aTΣXX a = bTΣYY b = 1

aTΣXY b
(2)
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CCA Derivations

Define Ω ∈ Rn1×n2 , c ∈ Rn1 and d ∈ Rn2 ,

Ω = Σ
− 1

2
XX ΣXYΣ

− 1
2

YY

c = Σ
1
2
XX a

d = Σ
1
2
YY b

(2) can be written as

(c1, d1) = argmax
c ∈ Rn1 , d ∈ Rn2

||c||2 = ||d ||2 = 1

cTΩd (3)

(c1, d1) can be solved by SVD, then the first pair of canonical variables
are

a1 = Σ
− 1

2
XX c1, b1 = Σ

− 1
2

YY d1
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CCA Derivations

(c1, d1) = argmax
c ∈ Rn1 , d ∈ Rn2

||c||2 = ||d ||2 = 1

cTΩd

Proposition 1
c1 and d1 are the left and right unit singular vectors of Ω with the largest
singular value.

Theorem 2
ci and di are the left and right unit singular vectors of Ω with the ith
largest singular value.
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CCA Algorithm

Input: Covariance matrices for centered data X and Y :
I ΣXY , invertible ΣXX and ΣYY

I Dimension k ≤ min(n1, n2)

Output: CCA projection matrices Ak and Bk :
I Compute Ω = Σ

− 1
2

XX ΣXYΣ
− 1

2
YY

I Compute SVD decomposition of Ω

Ω =

 | . . . |
c1 . . . cn1

| . . . |



σ1

. . .
σr

0


−dT

1 −
...

−dT
n2
−


I Ak = Σ

− 1
2

XX [c1, . . . , ck ] and Bk = Σ
− 1

2
YY [d1, . . . , dk ]
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Discussion of CCA

I CCA only measures linear
dependencies

I Non-linear generalizations:
I Kernel CCA (KCCA)
I Deep CCA (DCCA)
I Maximal HGR Correlation

x2

Chapter 2 The Preliminary

Figure 2.1 The HGR transformation results: the title of subplots is in the form of “y-axis vs.
x-axis”

Table 2.1 The value of correlations in the GMC solutions

1
d�1E[

Õ
i,j( fi(xi))T( fj(xj))] 0.642
E[ f1(x1) f2(x2)] -0.066
E[ f1(x1) f3(x3)] 0.631
E[ f2(x2) f3(x3)] 0.718

The value of correlations varies from di�erent variable pairs and it seems to be
reasonable. The correlation between f1(x1) and f2(x2) is very small because x1 and x2 are
independent. The subplots (f) ~(h) in Fig 2.2 can also indicate the degree of correlation
between each transformation pairs. Again the transformations on those variables clearly
reflect the true structure among them, they are all in the form fi(xi) = log |xi | as shown
in the subplots (c)~(e) in Fig 2.2. As a consequence, they satisfy the liner relationship of

11

x1

Non-linear dependency between x1 and
x2
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Deep Canonical Correlation Analysis (DCCA)

Andrew, Galen, et al. "Deep
canonical correlation analysis."
International conference on
machine learning. PMLR, 2013.

Let FX = f (X ; θ1), GY = g(Y ; θ2),
I Center features:

F̄X = FX − 1
m F T

X 1,
ḠY = GY − 1

m GT
Y 1

I Define CCA Loss:

θ∗f , θ
∗
g = argmax

θf ,θg

CCA(F̄X , ḠY )

Maximize the total correlation of
the top k components =⇒
Maximize the sum of top k
singular values of
Ω = Σ

− 1
2

XX ΣXYΣ
− 1

2
YY :

LCCA(FX ,GY ) = −tr(ΩTΩ)
1
2

I Update δLCCA(FX ,GY )
δFX

, δLCCA(FX ,GY )
δGY
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Applications of CCA/DCCA

I Multiview clustering
Chaudhuri, Kamalika, et al. "Multi-view clustering via canonical
correlation analysis." ICML 2009.

I Multimodal learning
Sun, Zhongkai, et al. "Learning relationships between text, audio, and
video via deep canonical correlation for multimodal language analysis."
AAAI 2020.

Multimodal sentiment analysis

Recognize speaker’s emotion
from videos using 3 modalities
I image
I text
I audio

(CMU-MOSEI dataset)
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PCA, ICA and CCA

Linear Subspace Learning
Given high dimensional random vector x, transform it to a
low-dimensional vector y through a projection matrix U:

y = UT x

I PCA, ICA and CCA are all unsupervised linear subspace learning
methods.

Name What is U ? goal subspace
PCA principal component

(U)
remove (low order) cor-
relation

single

ICA unmixing matrix (W ) remove (high order) cor-
relation

single

CCA canonical projection
matrices (A,B)

maximize correlation
between feature pairs

paired
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