
Learning from Data
Lecture 9: Unsupervised Learning I

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

May 10, 2024



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Today’s Lecture

Unsupervised Learning
▸ Overview: the representation learning problem
▸ K-means clustering
▸ Spectral clustering

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Unsupervised Learning Overview

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Unsupervised Learning

Similar to supervised learning, but without labels.
▸ Still want to learn the machine f
▸ Significantly harder in general

Unsupervised learning goal
Find representations of input feature x that can be used for reasoning,
decision making, predicting things, comminicating etc.
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The representation learning problem

( Y Bengio et. al. Representation Learning: A Review and New
Perspectives, 2014)

Given input features x , find “simpler" features z that preserve the same
information as x .

Example: Face recognition
100 × 100

→ x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5
0
⋮

0.3
1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

104 → z = [⋮]

What information is in this picture? identity, facial attributes, gender,
age, sentiment, etc
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Characteristics of a good representation

▸ low dimensional: compress information to a smaller size → reduce
data size

▸ sparse representation: most entries are zero for most data → better
interpretability

▸ independent representations: disentangle the source of variations

f

identity

pose

expression

f(x)
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Uses of representation learning

▸ Data compression
Example: Color image quantization. Each 24bit RGB color is reduced to
a palette of 16 colors.

Original Compressed

(0-255,0-255,0-255) 0-15
24bit x 300 x 400 4bit x 300 x 400 + 16 x24bit

6 times smaller
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Uses of representation learning
▸ Abnormality (outlier, novelty) detection

Example: local density-based outlier detection

2

fining the local neighborhood of the object. We study how this
parameter affects the LOF value, and we present practical
guidelines for choosing the MinPts values for finding local out-
liers.

• Last but not least, we present experimental results which show
both the capability and the performance of finding local outli-
ers. We conclude that finding local outliers using LOF is mean-
ingful and efficient.

The paper is organized as follows. In section 2, we discuss related
work on outlier detection and their drawbacks. In section 3 we dis-
cuss in detail the motivation of our notion of outliers, especially, the
advantage of a local instead of a global view on outliers. In section
4 we introduce LOF and define other auxiliary notions. In section 5
we analyze thoroughly the formal properties of LOF. Since LOF re-
quires the single parameter MinPts, in section 6 we analyze the im-
pact of the parameter, and discuss ways to choose MinPts values for
LOF computation. In section 7 we perform an extensive experi-
mental evaluation. 

2.  RELATED WORK
Most of the previous studies on outlier detection were conducted in
the field of statistics. These studies can be broadly classified into
two categories. The first category is distribution-based, where a
standard distribution (e.g. Normal, Poisson, etc.) is used to fit the
data best. Outliers are defined based on the probability distribution.
Over one hundred tests of this category, called discordancy tests,
have been developed for different scenarios (see [5]). A key draw-
back of this category of tests is that most of the distributions used
are univariate. There are some tests that are multivariate (e.g. mul-
tivariate normal outliers). But for many KDD applications, the un-
derlying distribution is unknown. Fitting the data with standard dis-
tributions is costly, and may not produce satisfactory results.
The second category of outlier studies in statistics is depth-based.
Each data object is represented as a point in a k-d space, and is as-
signed a depth. With respect to outlier detection, outliers are more
likely to be data objects with smaller depths. There are many defi-
nitions of depth that have been proposed (e.g. [20], [16]). In theory,
depth-based approaches could work for large values of k. However,
in practice, while there exist efficient algorithms for k = 2 or 3
([16], [18], [12]), depth-based approaches become inefficient for
large datasets for k ≥ 4. This is because depth-based approaches
rely on the computation of k-d convex hulls which has a lower
bound complexity of Ω(nk/2) for n objects. 
Recently, Knorr and Ng proposed the notion of distance-based out-
liers [13], [14]. Their notion generalizes many notions from the dis-
tribution-based approaches, and enjoys better computational com-
plexity than the depth-based approaches for larger values of k. Later
in section 3, we will discuss in detail how their notion is different
from the notion of local outliers proposed in this paper. In [17] the
notion of distance based outliers is extended by using the distance
to the k-nearest neighbor to rank the outliers. A very efficient algo-
rithms to compute the top n outliers in this ranking is given, but
their notion of an outlier is still distance-based.
Given the importance of the area, fraud detection has received more
attention than the general area of outlier detection. Depending on
the specifics of the application domains, elaborate fraud models
and fraud detection algorithms have been developed (e.g. [8], [6]).

In contrast to fraud detection, the kinds of outlier detection work
discussed so far are more exploratory in nature. Outlier detection
may indeed lead to the construction of fraud models.
Finally, most clustering algorithms, especially those developed in
the context of KDD (e.g. CLARANS [15], DBSCAN [7], BIRCH
[23], STING [22], WaveCluster [19], DenClue [11], CLIQUE [3]),
are to some extent capable of handling exceptions. However, since
the main objective of a clustering algorithm is to find clusters, they
are developed to optimize clustering, and not to optimize outlier de-
tection. The exceptions (called “noise” in the context of clustering)
are typically just tolerated or ignored when producing the clustering
result. Even if the outliers are not ignored, the notions of outliers are
essentially binary, and there are no quantification as to how outly-
ing an object is. Our notion of local outliers share a few fundamen-
tal concepts with density-based clustering approaches. However,
our outlier detection method does not require any explicit or implic-
it notion of clusters.

3.  PROBLEMS OF EXISTING 
(NON-LOCAL) APPROACHES

As we have seen in section 2, most of the existing work in outlier
detection lies in the field of statistics. Intuitively, outliers can be de-
fined as given by Hawkins [10].

Definition 1: (Hawkins-Outlier)
An outlier is an observation that deviates so much from other
observations as to arouse suspicion that it was generated by a
different mechanism.

This notion is formalized by Knorr and Ng [13] in the following
definition of outliers. Throughout this paper, we use o, p, q to de-
note objects in a dataset. We use the notation d(p, q) to denote the
distance between objects p and q. For a set of objects, we use C
(sometimes with the intuition that C forms a cluster). To simplify
our notation, we use d(p, C) to denote the minimum distance be-
tween p and object q in C, i.e. d(p,C) = min{ d(p,q)  | q ∈ C }.

Definition 2: (DB(pct, dmin)-Outlier)
An object p in a dataset D is a DB(pct, dmin)-outlier if at least
percentage pct of the objects in D lies greater than distance
dmin from p, i.e., the cardinality of the set {q ∈ D | d(p, q) ≤
dmin} is less than or equal to (100 − pct)% of the size of D.

The above definition captures only certain kinds of outliers. Be-
cause the definition takes a global view of the dataset, these outliers
can be viewed as “global” outliers. However, for many interesting
real-world datasets which exhibit a more complex structure, there
is another kind of outliers. These can be objects that are outlying

C2

C1

o2
o1

Figure 1: 2-d dataset DS1
o1 and o2 are the detected outliers
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Uses of representation learning
▸ Knowledge representation based on human perception

Example: word embedding

http://ruder.io/word-embeddings-1/

Each word is represented by a 2D vector. Words in the same semantic category
are grouped together
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K-Means Clustering
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Clustering analysis

Given input features {x (1), . . . , x (m)}, group the data into a few cohesive
“clusters”.

▸ Objects in the same cluster are more similar to each other than to
those in other clusters
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The k-means clustering problem

Given input data {x (1), . . . , x (m)}, x (i) ∈ Rd , k-means clustering
partition the input into k ≤ m sets C1, . . . ,Ck to minimize the
within-cluster sum of squares (WCSS).

argmin
C1,...,Ck

k
∑
j=1
∑

x∈Cj

∥x − µj∥2

Equivalent definitions:

▸ minimizing the within-cluster variance:
k
∑
j=1
∣Cj ∣Var(Cj)

▸ minimizing the pairwise squared deviation between points in the
same cluster: (homework)

k
∑
i=1

1
2∣Ci ∣

∑
x ,x ′∈Ci

∥x − x ′∥2

▸ maximizing between-cluster sum of squares (BCSS) (homework)
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K-Means Clustering Algorithm

▸ Optimal k-means clustering is NP-hard in Euclidean space.
▸ Often solved via a heuristic, iterative algorithm

Lloyd’s Algorithm (1957,1982)

Let c(i) ∈ {1, . . . , k} be the cluster label for x (i)

Initialize cluster centroids µ1, . . . µk ∈ Rn randomly
Repeat until convergence {

For every i ,
c(i) ∶= argminj ∥x(i) − µj∥2

← assign x(i) to the cluster
with the closest centroid

For each j

µj ∶=
∑m

i=1 1{c(i)=j}x(i)
∑m

i=1 1{c(i)=j}

← update centroid

}

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory
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K-Means clustering discussion

▸ K-Means learns a k-dimensional sparse representation.
i.e. x (i) is transformed into a “one-hot” vector z(i) ∈ Rk :

z(i)j =
⎧⎪⎪⎨⎪⎪⎩

1 if c(i) = j
0 otherwise

▸ Only converges to a local minimum: initialization matters!
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Practical considerations

▸ Replicate clustering trails and choose the result with the smallest
WCSS

▸ How to initialize centroids µj ’s ?
▸ Uniformly random sampling /
▸ Distance-based sampling e.g. kmeans++ [Arthur & Vassilvitskii

SODA 2007] ,
▸ How to choose k?

▸ Cross validation (later lecture)
▸ G-Means [Hamerly & Elkan, NIPS 2004]

▸ How to improve k-means efficiency?
▸ Elkan’s algorithm [Elkan, ICML 2003]
▸ Mini-batch k-means [D. Sculley, WWW 2010]
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Spectral Graph Theory
Graph Terminologies and Similarity Graphs
Spectral Theory
Spectral Clustering
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K-Means vs Spectral Clustering

K-Means Spectral Clustering

[Shi & Malik 00; Ng, Jordan, Weiss NIPS 01]
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Graph Terminologies

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

▸ An undirect graph G = (V ,E) consists of
nodes V = {v1, . . . , vn} and edges
E = {e1, . . . , em}

▸ Edge eij connects vi and vj if they are
adjacent or neighbors.

▸ Adjacency matrix

Wij =
⎧⎪⎪⎨⎪⎪⎩

1 if there is an edge eij

0 otherwise
▸ Degree di of node vi is the number of

neighbors of vi .

di =
n
∑
j=1

wij

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Graph Terminologies

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0.2 1.2 0
0.2 0 0.5 0.9
1.2 0.5 0 0
0 0.9 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

▸ Weigted undirected graph
G = (V ,E ,W )

▸ Edge weight wij ∈ R≥0 between vi and vj
edge (vi , vj) exists iff wij > 0

▸ Weighted adjacency matrix W = [wij]
▸ Vertex degree di = ∑n

j=1 wij

▸ Degree matrix D = diag(d1, . . . ,dn)
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Graph Terminologies

A

▸ Given vertex subset A ⊂ V , let Ā = V /A be
the complement of A in the graph

▸ Subset indicator function 1A ∈ Rn:

1A{i} =
⎧⎪⎪⎨⎪⎪⎩

1 if vi ∈ A
0 if vi ∉ A

▸ Sets A1, . . . ,Ak form a partition of the
graph if Ai ∩Aj = ∅ for all i ≠ j and
A1 ∪ ⋅ ⋅ ⋅ ∪Ak = V
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Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D
mesh etc

Use graph to represent similarity in data
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Clustering from a graph point of view

▸ Given data points x (1), . . . , x (n) and similarity measure sij ≥ 0 for
all x (i), x (j)

▸ A typical similarity graph G = (V ,E) is
▸ vi ↔ x (i)
▸ vi and vj are connected if sij ≥ δ for some threshold δ

▸ Clustering: Divide data into groups such that points in the same
group are similar and points in different groups are dissimilar

▸ Spectral Clustering (informal): Find a partition of G such that
edges between the same group have high weights and edges between
different groups have very low weights.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Building similarity graphs from data

ε-neighborhood
Add edges to all points inside a ball of radius f
centered at v

Drawbacks: sensitive to e, edge weights are on
similar scale

k-Nearest Neighbors
Add edges between v ’s k-nearest neighbors.

Drawbacks: may result in asymmetric and irregular
graph

Fully connected graph
Often, Gaussian similarity is used

Wi,j = exp(−
∣∣x (i) − x (j)∣∣22

2σ2 ) for i , j = 1, . . . ,m

Drawbacks: W is not sparse

Neighborhood Methods

• k-Nearest Neighbor Graph (k-NNG)
• add edges between an instance and its       

k-nearest neighbors

• e-Neighborhood
• add edges to all instances inside a ball of 

radius e

e

k = 3

12

Neighborhood Methods

• k-Nearest Neighbor Graph (k-NNG)
• add edges between an instance and its       

k-nearest neighbors
k = 3

12
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Similarity graphs examples

that in such a case, the data point should be considered an outlier anyway, and then it does not really matter in
which cluster the point will end up.

To summarize, the conclusion is that both unnormalized spectral clustering and normalized spectral clustering
with Lrw are well justified by the perturbation theory approach. Normalized spectral clustering with Lsym can also
be justified by perturbation theory, but it should be treated with more care if the graph contains vertices with very
low degrees.

8 Practical details

In this section we will briefly discuss some of the issues which come up when actually implementing spectral
clustering. There are several choices to be made and parameters to be set. However, the short discussion in this
section is mainly meant to raise awareness about the general problems which can occur. We will look at toy
examples only. For thorough studies on the behavior of spectral clustering for various real world tasks we refer to
the literature.

8.1 Constructing the similarity graph

Choosing the similarity graph and its parameters for spectral clustering is not a trivial task. This already starts with
the choice of the similarity function sij itself. In general one should try to ensure that the local neighborhoods
induced by this similarity function are “meaningful”, but in particular in a clustering setting this is very difficult
to assess. Ultimately, the choice of the similarity function depends on the domain the data comes from, and no
general rules can be given. The second choice concerns the construction of the similarity graph, that is which type
of graph we choose and how we set the parameter which governs its connectedness (e.g., the parameter " of the
"-neighborhood graph or the parameter k of the k-nearest neighbor graph).
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Figure 3: Different similarity graphs, see text for details.

To illustrate the behavior of the different graphs we use the toy example presented in Figure 3. As underlying
distribution we choose a distribution on 2 with three clusters: two “moons” and a Gaussian. The density of the
bottom moon is chosen to be larger than the one of the top moon. The upper left panel in Figure 3 shows a sample
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Spectral Clustering as Graph Partitioning

Find a partition of the graph such that
▸ Edges between groups have low weights
▸ Edges within each group have high weights
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Graph Cut Formulation

Case k = 2:
▸ Given partition A, Ā, define a cut as the total weight of edges

between A and Ā:
cut(A, Ā) ∶= ∑

i∈A,j∈Ā
wij

▸ Example: cut({p1,p2,p3},{p4,p5,p6}) = 1,
cut({p1,p2,p3,p4},{p5,p6}) = 2
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Graph Cut Formulations
Case k > 2:
▸ Given partition A1, . . . ,Ak , define a cut as the total edges weights

between groups:

cut(A1, . . . ,Ak) ∶=
1
2

k
∑
i=1

cut(Ai , Āi)

Minimizing cut directly tends to favor small isolated clusters.
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Balanced Graph Cut

RatioCut and NCut
Find a k-way partition of graph G ( Ai ∪ ⋅ ⋅ ⋅ ∪Ak = V ,Ai ∩Aj = ∅ ) that
minimizes:

RatioCut(A1, . . . ,Ak) =
1
2

k
∑
i=1

cut(Ai , Āi)
∣Ai ∣

[Hagen & Kahng,1992]

NCut(A1, . . . ,Ak) =
1
2

k
∑
i=1

cut(Ai , Āi)
vol(Ai)

,

vol(Ai) = ∑
i∈A,j∈V

wij [Shi & Malik ,2000]

Both RatioCut and NormalizeCut can be approximated by spectral
method.
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W

Properties of L
1. For every f ∈ Rn, f T Lf = 1

2 ∑
n
i,j=1 wij(fi − fj)2

2. L is symmetric and positive semi-definite
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Graph Laplacian
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A Review on Eigenvalue Problem

The Eigenvalue Problem
Nonzero vector u ∈ Rn is an eigenvector of matrix A ∈ Rn×n if

Au = λu

for some λ ∈ R. We call λ the eigenvalue corresponding to u.

▸ A has at most n distinct eigenvalues

Eigenvalue Decomposition
Let U = [u1, . . . ,un] be the matrix of n linearly independent eigenvectors
of A and Λ = diag([λ1, . . . , λn]) , then

A = UΛU−1

▸ If A is symmetric, A can be decomposed as A = UΛUT where U is
an orthogonal matrix (UT U = I).
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Rayleigh-Ritz Theorem

Theorem 1
Given symmetric matrix A ∈ Rn×n, the solution to the minimization
problem is the smallest eigen vector of A

min
x∈Rn

xT Ax (1)

s.t. ∣∣x ∣∣2 = 1

Proof.
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Rayleigh-Ritz Theorem

Theorem 2
Given symmetric matrix A ∈ Rn×n, the solution to the minimization
problem is the smallest eigen vector of A

min
x∈Rn

xT Ax (2)

s.t. ∣∣x ∣∣2 = 1

▸ An equivalent form of (2) is minimizing the Rayleigh quotient xT Ax
xT x

min
x≠0∈Rn

xT Ax
xT x

▸ Rayleigh quotient xT Ax
xT x is scale invariant.
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Rayleigh-Ritz Theorem

Generalization to multiple vectors:

Theorem 3

Given symmetric matrix A ∈ Rn×n, x = [x1, . . . , xk], xi ∈ Rn (k ≤ n), the
solution to the minimization problem are k smallest eigenvectors of A:

min
X∈Rn×k

tr(XT AX) (3)

s.t. XT X = Ik
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Graph Laplacian

Unnormalized graph laplacian matrix:

L = D −W

Properties of L
1. For every f ∈ Rn, f T Lf = 1

2 ∑
n
i,j=1 wij(fi − fj)2

2. L is symmetric and positive semi-definite
3. The smallest eigenvalue of L is 0 with eigenvector 1

4. L has n real eigenvalues 0 = λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λn
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Graph Laplacian

Proposition 1
Let G be an undirected graph with non-negative weights W .
▸ The multiplicity k of eigenvalue 0 of L is the number of connected

components A1, . . . ,Ak in G.
▸ The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . ,1Ak
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(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) 1:

Lrw = D−1L = I −D−1W
Properties of Lrw

▸ λ is an eigenvalue of Lrw with eigenvector v if and only if λ, v solve
the generalized eigenproblem Lv = λDv

▸ 0 is an eigenvalue of L with eigenvector 1
▸ Lrw is positive semi-definite and has n non-negative eigenvalues

0 = λ1 ≤ λ2 ≤ ⋅ ⋅ ⋅ ≤ λn

Proposition 2
Let G be an undirected graph with non-negative weights W , the
multiplicity k of eigenvalue 0 of Lrw is the number of connected
components A1, . . . ,Ak in G.
The eigenspace of eigenvalue 0 is spanned by vectors 1A1 , . . . ,1Ak

1"rw" comes from its interpertation as “random walk”. Another definition of
normalized graph Laplacian is D−

1
2 LD−

1
2
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Solving graph cut

Define f ∈ {0,1}n to be the indicator function for partition A ⊂ V :

fi ∶= {1A}i =
⎧⎪⎪⎨⎪⎪⎩

1 vi ∈ A
0 vi ∈ Ā

We have that ∣∣f ∣∣2 = ∣A∣.
Cut(A, Ā) can be written as a function of f and graph Laplacian L:

f T Lf = 1
2

n
∑

i,j=1
wij(fi − fj)2

= 1
2
⎛
⎝ ∑

vi∈A,vj∈Ā
wij + ∑

vi∈Ā,vj∈A
wij
⎞
⎠
= ∑

vi∈A,vj∈Ā
wij = cut(A, Ā)

Let f(1), . . . , f(k) be k indicator functions 1Ai , . . . ,1Ak . They are mutually
orthogonal (i.e. f T

(i)f(j) = 0 for all i ≠ j).
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Solving graph cut

Recall the definition of RatioCut:

min
A1,...,Ak

k
∑

i

cut(Ai , Āi)
∣Ai ∣

(4)

Ô⇒ min
A1,...,Ak

k
∑

i

f T
(i)Lf(i)
f T
(i)f(i)

(5)

Relax the f(i)’s to be real vectors:

min
f(1),...,f(k)∈Rn

k
∑

i

f T
(i)Lf(i)
f T
(i)f(i)

(6)

s.t. f T
(i)f(j) = 0, for all i ≠ j
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Solving graph cut

Since rescaling f(i) by constants does not change the objective, (3) is
equivalent to

min
f(1),...,f(k)∈Rn

k
∑

i
f T
(i)Lf(i) (7)

s.t. f T
(i)f(j) = 0, for all i ≠ j

f T
(i)f(i) = 1, for alli = 1, . . . , k

Let F = [f(1) . . . f(k)], (5) can be written in matrix notation:

min
F∈Rn

tr(F T LF)

s.t. F T F = I
▸ By Theorem 3 , optimal solution F ∗ is the first k eigenvectors of L.
▸ To get discrete cluster labels, we can apply k-means clustering on

the rows of F ∗.
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Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points x (1), . . . , x (n) and cluster size k
▸ Build a graph connecting x (1), . . . , x (n) with weight W
▸ Compute first k eigenvectors V = [v1, . . . , vk] of L
▸ Define yi ∈ Rk as the ith row of V , cluser y1, . . . , yn into k clusters

C1, . . . ,Ck using k-means
Output: A1, . . . ,Ak where Ai = {j ∣yj = Ci}

▸ Unormalized spectral clustering is relaxed solution to the RatioCut
problem.
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Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points x (1), . . . , x (n) and cluster size k
▸ Build a graph connecting x (1), . . . , x (n) with weight W
▸ Compute first k eigenvectors V = [v1, . . . , vk] of generalized eigen

problem Lv = λDv
▸ Define yi ∈ Rk as the ith row of V , cluser y1, . . . , yn into k clusters

C1, . . . ,Ck using k-means
Output: A1, . . . ,Ak where Ai = {j ∣yj = Ci}

▸ Normalized spectral clustering (Lrw ) is a relaxed solution to the
NCut problem.
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Toy Example

▸ 200 data points sampled from 4 Gaussian distributions
▸ KNN similarity graph (k = 10)
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Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of Lrw and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with � = 1 as similarity function.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 2 drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histograms
of a sample drawn from this distribution. As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi� xj |2/2�

2) with � = 1. As similarity graph we consider both the fully connected
graph and the k-nearest neighbor graph with k = 10. In Figure 1 we show the first eigenvalues and eigenvectors
of the unnormalized Laplacian L and the normalized Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. �i

(for the moment ignore the dashed line and the different shapes of the eigenvalues in the plots for the unnormalized
case; their meaning will be discussed in Section 8.4). In the eigenvector plots of an eigenvector v = (v1, . . . , v200)0

we plot xi vs. vi. The first two rows of Figure 1 show the results based on the k-nearest neighbor graph. We can see
that the first four eigenvalues are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the k-nearest neighbor graph, in which case the eigenvectors are given
as in Propositions 2 and 4. The next two rows show the results for the fully connected graph. As the Gaussian
similarity function is always positive, this graph only consists of one connected component. Thus, eigenvalue 0
has multiplicity 1, and the first eigenvector is the constant vector. The following eigenvectors carry the information
about the clusters. For example, in the unnormalized case (last row), if we threshold the second eigenvector at
0, then the part below 0 corresponds to clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly,

7

First 4 eigenvalues are 0 with eigenvectors 1Ai , i = 1, . . . ,4
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Toy Example

▸ Fully connected graph with Gaussian similarity graph (σ = 1)
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Figure 1: Toy example for spectral clustering. Left upper corner: histogram of the data. First and second row: eigenvalues and
eigenvectors of Lrw and L based on the k-nearest neighbor graph. Third and fourth row: eigenvalues and eigenvectors of Lrw
and L based on the fully connected graph. For all plots, we used we use the Gaussian kernel with � = 1 as similarity function.

Before we dive into the theory of spectral clustering, we would like to illustrate its principle on a very simple
toy example. This example will be used at several places in this tutorial, and we chose it because it is so simple
that the relevant quantities can easily be plotted. This toy data set consists of a random sample of 200 points
x1, . . . , x200 2 drawn according to a mixture of four Gaussians. The first row of Figure 1 shows the histograms
of a sample drawn from this distribution. As similarity function on this data set we choose the Gaussian similarity
function s(xi, xj) = exp(�|xi� xj |2/2�

2) with � = 1. As similarity graph we consider both the fully connected
graph and the k-nearest neighbor graph with k = 10. In Figure 1 we show the first eigenvalues and eigenvectors
of the unnormalized Laplacian L and the normalized Laplacian Lrw. That is, in the eigenvalue plot we plot i vs. �i

(for the moment ignore the dashed line and the different shapes of the eigenvalues in the plots for the unnormalized
case; their meaning will be discussed in Section 8.4). In the eigenvector plots of an eigenvector v = (v1, . . . , v200)0

we plot xi vs. vi. The first two rows of Figure 1 show the results based on the k-nearest neighbor graph. We can see
that the first four eigenvalues are 0, and the corresponding eigenvectors are cluster indicator vectors. The reason is
that the clusters form disconnected parts in the k-nearest neighbor graph, in which case the eigenvectors are given
as in Propositions 2 and 4. The next two rows show the results for the fully connected graph. As the Gaussian
similarity function is always positive, this graph only consists of one connected component. Thus, eigenvalue 0
has multiplicity 1, and the first eigenvector is the constant vector. The following eigenvectors carry the information
about the clusters. For example, in the unnormalized case (last row), if we threshold the second eigenvector at
0, then the part below 0 corresponds to clusters 1 and 2, and the part above 0 to clusters 3 and 4. Similarly,

7

First eigenvector is 1 since the graph has only 1 connected component
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Spectral Embedding
Also known as Laplacian Eigenmaps [Belkin et. al., 2003]:

▸ Learn a k-dimensional embedding Y =
⎡⎢⎢⎢⎢⎢⎣

−y1−
⋮

−ym−

⎤⎥⎥⎥⎥⎥⎦
∈ Rn×k

min
Y T DY=I
Y T D1=0

1
2∑ij

wij ∣∣yi − yj ∣∣2

1388 M. Belkin and P. Niyogi
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Figure 1: 2000 Random data points on the swiss roll.

Note that t = ∞ corresponds to the case when the weights are set to 1. Unlike
Isomap, our algorithm does not attempt to isometrically embed the swiss
roll into R2. However, it manages to unroll the swiss roll, thereby preserving
the locality, although not the distances, on the manifold. We observe that for
small values of N, we obtain virtually identical representations for different
t’s. However, when N becomes bigger, smaller values of t seemingly lead to
better representations.

It is worthwhile to point out that an isometric embedding preserving
global distances such as that attempted by Isomap is theoretically possible
only when the surface is flat, that is, the curvature tensor is zero, which is the
case with the swiss roll. However, a classical result due to gauss shows that
even for a two-dimensional sphere (or any part of a sphere), no distance-
preserving map into the plane can exist.

6.2 A Toy Vision Example. Consider binary images of vertical and hori-
zontal bars located at arbitrary points in the visual field. Each image contains
exactly one horizontal or vertical bar at a random location in the image plane.
In principle, we may consider each image to be represented as a function

f : [0, 1] × [0, 1] → {0, 1},

where f (x) = 0 means the point x ∈ [0, 1] × [0, 1] is white and f (x) = 1
means the point is black. Let v(x, y) be the image of a vertical bar. Then
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Spectral Embedding
Example: 2D embedding results:
▸ N: number of neighbors in kNN graph
▸ t: hyperparameter in the similarity function Wi,j = exp( ∣∣xi−xj ∣∣

2

t )Laplacian Eigenmaps 1389

N = 5     t = 5.0 N = 10     t = 5.0 N = 15     t = 5.0

N = 5     t = 25.0 N = 10     t = 25.0 N = 15     t = 25.0

N = 5     t = ∞ N = 10    t = ∞ N = 15     t = ∞

Figure 2: Two-dimensional representations of the swiss roll data, for different
values of the number of nearest neighbors N and the heat kernel parameter t.
t = ∞ corresponds to the discrete weights.

all images of vertical bars may be obtained from v(x, y) by the following
transformation:

vt(x, y) = v(x − t1, y − t2).

The space of all images of vertical bars is a two-dimensional manifold, as is
the space of all horizontal bars. Each of these manifolds is embedded in the
space of functions (L2([0, 1] × [0, 1])). Notice that although these manifolds
do not intersect, they come quite close to each other. In practice, it is usually
impossible to tell whether the intersection of two classes is empty.

To discretize the problem, we consider a 40 × 40 grid for each image.
Thus, each image may be represented as a 1600-dimensional binary vector.
We choose 1000 images (500 containing vertical bars and 500 containing
horizontal bars) at random. The parameter N is chosen to be 14 and t = ∞.

In Figure 3, the left panel shows a horizontal and vertical bar to provide
a sense of the scale of the image. The middle panel is a two-dimensional
representation of the set of all images using the Laplacian eigenmaps. Notice

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Unsupervised Learning Overview K-Means Clustering Spectral Graph Theory

Spectral Embedding

Example: Embedding results on a 2D cycle graph

Also studied in graph signal processing and differential geometry
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Additional topics of graph Laplacian methods

Graph spectra can be used as
topological features for supervised
and unsupervised learning
▸ Laplacian eigenmaps for

dimension reduction and
visualization

▸ Unsupervised segmentation
▸ Graph-based semi-supervised

learning (manifold
regularization)

Unsupervised segmentation using
NCut [Shi & Malik, 2000]

Lazy Snapping (semi-supervised
graph cut) [Li et. al. 2004]
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Summary
Representation learning
▸ Transform input features into “simpler” or “interpretable”

representations.
▸ Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms and their assumptions
▸ K-Means: assumes data are isotropic Gaussian, different clusters

have the same prior probability
▸ Spectral Methods: manifold assumption, cluster labels of a node

depends on its neighbors

ground truth cluster spectral clustering (nCut)
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Connection to Other Methods

Non-negative Matrix Factorization
▸ "k-Means Clustering via the Frank-Wolfe Algorithm" [Bauckhage

2016]
▸ "On the Equivalence of Nonnegative Matrix Factorization and

Spectral Clustering" [Ding et. al. 2005]

Matrix factorization can be relaxed to a continuous problem, allowing us
to use GD /deep neural networks to learn representation and cluster
simultaneously.
e.g. Wu et al, "Deep k-Means: Re-Training and Parameter Sharing with
Harder Cluster Assignments for Compressing Deep Convolutions", 2018
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