Learning from Data Lecture 9: Unsupervised Learning I

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

May 10, 2024

Today's Lecture

Unsupervised Learning

- Overview: the representation learning problem
- K-means clustering 1
- Spectral clustering

Unsupervised Learning Overview

Unsupervised Learning

$$x \longrightarrow \underbrace{f(\cdot)}_{\underline{-}} \longrightarrow \underbrace{}_{\underline{-}} \underbrace{} \underbrace{}_{\underline{-}} \underbrace{} \underbrace{}_{\underline{-}} \underbrace{} \underbrace{}_{\underline{-}$$

Similar to supervised learning, but without labels.

- Still want to learn the machine f
- Significantly harder in general

Unsupervised Learning

$$x \longrightarrow f(\cdot) \longrightarrow \mathcal{K}$$

Similar to supervised learning, but without labels.

- Still want to learn the machine f
- Significantly harder in general

Unsupervised learning goal

Find **representations** of input feature *x* that can be used for reasoning, decision making, predicting things, comminicating etc.

The representation learning problem

(Y Bengio et. al. *Representation Learning: A Review and New Perspectives*, 2014)

Given input features x, find "simpler" features z that **preserve the same** information as x.

Example: Face recognition 100×100

$$\Rightarrow \underset{=}{x} = \begin{bmatrix} 0.5\\0\\\vdots\\0.3\\1.0 \end{bmatrix} \} 10^4 \Rightarrow \underset{=}{z} = \begin{bmatrix} \vdots \end{bmatrix}$$

What information is in this picture? *identity, facial attributes, gender, age, sentiment, etc*

75)

0014100

۲

01-10

Characteristics of a good representation χ^{G}

- low dimensional: compress information to a smaller size \rightarrow reduce *data size*
- sparse representation: most entries are zero for most data → better interpretability
- independent representations: disentangle the source of variations

Uses of representation learning

Data compression

Example: Color image quantization. Each 24bit RGB color is reduced to a palette of 16 colors.

Uses of representation learning

Abnormality (outlier, novelty) detection

Example: local density-based outlier detection

 o_1 and o_2 are the detected outliers

Uses of representation learning

 \blacktriangleright Knowledge representation based on human perception

Example: word embedding

http://ruder.io/word-embeddings-1/

Each word is represented by a 2D vector. Words in the same semantic category are grouped together

K-Means Clustering

Clustering analysis

Given input features $\{x^{(1)}, \ldots, x^{(m)}\}$, group the data into a few *cohesive* "clusters".

 Objects in the same cluster are more similar to each other than to those in other clusters

2

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}, x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

k

argmin

 $C_1, ..., C_k$

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}, x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$\underset{C_1,\ldots,C_k}{\operatorname{argmin}} \sum_{j=1}^k \sum_{x \in C_j} \|x - \mu_j\|^2$$

Equivalent definitions:

minimizing the within-cluster variance:
$$\sum_{j=1}^{k} |C_j| \frac{\operatorname{Var}(C_j)}{|C_j|} = \frac{1}{|C_j|} \sum_{\substack{k \in C_j \\ j \neq k \in C_j}} \|k - \mu_j\|^2$$

$$= \sum_{j=1}^{k} \sum_{\substack{k \in C_j \\ j \neq k \in C_j}} \|k - \mu_j\|^2 = WCSS$$

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}$, $x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$\underset{C_1,\ldots,C_k}{\operatorname{argmin}} \sum_{j=1}^k \sum_{x \in C_j} \|x - \mu_j\|^2$$

Equivalent definitions:

- minimizing the within-cluster variance: $\sum_{j=1}^{k} |C_j| \operatorname{Var}(C_j)$
- minimizing the pairwise squared deviation between points in the same cluster: (homework)

$$C_{1} = \sum_{k=1}^{m \times k} \frac{1}{2|C_{i}|} \sum_{\substack{x, x' \in C_{i}}} ||x - x'||^{2}$$

The k-means clustering problem

Given input data $\{x^{(1)}, \ldots, x^{(m)}\}$, $x^{(i)} \in \mathbb{R}^d$, **k-means clustering** partition the input into $k \leq m$ sets C_1, \ldots, C_k to minimize the within-cluster sum of squares (WCSS).

$$\underset{C_1,\ldots,C_k}{\operatorname{argmin}} \sum_{j=1}^k \sum_{x \in C_j} \|x - \mu_j\|^2$$

Equivalent definitions:

- minimizing the within-cluster variance: $\sum_{i=1}^{k} |C_i| \operatorname{Var}(C_i)$
- minimizing the pairwise squared deviation between points in the same cluster: (homework)

$$\sum_{i=1}^{k} \frac{1}{2|C_i|} \sum_{x, x' \in C_i} \|x - x'\|^2$$

maximizing between-cluster sum of squares (BCSS) (homework)

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

```
Let c^{(i)} \in \{1, \dots, k\} be the cluster label for x^{(i)}
```

```
 \begin{array}{c|c} \mbox{Initialize cluster centroids } \mu_1, \dots \mu_k \in R^n \mbox{ randomly} \\ \mbox{Repeat until convergence} \{ & & \\ \mbox{For every } i, & & \\ & & c^{(i)} \coloneqq \mbox{argmin}_j \| x^{(i)} - \mu_j \|^2 \\ & & \\ \mbox{For each } j & & \\ & & \\ & & & \\ & & & \\ \mu_j \coloneqq & \frac{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\} x^{(i)}}{\sum_{i=1}^m \mathbf{1}\{c^{(i)}=j\}} \\ & \\ \mbox{} \} \end{array}
```

Demo:http://stanford.edu/class/ee103/visualizations/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

Let $c^{(i)} \in \{1, \dots, k\}$ be the cluster label for $x^{(i)}$

Demo:http://stanford.edu/class/ee103/visualizations/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

- Optimal k-means clustering is NP-hard in Euclidean space.
- Often solved via a heuristic, iterative algorithm

Lloyd's Algorithm (1957,1982)

```
Let c^{(i)} \in \{1, \dots, k\} be the cluster label for x^{(i)}
```

Demo:http://stanford.edu/class/ee103/visualizations/kmeans/kmeans.html

Lloyd, Stuart P. (1982). "Least squares quantization in PCM". IEEE Transactions on Information Theory

K-Means clustering discussion

Practical considerations

- Replicate clustering trails and choose the result with the smallest WCSS
- How to initialize centroids μ_j 's ?
 - Uniformly random sampling ②
 - Distance-based sampling e.g. <u>kmeans++</u> [Arthur & Vassilvitskii
 SODA 2007]
 For thest point complising
- How to choose k?
 - Cross validation (later lecture)
 - G-Means [Hamerly & Elkan, NIPS 2004]
- How to improve k-means efficiency?
 - Elkan's algorithm [Elkan, ICML 2003]
 - Mini-batch k-means [D. Sculley, WWW 2010]

Spectral Graph Theory

Graph Terminologies and Similarity Graphs Spectral Theory Spectral Clustering

K-Means vs Spectral Clustering

Graph Terminologies

- An undirect graph G = (V, E) consists of (vertices) nodes $V = \{v_1, \dots, v_n\}$ and edges $E = \{e_1, \dots, e_m\}$
 - Edge e_{ii} connects v_i and v_i if they are adjacent or neighbors.
 - Adjacency matrix $\underline{W_{ij}} = \begin{cases} 1 & \text{if there is an edge } e_{ij} \\ 0 & \text{otherwise} \end{cases}$
 - Degree d_i of node v_i is the number of neighbors of v_i .

$$d_i = \sum_{j=1}^n w_{ij}$$

Graph Terminologies

- Weigted undirected graph G = (V, E, W)
- Edge weight $w_{ii} \in \mathbb{R}_{>0}$ between v_i and v_i edge (v_i, v_i) exists iff $w_{ii} > 0$
- Weighted adjacency matrix $W = [w_{ij}]$

• Vertex degree
$$d_i = \sum_{j=1}^n w_{ij}$$

Degree matrix
$$D = diag(d_1, \ldots, d_n)$$

1

Graph Terminologies

- Given vertex subset $\underline{A \subset V}$, let $\overline{\overline{A} = V \setminus A}$ be the complement of \overline{A} in the graph
- ▶ Subset indicator function $\mathbf{1}_A \in \mathbb{R}^n$:

$$1_{A}\left\{ \underbrace{i}_{i}\right\} = \begin{cases} 1 & \text{if } v_{i} \in A \\ 0 & \text{if } v_{i} \notin A \end{cases}$$

• Sets A_1, \ldots, A_k form a **partition** of the graph if $A_i \cap A_j = \emptyset$ for all $i \neq j$ and $A_1 \cup \cdots \cup A_k = V$

Represent data using a graph

Some data are naturally represented by a graph e.g. social networks, 3D mesh etc

Use graph to represent similarity in data

Clustering from a graph point of view

- Given data points $x^{(1)}, \ldots, x^{(n)}$ and similarity measure $s_{ij} \ge 0$ for all $x^{(i)}, x^{(j)}$
- A typical similarity graph G = (V, E) is
 - $v_i \leftrightarrow x^{(i)}$
 - v_i and v_j are connected if $s_{ij} \ge \delta$ for some threshold δ
- **Clustering**: Divide data into groups such that points in the same group are similar and points in different groups are dissimilar
- Spectral Clustering (informal): Find a partition of G such that edges between the same group have high different groups have very low weights.
 T similarity

ϵ -neighborhood

Add edges to all points inside a ball of radius f centered at \boldsymbol{v}

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, ..., m$

ϵ -neighborhood

Add edges to all points inside a ball of radius f centered at vDrawbacks: sensitive to ξ , edge weights are on similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors.

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, ..., m$

ϵ -neighborhood

Add edges to all points inside a ball of radius f centered at vDrawbacks: sensitive to e, edge weights are on similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors. Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, ..., m$

ϵ -neighborhood

Add edges to all points inside a ball of radius f centered at vDrawbacks: sensitive to e, edge weights are on similar scale

k-Nearest Neighbors

Add edges between v's k-nearest neighbors. Drawbacks: may result in asymmetric and irregular graph

Fully connected graph

Often, Gaussian similarity is used

$$W_{i,j} = \exp\left(-\frac{||x^{(i)} - x^{(j)}||_2^2}{2\sigma^2}\right)$$
 for $i, j = 1, \dots, m$

Drawbacks: W is not sparse

Similarity graphs examples

Spectral Clustering as Graph Partitioning

Graph Cut Formulation

Case k = 2:

Given partition A, A, define a cut as the total weight of edges between A and A:

Graph Cut Formulations

Case k > 2:

 Given partition A₁,..., A_k, define a cut as the total edges weights between groups:

$$cut(A_{1},\ldots,A_{k}) \coloneqq \frac{1}{2} \sum_{i=1}^{k} cut(A_{i},\bar{A}_{i}) = \frac{1}{2} \left(ut(A_{i},\bar{A}_{i}) + ut(A_{2},\bar{A}_{2}) \right)$$

$$= \frac{1}{2} \cdot 2 \cdot ut(A_{2},\bar{A}_{2}) \left(A_{i},A_{2} \right)$$

$$= (ut(A_{i},A_{2})$$

$$= (ut(A_{i},A_{2})$$

Graph Cut Formulations

Case k > 2:

Given partition A₁,..., A_k, define a cut as the total edges weights between groups:

$$cut(A_1,\ldots,A_k) \coloneqq \frac{1}{2}\sum_{i=1}^k cut(A_i,\bar{A}_i)$$

Minimizing cut directly tends to favor small isolated clusters.

 $A_{2} \left(\frac{(ut(A_{1}, A_{1}))}{|A_{1}|} + \frac{(ut(A_{2}, A_{1}))}{|A_{2}|} \right)$

17

Balanced Graph Cut

RatioCut and NCut

 $=\frac{1}{2}\left(\frac{1}{2}+\frac{1}{3}\right).$ Find a k-way partition of graph G ($A_i \cup \cdots \cup A_k = V, A_i \cap A_i = \emptyset$) that minimizes:

A

$$RatioCut(A_{1},...,A_{k}) = \frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_{i},\bar{A}_{i})}{(A_{i})} \quad [\text{Hagen & Kahng,1992}]$$

$$\bigvee_{i \in A, j \in V} \text{[Hagen & Kahng,1992]}$$

$$\underbrace{\bigvee_{i \in A, j \in V} \text{[Hagen & Kahng,1992]}}_{Vol(A_{1},...,A_{k}) = \frac{1}{2} \sum_{i=1}^{k} \frac{cut(A_{i},\bar{A}_{i})}{(vol(A_{i}))},$$

$$vol(A_{i}) = \sum_{i \in A, j \in V} w_{ij} \quad [\text{Shi & Malik ,2000}]$$

$$= \sum_{i \in A, j \in V} \phi(\kappa^{i}) \quad \sum_{i \in A} \left(\frac{1}{7} + \frac{1}{7}\right)$$

$$= \frac{1}{7\mu} = \frac{1}{7}.$$

Balanced Graph Cut

RatioCut and NCut

Find a k-way partition of graph G ($A_i \cup \cdots \cup A_k = V, A_i \cap A_j = \emptyset$) that minimizes:

$$RatioCut(A_1,\ldots,A_k) = \frac{1}{2}\sum_{i=1}^k \frac{cut(A_i,\bar{A}_i)}{|A_i|} \quad [\text{Hagen \& Kahng,1992}]$$

$$NCut(A_1, \dots, A_k) = \frac{1}{2} \sum_{i=1}^k \frac{cut(A_i, \bar{A}_i)}{vol(A_i)},$$
$$vol(A_i) = \sum_{i \in A, j \in V} w_{ij} \text{ [Shi \& Malik ,2000]}$$

Both RatioCut and NormalizeCut can be **approximated** by spectral method.

Unnormalized graph laplacian matrix:

L = D - W

Properties of L

1. For every $f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$

Unnormalized graph laplacian matrix:

$$L = D - W$$

 ≥ 0

- **1.** For every $f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (\frac{f_i f_j}{2})^2 \ge 0$.
- 2. L is symmetric and positive semi-definite

A Review on Eigenvalue Problem

The Eigenvalue Problem

Nonzero vector $u \in \mathbb{R}^n$ is an **eigenvector** of matrix $A \in \mathbb{R}^{n \times n}$ if

 $Au = \lambda u$

for some $\lambda \in \mathbb{R}$. We call λ the **eigenvalue** corresponding to u.

- A has at most *n* distinct eigenvalues $A_{c,k} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ y_1 & y_2 & y_n & y_n$
 - If A is symmetric, A can be decomposed as $A = U\Lambda U^T$ where U is an orthogonal matrix $(U^T U = I)$.

Theorem 1

Given symmetric matrix $A \in \mathbb{R}^{n \times n}$, the solution to the minimization problem is the smallest eigen vector of A

$$\min_{x \in \mathbb{R}^n} \frac{x^T A x}{\|x\|^2 = 1}$$
(1)
s.t. $\|x\|^2 = 1$

Proof.
$$L(x) = x^{T}Ax + \beta(x^{T}x-1)$$

 $\frac{\partial L(x)}{\partial x} = 2Ax + 2\beta R = 0$
 $Ax = -\beta x$
 $eigenvalue$ $eigenvector$
to minimize $x^{T}Ax = (A^{T}x)x = (Ax)^{T}x = (-\beta R)^{T}x$.
Since $||x||^{2} = x^{T}x = 1$, $(y symmetry of A)$
 $x^{T}Ax = -\beta$ is the smallest eigenvalue.

Theorem 2

Given symmetric matrix $A \in \mathbb{R}^{n \times n}$, the solution to the minimization problem is the smallest eigen vector of A

$$\min_{\mathbf{x} \in \mathbb{R}^n} x^T A x \tag{2}$$

s.t. $||\mathbf{x}||^2 = 1$

• An equivalent form of (2) is minimizing the **Rayleigh quotient** $\frac{x^T A x}{x^T x}$

$$\begin{array}{c} \bigcirc & \underline{x^{T}Ax} \\ x^{T}x' \text{ is scale invariant.} \\ (ef x' = \underline{c} x, & \underline{x'^{T}Ax'} \\ x'^{T}x' = \underline{x'}x' \\ \hline \\ (ef x' = cx \text{ such that } \|x'\|^{2} = 1. \\ \hline \\ Then & \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'T}Ax'}{\underline{x'T}x'} = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}} \\ \hline \\ \\ Then & \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'T}Ax'}{\underline{x'}x'} = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \min_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'Ax'}}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}} \frac{\underline{x'}x'}{\underline{x'}x'} \\ = \max_{\substack{x \neq 0 \\ x \neq 0}}$$

Theorem 2

Given symmetric matrix $A \in \mathbb{R}^{n \times n}$, the solution to the minimization problem is the smallest eigen vector of A

$$\min_{x \in \mathbb{R}^n} x^T A x$$
(2)
s.t. $||x||^2 = 1$

• An equivalent form of (2) is minimizing the **Rayleigh quotient** $\frac{x^T A x}{x^T x}$

$$\min_{x\neq 0\in\mathbb{R}^n}\frac{x^TAx}{x^Tx}$$

• Rayleigh quotient
$$\frac{x^T A x}{x^T x}$$
 is scale invariant.

$$\begin{array}{ccc} m_{1}m_{1} & \chi^{T}A\chi & & & & \\ \chi & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & &$$

Generalization to multiple vectors:

Theorem 3

Given symmetric matrix $A \in \mathbb{R}^{n \times n}$, $x = [x_1, ..., x_k]$, $x_i \in \mathbb{R}^n$ $(k \le n)$, the solution to the minimization problem are k smallest eigenvectors of A:

$$\min_{X \in \mathbb{R}^{n \times k}} tr(\underline{X}^T A X)$$
(3)
s.t.
$$\underline{X}^T X = \mathbf{I}_k$$

Unnormalized graph laplacian matrix:

$$L = D - W$$

- **1.** For every $f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i f_j)^2$
- 2. *L* is symmetric and positive semi-definite
- 3. The smallest eigenvalue of L is 0 with eigenvector $\underline{1}$

Unnormalized graph laplacian matrix:

$$L = D - W$$

- **1.** For every $f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i f_j)^2$
- 2. L is symmetric and positive semi-definite
- 3. The smallest eigenvalue of L is 0 with eigenvector 1

Unnormalized graph laplacian matrix:

$$L = D - W$$

- **1.** For every $f \in \mathbb{R}^n$, $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i f_j)^2$
- 2. L is symmetric and positive semi-definite
- 3. The smallest eigenvalue of L is 0 with eigenvector 1
- **4.** *L* has *n* real eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Proposition 1

Let G be an undirected graph with non-negative weights W.

- ► The multiplicity k of eigenvalue 0 of L is the number of connected components A₁,..., A_k in G.
- The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{rw}

- λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ , v solve the generalized eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of L with eigenvector 1
- L_{rw} is positive semi-definite and has *n* non-negative eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

 1 "rw" comes from its interpertation as "random walk". Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

(Normalized) Graph Laplacian

Normalized graph laplacian (Chung 1997) ¹:

$$L_{rw} = D^{-1}L = I - D^{-1}W$$

Properties of L_{rw}

- λ is an eigenvalue of L_{rw} with eigenvector v if and only if λ , v solve the generalized eigenproblem $Lv = \lambda Dv$
- 0 is an eigenvalue of L with eigenvector 1
- L_{rw} is positive semi-definite and has *n* non-negative eigenvalues $0 = \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$

Proposition 2

Let G be an undirected graph with non-negative weights W, the multiplicity k of eigenvalue 0 of L_{rw} is the number of connected components A_1, \ldots, A_k in G. The eigenspace of eigenvalue 0 is spanned by vectors $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_k}$

 1 "rw" comes from its interpretation as "random walk". Another definition of normalized graph Laplacian is $D^{-\frac{1}{2}}LD^{-\frac{1}{2}}$

Solving graph cut

Define $f \in \{0,1\}^n$ to be the indicator function for partition $A \subset V$:

$$\underbrace{f_i := \{\mathbf{1}_A\}_i = \begin{cases} 1 & v_i \in A \\ 0 & v_i \in \overline{A} \end{cases}$$

We have that $||f||^2 = |A|$. $Cut(A, \overline{A})$ can be written as a function of f and graph Laplacian L:

$$f^{T}Lf = \frac{1}{2}\sum_{i,j=1}^{n} w_{ij}(f_{i} - f_{j})^{2}$$
$$= \frac{1}{2}\left(\sum_{v_{i}\in A, v_{j}\in\bar{A}} w_{ij} + \sum_{v_{i}\in\bar{A}, v_{j}\in A} w_{ij}\right) = \sum_{v_{i}\in A, v_{j}\in\bar{A}} w_{ij} = \underbrace{cut(A,\bar{A})}_{V_{i}\in\bar{A}}$$

Let $f_{(1)}, \ldots, f_{(k)}$ be k indicator functions $\mathbf{1}_{A_i}, \ldots, \mathbf{1}_{A_k}$. They are mutually orthogonal (i.e. $f_{(i)}^T f_{(j)} = 0$ for all $i \neq j$).

Solving graph cut

Recall the definition of RatioCut:

$$\underset{A_{1},...,A_{k}}{\min} \sum_{i}^{k} \frac{cut(A_{i},\bar{A}_{i})}{|A_{i}|}$$

$$\implies \underset{A_{1},...,A_{k}}{\min} \sum_{i}^{k} \frac{f_{(i)}^{T}Lf_{(i)}}{f_{(i)}^{T}f_{(i)}}$$

$$(4)$$

Relax the $f_{(i)}$'s to be real vectors:

$$\min_{f_{(1)},...,f_{(k)}\in\mathbb{R}^{n}}\sum_{i}^{k}\frac{f_{(i)}^{T}Lf_{(i)}}{f_{(i)}^{T}f_{(i)}}$$
s.t. $f_{(i)}^{T}f_{(j)} = 0$, for all $i \neq j$
(6)

Solving graph cut

Since rescaling $f_{(i)}$ by constants does not change the objective, (3) is equivalent to

$$\min_{f_{(1)},...,f_{(k)} \in \mathbb{R}^n} \sum_{i}^{k} f_{(i)}^T L f_{(i)}$$
s.t. $f_{(i)}^T f_{(j)} = 0$, for all $i \neq j$
 $f_{(i)}^T f_{(i)} = 1$, for all $i = 1, ..., k$
(7)

Let $F = [f_{(1)} \dots f_{(k)}]$, (5) can be written in matrix notation:

$$\min_{F \in \mathbb{R}^n} \operatorname{tr}(F^T L F)$$

s.t. $F^T F = I$

- By Theorem 3, optimal solution F^* is the first k eigenvectors of L.
- To get discrete cluster labels, we can apply k-means clustering on the rows of F*.

Spectral Clustering Algorithm

Unormalized spectral clustering

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight W
- Compute first k eigenvectors $V = [v_1, \ldots, v_k]$ of L
- Define $y_i \in \mathbb{R}^k$ as the ith row of V, cluser y_1, \ldots, y_n into k clusters C_1, \ldots, C_k using k-means

Output: A_1, \ldots, A_k where $A_i = \{j | y_j \in C_i\}$

 Unormalized spectral clustering is relaxed solution to the RatioCut problem.

Spectral Clustering Algorithm

Normalized spectral clustering (Ng, Shi and Malik 2000)

Input: data points $x^{(1)}, \ldots, x^{(n)}$ and cluster size k

- Build a graph connecting $x^{(1)}, \ldots, x^{(n)}$ with weight W
- Compute first k eigenvectors $V = [v_1, ..., v_k]$ of generalized eigen problem $Lv = \lambda Dv$
- Define $y_i \in \mathbb{R}^k$ as the ith row of V, cluser y_1, \ldots, y_n into k clusters C_1, \ldots, C_k using k-means

Output: A_1, \ldots, A_k where $A_i = \{j | y_j = C_i\}$

 Normalized spectral clustering (L_{rw}) is a relaxed solution to the NCut problem.

Toy Example

- 200 data points sampled from 4 Gaussian distributions
- KNN similarity graph (k = 10)

Toy Example

First eigenvector is 1 since the graph has only 1 connected component

Spectral Embedding

Also known as Laplacian Eigenmaps [Belkin et. al., 2003]: Learn a k-dimensional embedding $Y = \begin{bmatrix} -y_1 - \\ \vdots \\ -y_m - \end{bmatrix} \in \mathbb{R}^{n \times k}$

$$\min_{\substack{Y^T D Y = I \\ Y^T D 1 = 0}} \frac{1}{2} \sum_{ij} w_{ij} ||y_i - y_j||^2$$

Spectral Embedding

Example: 2D embedding results:

- ▶ *N*: number of neighbors in kNN graph
- ▶ *t*: hyperparameter in the similarity function $W_{i,j} = \exp(\frac{||x_i-x_j||^2}{t})$

Yang Li yangli@sz.tsinghua.edu.cn

Learning From Data

Spectral Embedding

Also studied in graph signal processing and differential geometry

Additional topics of graph Laplacian methods

Graph spectra can be used as topological features for supervised and unsupervised learning

- Laplacian eigenmaps for dimension reduction and visualization
- Unsupervised segmentation
- Graph-based semi-supervised learning (manifold regularization)

Unsupervised segmentation using NCut [Shi & Malik, 2000]

Lazy Snapping (semi-supervised graph cut) [Li et. al. 2004]

Summary

Representation learning

- Transform input features into "simpler" or "interpretable" representations.
- Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms and their assumptions

- ► K-Means: assumes data are isotropic Gaussian, different clusters have the same prior probability
- Spectral Methods: manifold assumption, cluster labels of a node depends on its neighbors

Connection to Other Methods

Non-negative Matrix Factorization

- "k-Means Clustering via the Frank-Wolfe Algorithm" [Bauckhage 2016]
- "On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering" [Ding et. al. 2005]

Matrix factorization can be relaxed to a continuous problem, allowing us to use GD /deep neural networks to learn representation and cluster simultaneously.

e.g. Wu et al, "Deep k-Means: Re-Training and Parameter Sharing with Harder Cluster Assignments for Compressing Deep Convolutions", 2018