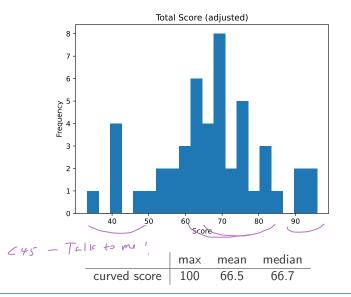
Learning From Data Lecture 8: Learning Theory

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

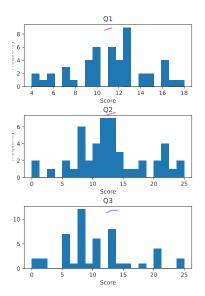
April 26, 2024

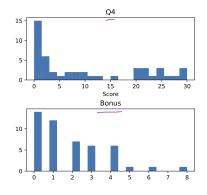
Midterm Results



Learning From Data

Midterm Breakdown

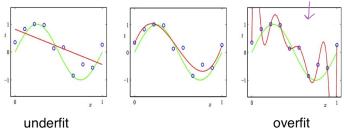




Review

Overfit & Underfit

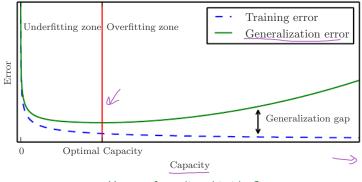
Underfit Both training error and testing error are large **Overfit** Training error is small, testing error is large



Model capacity: the ability to fit a wide variety of functions

Model Capacity

Changing a model's **capacity** controls whether it is more likely to overfit or underfit



How to formalize this idea?

Bias and Variance

Suppose data is generated by the following model:

$$y = h(x) + \epsilon$$

with $\mathbb{E}[\epsilon] = 0$, $Var(\epsilon) = \sigma^2$

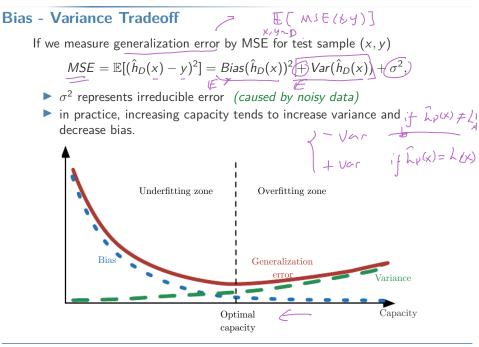
h(x): true hypothesis function, unknown
 ĥ_D(x): estimated hypothesis function based on training data
 D = {(x⁽¹⁾, y⁽¹⁾),..., (x^(m), y^(m))} sampled from P_{XY}
 Model bias: Bias(ĥ_D(x)) = E_D[ĥ_D(x) - h(x)] Expected estimation error of the model over all choices of training data D
 Model variance: Var(ĥ_D(x)) = E_D[ĥ_D(x)²] - E_D[ĥ_D(x)]² Variance of the model over all choices of D

Bias - Variance Tradeoff

If we measure generalization error by MSE for test sample (x, y)

$$MSE = \mathbb{E}[(\hat{h}_D(x) - y)^2] = Bias(\hat{h}_D(x))^2 + Var(\hat{h}_D(x)) + \sigma^2,$$

- σ^2 represents irreducible error (caused by noisy data)
- in practice, increasing capacity tends to increase variance and decrease bias.



Today's Lecture

- How to measure model capacity?
- Can we find a theoretical guarantee for model generalization?

A brief introduction to learning theory

- Empirical risk minimization
- Generalization bound for finite and infinite hypothesis space

Final project information.

Learning Theory

Empirical Risk Estimation Uniform Convergence and Sample Complexity Infinite H

Introduction to Learning Theory

- Empirical risk estimation
- Learning bounds
 - Finite Hypothesis Class
 - Infinite Hypothesis Class

Learning theory

How to quantify generalization error?

 $R(T_{i}) \leq R_{comp}(T_{i}) + \frac{\ln N - \ln \eta}{\Re} \left(1 + \sqrt{1 + \frac{2R_{cop}(T_{i})}{\ln N - \ln \eta}}\right)$ BAYES ARE RELONG

Figure: Prof. Vladimir Vapnik in front of his famous theorem

data J distribution

Empirical risk

Simplified assumption: $y \in \{0, 1\}$ Training set: $S = (x^{(i)}, y^{(i)}); i = 1, ..., m$ with $(\underline{x^{(i)}, y^{(i)}}) \sim \underline{\mathcal{D}}$

For hypothesis h, the training error or empirical risk/error in learning theory is defined as

$$\hat{\epsilon}(h) = \frac{1}{m} \sum_{i=1}^{m} \underbrace{\mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\}}_{i=1} = \begin{cases} 1 & h(x^{(i)}) \neq y^{(i)} \\ 0 & h(x^{(i)}) \neq y^{(i)} \end{cases}$$

The generalization error is

$$\epsilon(h) = P_{(x,y)\sim\mathcal{D}}(h(x)\neq y)$$

PAC assumption: assume that training data and test data (for evaluating generalization error) were drawn from the same distribution \mathcal{D}

Hypothesis Class and ERM

Hypothesis class

The hypothesis class \mathcal{H} used by a learning algorithm is the set of all classsifiers considered by it.

e.g. Linear classification considers $h_{\theta}(x) = 1\{\theta^T x \ge 0\}$

Empirical Risk Minimization (ERM): the "simplest" learning algorithm: pick the hypothesis h from hypothesis class \mathcal{H} that minimizes training error

$$\hat{h} = \operatorname*{argmin}_{\substack{h \in \mathcal{H} \\ i \in \mathcal{H}}} \hat{\epsilon}(h)$$

How to measure the generalization error of empirical risk minimization over \mathcal{H} ?

- ► Case of finite *H*
- Case of infinite H

Goal: give guarantee on generalization error $\epsilon(h)$

- Show $\hat{\epsilon}(h)$ (training error) is a good estimate of $\epsilon(h)$ for all h
- Derive an upper bound on $\epsilon(h)$

For any $h_i \in \mathcal{H}$, the event of $\underline{h_i}$ miss-classification given sample $(x, y) \sim \overline{\mathcal{D}}$: $\underbrace{Z}_{j} = 1\{h_i(x^{(j)}) \neq y^{(j)}\}: \text{ event of } h_i \text{ miss-classifying sample } x^{(j)}$

j=1,...,m

Goal: give guarantee on generalization error $\epsilon(h)$

- Show $\hat{\epsilon}(h)$ (training error) is a good estimate of $\epsilon(h)$ for all h
- Derive an upper bound on $\epsilon(h)$

For any $h_i \in \mathcal{H}$, the event of h_i miss-classification given sample $(x, y) \sim \mathcal{D}$:

$$Z = 1\{h_i(x) \neq y\}$$

 $Z_j = 1\{h_i(x^{(j)}) \neq y^{(j)}\}$: event of h_i miss-classifying sample $x^{(j)}$

Training error of $h_i \in \mathcal{H}$ is:

$$\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m \underbrace{\mathbb{1}\{h_i(x^{(j)}) \neq y^{(j)}\}}_{\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m \underbrace{Z_j^{(\nu)}}_{\stackrel{(i)}{\sum} = \underbrace{\mathbb{E}[Z]}_{\stackrel{(i)}{\sum}}^{(\nu)}}_{\hat{\nu}}$$
Testing error of $h_i \in \mathcal{H}$ is: $\epsilon(h_i) = \underbrace{\mathbb{E}[Z]}_{\stackrel{(i)}{\sum}}$

Yang Li yangli@sz.tsinghua.edu.cn

Preliminaries

Here we make use of two famous inequalities:

Lemma 1 (Union Bound)

Let A_1, A_2, \ldots, A_k be k different events, then

$$P(A_1 \cup \cdots \cup A_k) \leq P(A_1) + \cdots + P(A_k)$$

Probability of any one of k events happening is less the sums of their probabilities.

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - \frac{P(A_1 \cap A_2)}{2} \leq P(A_1) + P(A_2)$$

Preliminaries

$$\begin{vmatrix} \phi & -\hat{\phi} \end{vmatrix} = 25 \cdot 2 \cdot e^{-2 \cdot 25 \cdot m} \cdot$$

The probability of $\hat{\phi}$ having large estimation error is small when m is large!

Training error of $h_i \in \mathcal{H}$ is:

$$\hat{\epsilon}(h_i) = rac{1}{m}\sum_{j=1}^m Z_j$$

where $Z_j \sim Bernoulli(\epsilon(h_i))$

Training error of
$$h_i \in \mathcal{H}$$
 is:
Assume $|\mathcal{H}| = k$.
 $\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m Z_j \qquad \begin{array}{c} f(|\not{p} - \hat{p}| > \gamma) \leq 2e^{-\frac{2\gamma^2 m}{m}} \\ \hline \gamma & \widehat{\epsilon}(h_i) \\ \hline E(Z_j) & E[Z] \end{array}$
where $Z_j \sim Bernoulli(\epsilon(h_i))$

Hoetfding inequality.

By Hoeffding inequality,

Yang Li yangli@sz.tsinghua.edu.cn

Training error of $h_i \in \mathcal{H}$ is:

$$\hat{\epsilon}(h_i) = \frac{1}{m} \sum_{j=1}^m Z_j$$

where $Z_j \sim Bernoulli(\epsilon(h_i))$

By Hoeffding inequality,

$$P(|\epsilon(h_i) - \hat{\epsilon}(h_i)| > \gamma) \le 2e^{-2\gamma^2 m}$$

By Union bound,

$$\mathsf{P}(orall h \in \mathcal{H}.|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma) \geq 1 - 2ke^{-2\gamma^2 m}$$

Uniform Convergence Results

proposition Griven Y, m,
$$p(\forall h \in H | k(h) - \hat{z}(h)| \leq Y) \geq |-2ke^{-Y}$$

Corollary 3

Given γ and $\delta>$ 0, If

$$m \geq rac{1}{2\gamma^2}\lograc{2k}{\delta}$$

Then with probability at least $1 - \delta$, we have $|\epsilon(h) - \hat{\epsilon}(h)| \le \gamma$ for all \mathcal{H} . *m* is called the algorithm's **sample complexity**.

$$let = 2ke^{-2y^{2}m}.$$

$$log = log(2k) + (-2y^{2}m)$$

$$m = \frac{(\log 2 - \log 2k)}{-2y^{2}} = \frac{1}{2y^{2}} \log(\frac{2k}{2}) \quad \leftarrow \begin{array}{l} \text{minimum sample size} \\ for \\ p(\forall k \in H \mid |s(k) - \hat{s}(k)| \leq y) \geq 1 - \int \frac{1}{2y^{2}} \log(\frac{2k}{2}) \quad \leftarrow \begin{array}{l} \frac{1}{2y^{2}} \log(\frac{2k}{2}) \\ \frac{1}{2y^{2$$

Uniform Convergence Results

Corollary 3

Given γ and $\delta > 0$, If

$$\underline{m} \geq \frac{1}{2\gamma^2} \log \frac{2k}{\delta}$$

Then with probability at least $1 - \delta$, we have $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ for all \mathcal{H} . m is called the algorithm's sample complexity.

Remarks

- Lower bound on *m* tell us how many training examples we need to make generalization guarantee.
- # of training examples needed is logarithm in k

Uniform Convergence Results proposition Grien Y, m, $p(\forall k \in \mathcal{H} | k(k) - \hat{z}(k)| \leq \gamma) \geq |-2ke^{-2\gamma^2 m} \in \mathcal{H}_{\partial}^{m}$ [orollary3 For Sch-Ech) (8) to hold for all het, with probability 1-2, m> 1/2 log2/ **Corollary 4** With probability $1 - \delta$, for all $h \in \mathcal{H}$, sample size m, $|\hat{\epsilon}(h) - \epsilon(h)| \leq \sqrt{rac{1}{2m}\lograc{2k}{\delta}}$ prot. By corollay 3. solve for y : $2y^2 = \frac{1}{m} \log \frac{2k}{T}$ $y = \sqrt{\frac{1}{2m} \log \frac{2k}{f}}$ Then $\left|\overline{\xi}(L) - \xi(L)\right| \leq \delta = \sqrt{\frac{1}{2m} \log \frac{2\pi}{5}}$ for all $h \in \mathcal{H}$

Uniform Convergence Results

Corollary 4

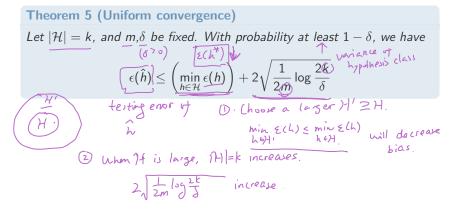
With probability $1 - \delta$, for all $h \in \mathcal{H}$, sample size m,

$$|\hat{\epsilon}(h) - \epsilon(h)| \leq \sqrt{rac{1}{2m}\lograc{2k}{\delta}}$$

What is the convergence result when we pick $\hat{h} = \operatorname{argmin}_{h \in \mathcal{H}} \hat{\epsilon}(h)$

Uniform Convergence Theorem for Finite ${\mathcal H}$

Using previous corollaries, we can bound $\epsilon(\hat{h})$:



Can we apply the same theorem to infinite $\mathcal{H}?$

Example

Suppose \mathcal{H} is parameterized by <u>d</u> real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

- Suppose \mathcal{H} is parameterized by d real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d-1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{\underline{64d}}$

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

- Suppose \mathcal{H} is parameterized by d real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{64d}$
- ► How many samples do we need to guarantee $\epsilon(\hat{h}) \leq \epsilon(h^*) + 2\gamma$ to hold with probability at least 1δ ?

$$m \geq \sum_{z=\gamma}^{\gamma} z^{1/2} \left(\frac{1}{\delta} - \frac{1}{\delta} \right) = O\left(\frac{1}{\gamma^2} \log \frac{2^{64d}}{\delta} \right) = O\left(\frac{d}{\gamma^2} \log \frac{1}{\delta} \right) = O_{\gamma,\delta}(d)$$

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

- Suppose \mathcal{H} is parameterized by d real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{64d}$
- ► How many samples do we need to guarantee $\epsilon(\hat{h}) \leq \epsilon(h^*) + 2\gamma$ to hold with probability at least 1δ ?

$$m \geq O\left(rac{1}{\gamma^2}\lograc{2^{64d}}{\delta}
ight) = O\left(rac{d}{\gamma^2}\lograc{1}{\delta}
ight) = O_{\gamma,\delta}(d)$$

Can we apply the same theorem to infinite $\mathcal{H}?$

Example

- Suppose \mathcal{H} is parameterized by d real numbers. e.g. $\theta = [\theta_1, \theta_2, \dots, \theta_d] \in \mathbb{R}^d$ in linear regression with d - 1 unknowns.
- \blacktriangleright In a 64-bit floating point representation, size of hypothesis class: $|\mathcal{H}|=2^{64d}$
- ► How many samples do we need to guarantee $\epsilon(\hat{h}) \leq \epsilon(h^*) + 2\gamma$ to hold with probability at least 1δ ?

$$m \geq O\left(rac{1}{\gamma^2}\lograc{2^{64d}}{\delta}
ight) = O\left(rac{d}{\gamma^2}\lograc{1}{\delta}
ight) = O_{\gamma,\delta}(d)$$

To learn well, the number of samples has to be linear in d

Size of $\ensuremath{\mathcal{H}}$ depends on the choice of parameterization

Example 2n + 2 parameters: $h_{u,v} = \mathbf{1}\{(u_0^2 - v_0^2) + (u_1^2 - v_1^2)x_1 + \dots + (u_n^2 - v_n^2)x_n \ge 0\}$ is equivalent the hypothesis with n + 1 parameters:

$$h_{\theta}(x) = \mathbf{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n \ge 0\}$$

Size of $\ensuremath{\mathcal{H}}$ depends on the choice of parameterization

Example

2n + 2 parameters:

$$h_{u,v} = \mathbf{1}\{(u_0^2 - v_0^2) + (u_1^2 - v_1^2)x_1 + \dots + (u_n^2 - v_n^2)x_n \ge 0\}$$

is equivalent the hypothesis with n + 1 parameters:

$$h_{\theta}(x) = \mathbf{1}\{\theta_0 + \theta_1 x_1 + \dots + \theta_n x_n \ge 0\}$$

We need a complexity measure of a hypothesis class invariant to parameterization choice

Infinite hypothesis class: Vapnik-Chervonenkis theory

A computational learning theory developed during 1960-1990 explaining the learning process from a statistical point of view.

Alexey Chervonenkis (1938-2014), Russian mathematician

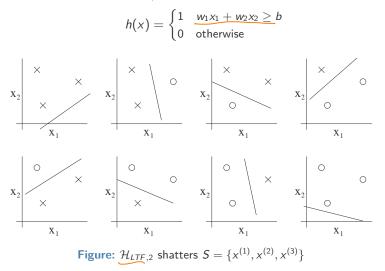
Vladimir Vapnik (Facebook AI Research, Vencore Labs) Most known for his contribution in statistical learning theory

Shattering a point set

• Given <u>d</u> points $x^{(i)} \in \mathcal{X}$, i = 1, ..., d, \mathcal{H} shatters S if \mathcal{H} can realize any labeling on S. Figure: Example: $S = \{x^{(1)}, x^{(2)}, x^{(3)}\}$ where $x^{(i)} \in \mathbb{R}^2$. X₂ \mathbf{X}_1 3. 2_ Suppose $y^{(i)} \in \{0, 1\}$, how many possible labelings does S have?

Shattering a point set

Example: Let $\mathcal{H}_{LTF,2}$ be the linear threshold function in \mathbb{R}^2 (e.g. in the perceptron algorithm)



VC Dimension

The Vapnik-Chervonenkis dimension of \mathcal{H} , or $VC(\mathcal{H})$, is the cardinality of the largest set shattered by \mathcal{H} . • Example: $VC(\mathcal{H}_{LTF,2}) = 3$ • $VC(\mathcal{H}_{LTF,2}) \ge 4$? • VC

Figure: \mathcal{H}_{LTF} can not shatter 4 points: for any 4 points, label points on the diagonal as '+'. (See Radon's theorem)

$$VC(H_{LTF,2}) = 3$$
.

VC Dimension

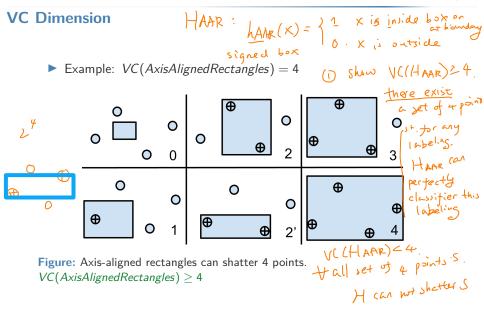
The **Vapnik-Chervonenkis** dimension of \mathcal{H} , or $VC(\mathcal{H})$, is the cardinality of the largest set shattered by \mathcal{H} .

► Example: VC(H_{LTF,2}) = 3) H can realize all labeling

Figure: \mathcal{H}_{LTF} can not shatter 4 points: for any 4 points, label points on the diagonal as '+'. (See Radon's theorem)

▶ To show $VC(H) \ge d$, it's sufficient to find **one** set of *d* points shattered by *H*.

► To show VC(H) < d, need to prove H doesn't shatter any set of d points</p>



VC Dimension

Example: VC(AxisAlignedRectangles) = 4

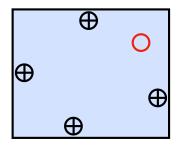
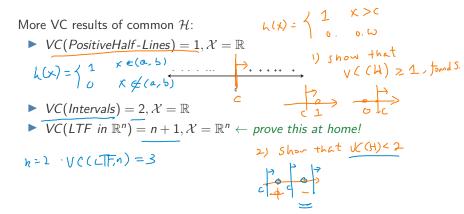


Figure: For any 5 points, label topmost, bottommost, leftmost and rightmost points as "+". VC(AxisAlignedRectangles) < 5

Discussion on VC Dimension



Discussion on VC Dimension

More VC results of common \mathcal{H} :

 $\blacktriangleright VC(PositiveHalf-Lines) = 1, \mathcal{X} = \mathbb{R}$

$$\blacktriangleright VC(Intervals) = 2, \mathcal{X} = \mathbb{R}$$

▶ $VC(LTF \text{ in } \mathbb{R}^n) = n + 1, \mathcal{X} = \mathbb{R}^n \leftarrow \text{ prove this at home!}$

Proposition 1

If \mathcal{H} is finite, VC dimension is related to the cardinality of \mathcal{H} :

 $VC(\mathcal{H}) \leq \log |\mathcal{H}|$

Discussion on VC Dimension

More VC results of common \mathcal{H} :

• $VC(PositiveHalf-Lines) = 1, \mathcal{X} = \mathbb{R}$

•
$$VC(Intervals) = 2, \mathcal{X} = \mathbb{R}$$

▶ $VC(LTF \text{ in } \mathbb{R}^n) = n + 1, \mathcal{X} = \mathbb{R}^n \leftarrow \text{ prove this at home!}$

Proposition 1

If \mathcal{H} is finite, VC dimension is related to the cardinality of \mathcal{H} :

 $VC(\mathcal{H}) \leq \log |\mathcal{H}|$

Proof. Let $d = VC|\mathcal{H}|$. There must exists a shattered set of size d on which H realizes all possible labelings. Every labeling must have a corresponding hypothesis, then $|\mathcal{H}| \ge 2^d$

Learning bound for infinite ${\cal H}$

Theorem 6

Given \mathcal{H} , let $d = VC(\mathcal{H})$.

• With probability at least $1 - \delta$, we have that for all h

$$|\epsilon(h) - \hat{\epsilon}(h)| \leq O\left(\sqrt{rac{d}{m}\lograc{m}{d} + rac{1}{m}\lograc{1}{\delta}}
ight)$$

Learning bound for infinite ${\cal H}$

Theorem 6

Given \mathcal{H} , let $d = VC(\mathcal{H})$.

• With probability at least $1 - \delta$, we have that for all h

$$|\epsilon(h) - \hat{\epsilon}(h)| \leq O\left(\sqrt{rac{d}{m}\lograc{m}{d} + rac{1}{m}\lograc{1}{\delta}}
ight)$$

• Thus, with probability at least $1 - \delta$, we also have

$$\epsilon(\hat{h}) \leq \epsilon(h^*) + O\left(\sqrt{rac{d}{m}\lograc{m}{d} + rac{1}{m}\lograc{1}{\delta}}
ight)$$

Learning bound for infinite ${\mathcal H}$

Corollary 7

For $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ with probability at least $1 - \delta$, it suffices that $m = O_{\gamma,\delta}(d)$.

Learning bound for infinite ${\mathcal H}$

Corollary 7

For $|\epsilon(h) - \hat{\epsilon}(h)| \leq \gamma$ to hold for all $h \in \mathcal{H}$ with probability at least $1 - \delta$, it suffices that $m = O_{\gamma,\delta}(d)$.

Remarks

- Sample complexity using \mathcal{H} is linear in $VC(\mathcal{H})$
- For "most"^a hypothesis classes, the VC dimension is linear in terms of parameters
- ► For algorithms minimizing training error, # training examples needed is roughly linear in number of parameters in H.

^aNot always true for deep neural networks

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(N) = O(w \log w)$.

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let \mathcal{N} be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(\mathcal{N}) = O(w \log w)$.

Recent progress

► For feed-forward neural networks with piecewise-linear activation functions (e.g. ReLU), let w be the number of parameters and / be the number of layers, VC(N) = O(w/log(w)) [Bartlett et. al., 2017]

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks.

VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let \mathcal{N} be an arbitrary feedforward neural net with w weights that consists of linear threshold activations, then $VC(\mathcal{N}) = O(w \log w)$.

Recent progress

- ► For feed-forward neural networks with piecewise-linear activation functions (e.g. ReLU), let w be the number of parameters and / be the number of layers, VC(N) = O(w/log(w)) [Bartlett et. al., 2017]
- Among all networks with the same size (number of weights), more layers have larger VC dimension, thus more training samples are needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise linear neural networks.

Final Project Information

See http://yangli-feasibility.com/home/classes/ lfd2024spring/project.html