
1/29

Learning From Data
Lecture 7: Model Selection & Regularization

Yang Li yangli@sz.tsinghua.edu.cn

April 12, 2024

2/29

Today’s Lecture

Practical tools to improve machine learning performance:
▶ Bias and variance trade off
▶ Model selection and feature selection
▶ Regularization

▶ Generic techniques
▶ Neural network regularization tricks

▶ Midterm information

3/29

Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

ϵ̂0,1(h) =
1
m

m∑
i=1

1{h(x(i)) ̸= y(i)} (classification, 0-1 loss)

ϵ̂LS(h) =
1
m

m∑
i=1
||h(x(i))− y(i)||22 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning
▶ make training error small (optimization)
▶ make the gap between empirical and generalization error small

3/29

Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

ϵ̂0,1(h) =
1
m

m∑
i=1

1{h(x(i)) ̸= y(i)} (classification, 0-1 loss)

ϵ̂LS(h) =
1
m

m∑
i=1
||h(x(i))− y(i)||22 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning
▶ make training error small (optimization)
▶ make the gap between empirical and generalization error small

3/29

Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

ϵ̂0,1(h) =
1
m

m∑
i=1

1{h(x(i)) ̸= y(i)} (classification, 0-1 loss)

ϵ̂LS(h) =
1
m

m∑
i=1
||h(x(i))− y(i)||22 (regression, least-square loss)

The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.

Goal of machine learning
▶ make training error small (optimization)
▶ make the gap between empirical and generalization error small

4/29

Overfit & Underfit
Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions

4/29

Overfit & Underfit
Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions

5/29

Model Capacity
Changing a model’s capacity controls whether it is more likely to overfit
or underfit
▶ Choose a model’s hypothesis space: e.g. increase # of features

(adding parameters)
▶ Find the best among a family of hypothesis functions

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
r
r
o
r

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply

stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||X i,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L 2 norm, such
as learned distance metrics (,). If the algorithm is allowedGoldberger et al. 2005
to break ties by averaging the yi values for all Xi,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

How to formalize this idea?

5/29

Model Capacity
Changing a model’s capacity controls whether it is more likely to overfit
or underfit
▶ Choose a model’s hypothesis space: e.g. increase # of features

(adding parameters)
▶ Find the best among a family of hypothesis functions

CHAPTER 5. MACHINE LEARNING BASICS

0 Optimal Capacity

Capacity

E
r
r
o
r

Underfitting zone Overfitting zone

Generalization gap

Training error

Generalization error

Figure 5.3: Typical relationship between capacity and error. Training and test error
behave differently. At the left end of the graph, training error and generalization error
are both high. This is the underfitting regime. As we increase capacity, training error
decreases, but the gap between training and generalization error increases. Eventually,
the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity.

models, such as linear regression. Parametric models learn a function described
by a parameter vector whose size is finite and fixed before any data is observed.
Non-parametric models have no such limitation.

Sometimes, non-parametric models are just theoretical abstractions (such as
an algorithm that searches over all possible probability distributions) that cannot
be implemented in practice. However, we can also design practical non-parametric
models by making their complexity a function of the training set size. One example
of such an algorithm is nearest neighbor regression. Unlike linear regression, which
has a fixed-length vector of weights, the nearest neighbor regression model simply

stores the X and y from the training set. When asked to classify a test point x,
the model looks up the nearest entry in the training set and returns the associated
regression target. In other words, ŷ = yi where i = argmin ||X i,: − ||x 2

2. The
algorithm can also be generalized to distance metrics other than the L 2 norm, such
as learned distance metrics (,). If the algorithm is allowedGoldberger et al. 2005
to break ties by averaging the yi values for all Xi,: that are tied for nearest, then
this algorithm is able to achieve the minimum possible training error (which might
be greater than zero, if two identical inputs are associated with different outputs)
on any regression dataset.

Finally, we can also create a non-parametric learning algorithm by wrapping a
parametric learning algorithm inside another algorithm that increases the number

115

How to formalize this idea?

6/29

Bias & Variance

Suppose data is generated by the following model:

y = h(x) + ϵ

with E[ϵ] = 0,Var(ϵ) = σ2

h(x): true hypothesis function → fixed value
D: training data {(x(1), y(1)), . . . , (x(m), y(m))} sampled from

PXY

ĥ(x;D): estimated hypothesis function based on D, sometimes
written as ĥ(x) for short → random variable

7/29

Bias & Variance

Bias of a model: The expected estimation error of ĥ over all choices of
training data D sampled from PXY,

Bias(ĥ) = ED[ĥ(x)− h(x)] = ED[ĥ(x)]− h(x)

When we make wrong assumptions about the model, ĥ will have large
bias (underfit)

Variance of a model: How much ĥ move around its mean

Var(ĥ) = ED[(ĥ(x)− ED(ĥ(x))2]

= ED[ĥ(x)2]− ED[ĥ(x)]2

When the model overfits “spurious” patterns, it has large variance
(overfit).

8/29

Bias - Variance Tradeoff
MSE Decomposition
We can decompose the expected error of MSE on a new sample (x,y):

MSE = ED,ϵ[(ĥ(x)− y)2] = Bias(ĥ)2 + Var(ĥ) + σ2,

▶ σ2 represents irreducible error
▶ in practice, increasing capacity tends to increase variance and

decrease bias.

CHAPTER 5. MACHINE LEARNING BASICS

Capacity

Bias Generalization

error Variance

Optimal

capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
Sec. and Fig. .5.2 5.3

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. , where we see again the U-shaped5.6
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

lim
m→∞

θ̂m
p→ θ. (5.55)

The symbol
p→ means that the convergence is in probability, i.e. for any > 0,

P (|θ̂m − |θ >) → 0 as m → ∞ . The condition described by Eq. is5.55
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of θ̂ to θ. Almost sure

130

8/29

Bias - Variance Tradeoff
MSE Decomposition
We can decompose the expected error of MSE on a new sample (x,y):

MSE = ED,ϵ[(ĥ(x)− y)2] = Bias(ĥ)2 + Var(ĥ) + σ2,

▶ σ2 represents irreducible error
▶ in practice, increasing capacity tends to increase variance and

decrease bias.

CHAPTER 5. MACHINE LEARNING BASICS

Capacity

Bias Generalization

error Variance

Optimal

capacity

Overfitting zoneUnderfitting zone

Figure 5.6: As capacity increases (x-axis), bias (dotted) tends to decrease and variance
(dashed) tends to increase, yielding another U-shaped curve for generalization error (bold
curve). If we vary capacity along one axis, there is an optimal capacity, with underfitting
when the capacity is below this optimum and overfitting when it is above. This relationship
is similar to the relationship between capacity, underfitting, and overfitting, discussed in
Sec. and Fig. .5.2 5.3

eralization error is measured by the MSE (where bias and variance are meaningful
components of generalization error), increasing capacity tends to increase variance
and decrease bias. This is illustrated in Fig. , where we see again the U-shaped5.6
curve of generalization error as a function of capacity.

5.4.5 Consistency

So far we have discussed the properties of various estimators for a training set of
fixed size. Usually, we are also concerned with the behavior of an estimator as the
amount of training data grows. In particular, we usually wish that, as the number
of data points m in our dataset increases, our point estimates converge to the true
value of the corresponding parameters. More formally, we would like that

lim
m→∞

θ̂m
p→ θ. (5.55)

The symbol
p→ means that the convergence is in probability, i.e. for any > 0,

P (|θ̂m − |θ >) → 0 as m → ∞ . The condition described by Eq. is5.55
known as consistency. It is sometimes referred to as weak consistency, with
strong consistency referring to the almost sure convergence of θ̂ to θ. Almost sure

130

9/29

Cross validation
Model selection

9/29

Model Selection

For a given task, how do we select which model to use?
▶ Different learning models

▶ e.g. SVM vs. logistic regression for binary classification
▶ Same learning models with different hyperparameters

▶ e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.

9/29

Model Selection

For a given task, how do we select which model to use?
▶ Different learning models

▶ e.g. SVM vs. logistic regression for binary classification
▶ Same learning models with different hyperparameters

▶ e.g. # of clusters in k-means clustering
Cross validation is a class of methods for selecting models using a
validation set.

10/29

Hold-out cross validation

Given training set S and candidate models M1,...,Mn:
1. Randomly split S into Strain and Scv (e.g. 70% Strain)
2. Training each Mi on Strain,
3. Select the model with smallest empirical error on Scv

Disavantages of hold-out cross validation
▶ ”wastes” about 30% data
▶ chances of an unfortunate split

10/29

Hold-out cross validation

Given training set S and candidate models M1,...,Mn:
1. Randomly split S into Strain and Scv (e.g. 70% Strain)
2. Training each Mi on Strain,
3. Select the model with smallest empirical error on Scv

Disavantages of hold-out cross validation
▶ ”wastes” about 30% data
▶ chances of an unfortunate split

11/29

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.
1. Randomly split S into k disjoint subsets S1, . . . , Sk of m/k training

examples (e.g. k = 5)

2. For j = 1 . . . k:
Train each model on S\Sj, then validate on Sj,

3. Select the model with the smallest average empirical error among
all k trails.

11/29

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.
1. Randomly split S into k disjoint subsets S1, . . . , Sk of m/k training

examples (e.g. k = 5)
2. For j = 1 . . . k:

Train each model on S\Sj, then validate on Sj,

3. Select the model with the smallest average empirical error among
all k trails.

11/29

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.
1. Randomly split S into k disjoint subsets S1, . . . , Sk of m/k training

examples (e.g. k = 5)
2. For j = 1 . . . k:

Train each model on S\Sj, then validate on Sj,

3. Select the model with the smallest average empirical error among
all k trails.

12/29

Leave-One-Out Cross Validation

A special case of k-fold cross validation, when k = m.

1. For each training example xi
Train each model on S\{xi}, then evaluate on xi,

2. Select the model with the smallest average empirical error among all
m trails.

Often used when training data is scarce.

13/29

Other Cross Validation Methods

▶ Random subsampling

▶ Bootstrapping: sample with replacement from training examples
(used for small training set)

▶ Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.

13/29

Other Cross Validation Methods

▶ Random subsampling

▶ Bootstrapping: sample with replacement from training examples
(used for small training set)

▶ Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.

14/29

Regularization
Parameter Norm Penalty
MAP estimation
Regularization for neural networks

14/29

Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:
▶ Penalize parameter size

e.g. linear regression with weight decay:

J(θ) =
m∑

i=1
log p(y(i)|x(i); θ) + λ||θ||22

▶ Use prior probability: max-a-posteriori estimation

14/29

Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:
▶ Penalize parameter size

e.g. linear regression with weight decay:

J(θ) =
m∑

i=1
log p(y(i)|x(i); θ) + λ||θ||22

▶ Use prior probability: max-a-posteriori estimation

14/29

Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:
▶ Penalize parameter size

e.g. linear regression with weight decay:

J(θ) =
m∑

i=1
log p(y(i)|x(i); θ) + λ||θ||22

▶ Use prior probability: max-a-posteriori estimation

15/29

Parameter Norm Penalty
Adding a regularization term to the loss (error) function:

J̃(X,Y; θ) = J(X,Y; θ)︸ ︷︷ ︸
data-dependent loss

+λ Ω(θ)︸︷︷︸
regularizer

where
Ω(θ) =

1
2

n∑
j=1
|θj|q =

1
2 ||θ||

q
q

3.1. Linear Basis Function Models 145

q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w , and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − w Tφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

Figure: Contours of the regularizer (||θ||q = 1) for different q

15/29

Parameter Norm Penalty
Adding a regularization term to the loss (error) function:

J̃(X,Y; θ) = J(X,Y; θ)︸ ︷︷ ︸
data-dependent loss

+λ Ω(θ)︸︷︷︸
regularizer

where
Ω(θ) =

1
2

n∑
j=1
|θj|q =

1
2 ||θ||

q
q

3.1. Linear Basis Function Models 145

q = 0.5 q = 1 q = 2 q = 4

Figure 3.3 Contours of the regularization term in (3.29) for various values of the parameter q.

zero. It has the advantage that the error function remains a quadratic function of
w , and so its exact minimizer can be found in closed form. Specifically, setting the
gradient of (3.27) with respect to w to zero, and solving for w as before, we obtain

w =
(
λI + ΦTΦ

)−1
ΦTt. (3.28)

This represents a simple extension of the least-squares solution (3.15).
A more general regularizer is sometimes used, for which the regularized error

takes the form
1
2

N∑

n=1

{tn − w Tφ(xn)}2 +
λ

2

M∑

j=1

|wj |q (3.29)

where q = 2 corresponds to the quadratic regularizer (3.27). Figure 3.3 shows con-
tours of the regularization function for different values of q.

The case of q = 1 is know as the lasso in the statistics literature (Tibshirani,
1996). It has the property that if λ is sufficiently large, some of the coefficients
wj are driven to zero, leading to a sparse model in which the corresponding basis
functions play no role. To see this, we first note that minimizing (3.29) is equivalent
to minimizing the unregularized sum-of-squares error (3.12) subject to the constraintExercise 3.5

M∑

j=1

|wj |q ! η (3.30)

for an appropriate value of the parameter η, where the two approaches can be related
using Lagrange multipliers. The origin of the sparsity can be seen from Figure 3.4,Appendix E
which shows that the minimum of the error function, subject to the constraint (3.30).
As λ is increased, so an increasing number of parameters are driven to zero.

Regularization allows complex models to be trained on data sets of limited size
without severe over-fitting, essentially by limiting the effective model complexity.
However, the problem of determining the optimal model complexity is then shifted
from one of finding the appropriate number of basis functions to one of determining
a suitable value of the regularization coefficient λ. We shall return to the issue of
model complexity later in this chapter.

Figure: Contours of the regularizer (||θ||q = 1) for different q

16/29

L2 parameter penalty

When q = 2, it’s also known as Tokhonov regularization or ridge
regression

J̃(X,Y; θ) = J(X,Y; θ) + λ

2 θ
Tθ

Gradient descent update:

θ ← θ − α∇θ J̃(X,Y; θ)
= θ − α(∇θJ(X,Y; θ) + λθ)

= (1− αλ)θ − α∇θJ(X,Y; θ)

L2 penalty multiplicatively shrinks parameter θ by a constant

Example: regularized least square
When J(X,Y; θ) = 1

2
∑m

i=1(y(i) − θTx(i))2 (ordinary least squares),
θ̃OLS = (XTX + λI)−1(XTY)

16/29

L2 parameter penalty

When q = 2, it’s also known as Tokhonov regularization or ridge
regression

J̃(X,Y; θ) = J(X,Y; θ) + λ

2 θ
Tθ

Gradient descent update:

θ ← θ − α∇θ J̃(X,Y; θ)
= θ − α(∇θJ(X,Y; θ) + λθ)

= (1− αλ)θ − α∇θJ(X,Y; θ)

L2 penalty multiplicatively shrinks parameter θ by a constant

Example: regularized least square
When J(X,Y; θ) = 1

2
∑m

i=1(y(i) − θTx(i))2 (ordinary least squares),
θ̃OLS = (XTX + λI)−1(XTY)

16/29

L2 parameter penalty

When q = 2, it’s also known as Tokhonov regularization or ridge
regression

J̃(X,Y; θ) = J(X,Y; θ) + λ

2 θ
Tθ

Gradient descent update:

θ ← θ − α∇θ J̃(X,Y; θ)
= θ − α(∇θJ(X,Y; θ) + λθ)

= (1− αλ)θ − α∇θJ(X,Y; θ)

L2 penalty multiplicatively shrinks parameter θ by a constant

Example: regularized least square
When J(X,Y; θ) = 1

2
∑m

i=1(y(i) − θTx(i))2 (ordinary least squares),
θ̃OLS = (XTX + λI)−1(XTY)

17/29

L1 parameter penalty
When q = 1, Ω(θ) = 1

2
∑n

j=1 |θj| is also known as LASSO regression.
▶ If λ is sufficiently large, some coefficients θj are driven to 0.
▶ It will lead to a sparse model

Proposition 1
Solving minθ J̃(X,Y; θ) = J(X,Y; θ) + λ

2
∑n

j=1 |θj|q is equivalent to

minθ J(X,Y; θ)
s.t.
∑n

j=1 |θj|q ≤ η

for some constant η > 0 (⋆). Furthermore, η =
∑n

j=1 |θ∗j (λ)|q where
θ∗(λ) = argminθ J̃(X,Y; θ, λ)

▶ (⋆) assumes constraints are satisfiable (e.g. with slater’s condition)
▶ Choosing λ is equivalent to choosing η and vice versa
▶ Smaller λ→ larger constraint region

17/29

L1 parameter penalty
When q = 1, Ω(θ) = 1

2
∑n

j=1 |θj| is also known as LASSO regression.
▶ If λ is sufficiently large, some coefficients θj are driven to 0.
▶ It will lead to a sparse model

Proposition 1
Solving minθ J̃(X,Y; θ) = J(X,Y; θ) + λ

2
∑n

j=1 |θj|q is equivalent to

minθ J(X,Y; θ)
s.t.
∑n

j=1 |θj|q ≤ η

for some constant η > 0 (⋆). Furthermore, η =
∑n

j=1 |θ∗j (λ)|q where
θ∗(λ) = argminθ J̃(X,Y; θ, λ)

▶ (⋆) assumes constraints are satisfiable (e.g. with slater’s condition)
▶ Choosing λ is equivalent to choosing η and vice versa
▶ Smaller λ→ larger constraint region

18/29

L1 vs L2 parameter penalty

Figure: Contour plot of unregularized error J(X,Y; θ) and the constraint region∑n
j=1 |θ|

q ≤ η

q=2 q=1
146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w⋆.
The lasso gives a sparse solution in
which w⋆

1 = 0.

w1

w2

w ⋆

w1

w2

w ⋆

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x, w) = WTφ(x) (3.31)

where y is a K-dimensional column vector, W is an M × K matrix of parameters,
and φ(x) is an M -dimensional column vector with elements φj(x), with φ0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, β) = N (t|WTφ(x), β−1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N × K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, β) =
N∑

n=1

lnN (tn|WTφ(xn), β−1I)

=
NK

2
ln

(
β

2π

)
− β

2

N∑

n=1

∥∥tn − WTφ(xn)
∥∥2

. (3.33)

θ1

θ2

θ* θ*

θ1

θ2

q = 1 q = 2

The lasso (l1 regularizer) gives a sparse solution with θ∗1 = 0.

19/29

Bayesian Statistics

Maximum likelihood estimation: θ is an unknown constant

θMLE = argmax
θ

m∏
i=1

p(y(i)|x(i); θ)

Bayesian view: θ is a random variable

θ ∼ p(θ)

Given training set S = {x(i), y(i)}, posterior distribution of θ

p(θ|S) = p(S|θ)p(θ)
p(S)

20/29

Fully Bayesian statistics

p(θ|S) = p(S|θ)p(θ)
p(S) =

∏m
i=1 p(y(i)|x(i), θ)p(θ)∫

θ
(
∏m

i=1 p(y(i)|x(i), θ)p(θ))dθ
To predict the label for new sample x, compute the posterior distribution
over training set S:

p(y|x, S) =
∫
θ

p(y|x, θ)p(θ|S)dθ

The label is
E[y|x, S] =

∫
y
y p(y|x, S)dy

Fully bayesian estimate of θ is difficult to compute, has no close-form
solution.

21/29

Bayesian Statistics

Posterior distribution on class label y using p(θ|S)

p(y|x, S) =
∫
θ

p(y|x, θ)p(θ|S)dθ

We can approximate p(y|x, θ) as follows:

MAP approximation
The MAP (maximum a posteriori) estimate of θ is

θMAP = argmax
θ

m∏
i=1

p(y(i)|x(i), θ)p(θ)

p(y(i)|x(i), θ) is not the same as p(y(i)|x(i); θ)

21/29

Bayesian Statistics

Posterior distribution on class label y using p(θ|S)

p(y|x, S) =
∫
θ

p(y|x, θ)p(θ|S)dθ

We can approximate p(y|x, θ) as follows:

MAP approximation
The MAP (maximum a posteriori) estimate of θ is

θMAP = argmax
θ

m∏
i=1

p(y(i)|x(i), θ)p(θ)

p(y(i)|x(i), θ) is not the same as p(y(i)|x(i); θ)

21/29

Bayesian Statistics

Posterior distribution on class label y using p(θ|S)

p(y|x, S) =
∫
θ

p(y|x, θ)p(θ|S)dθ

We can approximate p(y|x, θ) as follows:

MAP approximation
The MAP (maximum a posteriori) estimate of θ is

θMAP = argmax
θ

m∏
i=1

p(y(i)|x(i), θ)p(θ)

p(y(i)|x(i), θ) is not the same as p(y(i)|x(i); θ)

22/29

MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y(i)|x(i)) ∼ N (θTx(i), σ2):

θMLE = argmax
θ

m∏
i=1

p(yi|xi; θ)

= (XTX)−1XTY = θOLS

The MAP estimation when θ ∼ N(0, τ 2I) is

θMAP = argmax
θ

(m∏
i=1

p(yi|xi; θ)

)
p(θ)

= argmin
θ

(
σ2

τ 2 θ
Tθ + (Y− Xθ)T(Y− Xθ)

)
= (XTX +

σ2

τ
I)−1XTY = θ̃OLS when λ =

σ2

τ

22/29

MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y(i)|x(i)) ∼ N (θTx(i), σ2):

θMLE = argmax
θ

m∏
i=1

p(yi|xi; θ)

= (XTX)−1XTY = θOLS

The MAP estimation when θ ∼ N(0, τ 2I) is

θMAP = argmax
θ

(m∏
i=1

p(yi|xi; θ)

)
p(θ)

= argmin
θ

(
σ2

τ 2 θ
Tθ + (Y− Xθ)T(Y− Xθ)

)
= (XTX +

σ2

τ
I)−1XTY = θ̃OLS when λ =

σ2

τ

yang (李阳)

23/29

Discussion on MAP Estimation

General remarks on MAP:
▶ When θ is uniform, θMAP = θMLE
▶ A common choice for p(θ) is θ ∼ N (0, τ 2I), and θMAP corresponds

to weight decay (L2-regularization)
▶ When θ is an isotropic Laplace distribution, θMAP corresponds to

LASSO (L1-regularization).
▶ θMAP often have smaller norm than θMLE

24/29

Regularization for neural networks

Common regularization techniques:
▶ Data augmentation
▶ Parameter sharing
▶ Drop out

25/29

Data augmentation
Create fake data and add it to the training set. (Useful in certain tasks
such as object classification.)

Figure: Generate fake digits via geometric transformation, e.g. scale, rotation
etc

Figure: Generate images of different styles using GAN

Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019

26/29

Parameter Sharing

Force sets of parameters to be equal based on prior knowledge.

Siamese Network
▶ Given input X, learns a discriminative

feature f(X)
▶ For every pair of samples (X1,X2) in

the same class, minimize their distance
in feature space ||f(X1)− f(X2)||2

Convolutional Neural Network (CNN)
▶ Image features should be invariant to translation
▶ CNN shares parameters across multiple image locations.

Soft parameter sharing: add a norm penalty between sets of
parameters:

Ω(θA, θB) = ||θA − θB||22

27/29

Drop Out

▶ Randomly remove a non-output unit from network by multiplying its
output by zero (with probability p)

▶ In each mini-batch, randomly sample binary masks to apply to all
inputs and hidden units

▶ Dropout trains an ensemble of different sub-networks to prevent the
“co-adaptation” of neurons

yang (李阳)

28/29

Midterm Information

▶ Time: Next Friday, April 19, 10:00am (Arrive at 9:50am)
▶ Location: A307
▶ What to bring: One double-sided A4 notesheet
▶ Covers everything up to today (neural networks and model selection

will only be short questions.)
▶ Midterm review session @ C401, April 14th 9:50am
▶ No late submission for WA2

My office hour will be moved to tomorrow afternoon 2pm

29/29

Next lecture: learning theory
How to quantify generalization error?

Figure: Prof. Vladimir Vapnik in front of his famous theorem

	Introduction
	 Cross validation
	Model selection

	Regularization
	Parameter Norm Penalty
	MAP estimation
	Regularization for neural networks

