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Today's Lecture

Practical tools to improve machine learning performance:

» Bias and variance trade off

» Model selection and feature selection

» Regularization

» Generic techniques
» Neural network regularization tricks

» Midterm information



Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

m

@% 1(h) = L Zl{h XMy #£ Y0} (classification, 0-1 loss)

i=1

G és(h) = ZHh(x( ) — y¥)||2 (regression, least-square loss)

=1



Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

m

€0.1(h) = ;Z 1{h ’) ) # y( (classification, 0-1 loss)

i=1

és(h) = Z |A(xD) — yD|12 (regression, least-square loss)
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The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
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Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

m

€0.1(h) = ;Z 1{h ’) ) # y( (classification, 0-1 loss)

i=1
és(h) = Z |A(xD) — yD|12 (regression, least-square loss)
1
The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
Goal of machine learning

» make training error small (optimization)
» make the gap between empirical and generalization error small



Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large
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Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions



Model Capacity

Changing a model's capacity controls whether it is more likely to overfit
or underfit

» Choose a model's hypothesis space: e.g. increase # of features
(adding parameters) M)(): B, 48X, + 8.0 G -[9>
» Find the best among a family of hypothesis functions 5 .[
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Model Capacity

Changing a model's capacity controls whether it is more likely to overfit
or underfit

» Choose a model's hypothesis space: e.g. increase # of features
(adding parameters)

» Find the best among a family of hypothesis functions

— - Training error
—

Underfitting zone| Overfitting zone

—— Generalization error

Error

I Generalization gap
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Capacity

How to formalize this idea?



Bias & Variance

Suppose data is generated by the following model:
e 1\7}7 hetis
y = h(x) + €
_ Noid e
with E[e] = 0, Var(e) = o2 iA—N(O)éZ)
h(x): true hypothesis function — fixed value

D: training data {(x(1), yM), ... (x{™ Am)} sampled from
- Pxy

h(x; D): estimated llypothesis function based on D, sometimes
C “  written as h(x) for short — random variable
i L, —
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Bias & Variance

Bias of a model: The expected estimation error of h over all choices of
training data D sampled from Pxy, —  u L\/r‘*“e’u Foechion
v

Bias(h) = Eplh() - ES: Ep[h(x)] -

When we make wrong assumptions about the model, h-will-have large
bias (underfit)

Variance of a model: How much h move around its mean

Voe (X> EE@ )1] Va i\‘) . 2 aueregs I\/ffi‘lig .
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When the model overfits “spurious” patterns, it has large variance
) spuriotis  patter
(overfit).



i i Vour(Lo0) + Bras (hO) # 4 2
Bias - Variance Tradeoff EP( )t Bieshbd'ss?)

MSE Decomposition C{ra ) = ﬂj;k[Ua\rLA(x)) t Bios (o) + %((,L)

"‘(&
We can decompose the expected\/error of MSE on a new sample (x,y): 6

MSE = Ep [(h(x) — y)*] = Bias(h)* + Var(h) + o,

» o2 represents irreducible error

P in practice, increasing capacity tends to increase variance and
decrease bias.
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Bias - Variance Tradeoff e (B T B Gy + 8

MSE Decomposition
We can decompose the expected error of MSE on a new sample (x,y):
MSE = Ep [(h(x) — )] = Bias(h)? 4+ Var(h) + o2,
» o2 represents irreducible error

» in practice, increasing capacity tends to increase variance and
decrease bias.
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Cross validation




Model Selection

For a given task, how do we select which model to use?
» Different learning models
> e.g. SVM vs. logistic regression for binary classification
> Same Ieaﬁg models with different hyperparameters
> e.g. # of clusters in k-means clustering

—_



Model Selection

For a given task, how do we select which model to use?
» Different learning models
> e.g. SVM vs. logistic regression for binary classification
» Same learning models with different hyperparameters
> e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.



Hold-out cross validation S Ail*
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Given training set S and candidate models My,...,M,: —
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1. Randomly split S into St,a,,, and ch (e.g. 70% Strain)
2. Training each M; on St,a,,,,

3. Select the model with smallest empirical error on S,




Hold-out cross validation

Given training set S and candidate models Ms,...,M,:
1. Randomly split S into Strain and Se, (e.8. 70% Strain)
2. Training each M; on S;.ain,

3. Select the model with smallest empirical error on S,

Disavantages of hold-out cross validation
> "wastes” about 30% data Scv

» chances of an unfortunate split



K-Fold Cross Validation 55| - [ S«
— el
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Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k=15)



K-Fold Cross Validation

M, Ma

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k=15)

2. Forj:l..@

Training
fold

Validating
fold
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K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.
1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k= 5)
2. Forj=1...k
Train each model on 5\§;, then validate on §;,

e[ T T T T

Run2| | | - | Training
Run3| | - | | \_‘ fold
W1 ) EE ST

3. Select the model with the smallest average empirical error among
all k trails.



Leave-One-Out Cross Validation

Sfl- - - Sk:m

A special case of k-fold cross validation, when k= m.

1. For each training example x;
Train each model on S\{x;}, then evaluate on x;,

2. Select the model with the smallest average empirical error among all
m trails.

Often used when training data is scarce.



Other Cross Validation Methods

» Random subsampling
e e

» Bootstrapping: sample with replacement from training examples

(used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)



Other Cross Validation Methods
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» Random subsampling

» Bootstrapping: sample with replacement from training examples
(used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model. (e
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Regularization
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Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error
- — _—



Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with weight decay:

J0) = log p(y|47; 0) + A||6] 13

i=1 P —



Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with weight decay:

J0) = log p(y|47; 0) + A||6] 13

i=1

» Use prior probability: max-a-posteriori estimation



Parameter Norm Penalty

Adding a regularization term to the loss (error) function:

(X Vi) = TXYie) +A Q)
N—— S~~~

data-dependent loss regularizer

where

1 — 1
Q(0) = 5 Z 0f9= §||9||i’,
j=1



Parameter Norm Penalty

Adding a regularization term to the loss (error) function:

X, Y:0)=  JX Y:0) +x Q)
N——

S~~~
data-dependent loss regularizer
where
1o 1 S
i 19— Z119119 .
[a. 0) = 3 3101 = 311
(2N =1
v} leuelef ﬂ(&)
2
J A
/6
|3
N e
qg=05 qg=1 q=2 g=4

Figure: Contours of the regularizer (||0||7 = 1) for different g



L2 parameter penalty

When g = 2, it’s also known as Tokhonov regularization or ridge

regression

A
JX,Y:0) = JX,Y:0)+ 5979



L2 parameter penalty

When g = 2, it’s also known as Tokhonov regularization or ridge

regression @
JX, Y:0) = J(X, Y:0) + 5079
Grad d d
radient descent update: V- At >
. Vo (J(xV;0)* 2676
ht dela . 2

WETT L g avdX, Y VeTtx,8) + A Vet

=0 — (Vo (X, Y:0) + \) &@

=1 @)\) —aVad(X, Y:0)

L2 penalty multiplicatively shrmks parameter 6 by a constant



L2 parameter penalty

When g = 2, it’s also known as Tokhonov regularization or ridge
regression

A
JX,Y:0) = JX,Y:0)+ 5979
Gradient descent update:

0 6 —aVyl(X,Y;0)

=60 —a(VeJ(X,Y;0) + \0)
=(1—a))f—aVeJX,Y;0)

L2 penalty multiplicatively shrinks parameter 8 by a constant

Example: regularized least square

When J(X, Y;0) = 3577 (D — 87x0)2 (ordinary least squares),
éo[_s = (XTX+")LI)71(XT\/)

pr—



L1 parameter penalty

When g =1, Q(0) = % J'.’:l |6| is also known as LASSO regression.

> If \is sufficiently large, some coefficients 6; are driven to 0.

» It will lead to a sparse model



L1 parameter penalty

When g =1, Q(0) = % J'.’:l |6| is also known as LASSO regression.
> If A is sufficiently large, some coefficients 6; are driven to 0.

» It will lead to a sparse model

Proposition 1 &% a).
Solving ming (X, Y:0) = J(X, Y;0) + 3 Z};l |6;|9 is equivalent to

T
ming J(X, Y; 6) (2 6.1
sty 109 S@

for some constant n > 0 (x). Furthermore,@: > @()\)W where
= A

0*(X\) = argming J(X, Y; 6, )

> (%) assumes constraints are satisfiable (e.g. with slater’'s condition)
» Choosing A is equivalent to choosing 7 and vice versa

» Smaller A\ — larger constraint region

) b v



L1 vs L2 parameter penalty

Figure: Contour plot of unregularized error J(X, Y:8) and the constraint region
Z};l “9|q <n
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The lasso (11 regularizer) gives a sparse solution with 65 = 0.



Bayesian Statistics

Maximum likelihood estimation: @ is an unknown constant

OnmLE = argmax H p(A XD 0)

= i=1

=

Bayesian view: 6 is a random variable - dotabaiow
= nof &
0
0~ p(0 ( !
._,Ii,) > L]

Given training set S = {x(), A}, posterior distribution of

A(SI0)6(0)

p(0]S) = @



Fully Bayesian statistics
e
docfa
P(9|S_) — (5|6)p( 1—1 PMM
= = W) fe i1 P [X5,0)p ( ))d9 &
To predict the label for new sample x, compute the posterior distribution
over training set S:

id"

MLE
K(y [ ,Q) Plyles) = Mde
The label is

Elyix, 5] = / y plylx. S)dy

Fully bayesian estimate of 6 is difficult to compute, has no close-form
solution.



Bayesian Statistics

Posterior distribution on class label y using p(0]S)

pylx, S) = /0 plylx, 0)p(6]5)do



Bayesian Statistics

Posterior distribution on class label y using p(0]S)

pylx, S) = /0 plylx, 0)p(6]5)do

We can approximate p(y|x,6) as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of 6§ is

Omap = argmax H P47, 6)p(6)

i=1



Bayesian Statistics

Posterior distribution on class label y using p(0]S)

pylx, S) = /0 plylx, 0)p(6]5)do

We can approximate p(y|x,6) as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of 6§ is

Omap = argmax H PO |2, 0)p(6)

i=1

p(y|x),0) is not the same as p(y(i)\x(i09)



MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y) |x(0) ~ N (07X, o2):

Omie = arg;nax H p(Y|¥; )

i1
= (X" X)'XTY = fous



MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(yA)|x(0) ~ N (07X, o2):
[N

Omie = arggnax H p(Y|¥; )

i1
= (X" X)'XTY = fous

The MAP estimation When@w N(0, 721) is Et w ]
= ~'_tL

Omap = argmax (H p(y|¥; 9)) p(0)

—
i=1

— argmin ( 2676 (Y= X0)T(Y— X0) ke
_arggnln = /_F(%W‘\

- 2
_ ~ g
= (XTX+I) IXTY =05 When_g) o
7 — O Dymians
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Discussion on MAP Estimation

General remarks on MAP:
» When @ is uniform, 9MAP = 9MLE

> A common choice for ’i(@ is @ ~ N(0,721), and Opap corresponds
to weight decay (L2-regularization)

» When @ is an isotropic Laplace distribution, #y,4p corresponds to
LASSO ( L1-regularization).

» Oyap often have smaller norm than Oy e



Regularization for neural networks

Common regularization techniques:
» Data augmentation
» Parameter sharing

» Drop out



Data augmentation

Create fake data and add it to the training set. (Useful in certain tasks
such as object classification.)

SMMER,
EHEI[!

etc

Photograph Monet Van Gogh T Cezame
__Photograph

Figure: Generate images of different styles using GAN

Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019



Parameter Sharing

[¢]
Force sets of parameters to be equal based on prior knowledge.\ﬂ ‘_7
(SR Y

Sia mese Network SimilariNot ?

» Given input X, learns a discriminative
feature (X)

» For every pair of samples (X1, X2) in
the same class, minimize their distance
in feature space ||f{X1) — X2)||?

Convolutional Neural Network (CNN) M

» Image features should be invariant to translation
Invariant to transiatior

» CNN shares parameters across multiple image locations.

Soit/pL_am*letm'_shzﬂng: add a norm penalty between sets of

parameters:
Q0% 0%) = 110" - 0°|13



Drop Out

» Randomly remove a non-output unit from network by multiplying its
output by zero (with probability p)

» In each mini-batch, randomly sample binary masks to apply to all
inputs and hidden units

» Dropout trains an ensemble of different sub-networks to prevent the
“co-adaptation” of neurons
_co-adaptation_ of neuro

(a) Standard Neural Network (b) Network after Dropout
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Midterm Information

vvyyvYyy

>
>

Time: Next Friday, April 19, 10:00am (Arrive at 9:50am)
Location: A307
What to bring: One double-sided A4 notesheet

Covers everything up to today (neural networks and model selection
will only be short questions.)

Midterm review session @ C401, April 14th 9:50am
No late submission for WA2 |3tk

My office hour will be moved to tomorrow afternoon 2pm



Next lecture: learning theory
How to quantify generalization error?

Figure: Prof. Vladimir Vapnik in front of his famous theorem
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