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Today's Lecture

> Introduction to neural networks
> Biological motivations
> A case study
» Training a deep feedforward neural network

» Forward pass
» Backward propagation




Introduction




Biological motivation ANN

Schematic of biological neurons:

information
transfer

Nerve impulse

Each neuron takes information from other neurons, processes them, and
then produces an output.
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How does a neuron process its input? (a coarse model)
> Takes the weighted average of /inputs, e.g. z= Z?:o w;(x;)

» Neuron fires if z is above some threshold
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Biological motivation

How does a neuron process its input? (a coarse model)

» Takes the weighted average of / inputs, e.g. z= Zﬁ:o wi(x;)
» Neuron fires if z is above some threshold

We call the threshold function activation function
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sigmoid(z) = # tanh(z) = :»:::z RelLu(z) = max{0, z}
= 2(sigmoid(2z)) — 1

5 10

Rectifying linear unit




Biological motivation

An artificial neuron with inputs xi, x and activation function f
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Biological motivation

An artificial neuron with inputs xi, x and activation function f
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A single neuron is a (linear) binary classifier:
» When fis the sigmoid function, equivalent to binary softmax

» When fis the sign function, equivalent to the perceptron
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Neural networks

» The goal of a neural network is to approximate some function *
such that y = f*(x).

» The neural network defines a mapping y = f{(x; 8) and learns the
value of parameters 6 through training.




Neural networks

» The goal of a neural network is to approximate some function
such that y = f*(x).

» The neural network defines a mapping y = f{(x; 8) and learns the
value of parameters 6 through training.

» Define error function that measures prediction error of f: e.g. a
common error function used in classification is the logarithmic loss
a.k.a. cross-entropy loss:

L=ylog(y)+ (1 —y)log(l—7)

> = f{x;0) is the predicted output
> yis the true output

A single layer of neurons are unable to approximate complex functions.




A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

F= (1 (£9(x)))

input layer
% hidden layer 1 hidden layer 2




A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

f= (A (x))
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P> number of layers are called depth of the neural network
» number of units in a layer is called width of a layer
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The XOR problem
j([ﬁg]) = L ®Ke
XOR : the exclusive or  h(x) = f(w) fL(Wix+ by) + bo)
| y=x1 8% activition function: f,(2), f(2)
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The XOR problem

h(x; Wa, by, wa, by) = fo(ws fi(Wix+ by) + by)
>
Suppose fi(z) = E%ﬂ , f(z) = 1{z > 0}. One solution:

input layer ‘ hidden layer ‘ output layer
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The XOR problem

h(x; Wa, by, wa, by) = fa(wj fo(Wax + by) + by)

Suppose fi(z) = Egl i 8%] ,2(z) = 1{z > 0}. One solution:

input layer | hidden layer | output layer
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The XOR problem

h(x; Wi, bi, wa, by) = fo(wg f(Wix + by) + by)

Suppose fi(z) :ﬁ{: i gﬂ ,2(z) = 1{z > 0}. One solution:

input layer ‘ hidden layer ‘ output layer
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite pumber of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation
function.
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation
function.

> First proved by George Cybenko in 1989 for sigmoid activation
function;

» With one hidden layer, layer width of an universal approximator has
to be exponentially large <— More effective to increase the depth of
neural networks , & T "‘F"JC’

» RelLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)




Overfitting

Increase the size and number of layers in a neural network,

> the capacity , i.e. representation power of the network increases.

» but overfitting can occur: fits the noise in the data instead of the
(assumed) underlying relationship.
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Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

Lw; X,y) = L(w; X, y) + A{Z__L_)VL




Regularization
One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L(w; X, y) = L(w; X, y) +30(w)

> L2 parameter regularization: Q(w) = 3||w||3 = $w”w drives the
weights closer to the origin

A =0.001 0.01
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Regularization

One way to control overfitting in training neural networks

A common regularization approach is parameter norm penalties

L(w; X,y) = L(w; X, y) + AQ(w)

> L2 parameter regularization: Q(w) = 3||w||3 = $w”w drives the
weights closer to the origin
A =0.001

A=0.01

» L1 parameter regularization: Q(w) = ||wl|; = Zf(—1 |w;| drives
solutions more sparse.
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Training a Deep Feedforward Network




Forward pass and Backpropagation

See Powerpoint slides.




Practical issues

Which activation function to use?

» sigmoid function o(z): gradient Vfz) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.
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Practical issues

Which activation function to use?

» sigmoid function o(z): gradient Vfz) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

» tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) =0, o(0) = 3).

» Relu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W'x+ b). Derivative is 1 whenever the
unit is active.

Sigmoidal activation functions are often preferred than piecewise
linear activation functions in non-feed forward networks. e.g.
probabilistic models, RNNs etc




Additional resources

Deep neural network is a relative young field with lots of empirical results.
Read more on the practical things to do for building and training neural
networks:

» Stanford Class on Convolutional Neural Networks:
http://cs231n.github.io

» lan Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016

Demos:

» http://vision.stanford.edu/teaching/cs231n-demos/
linear-classify/

» https://playground.tensorflow.org/



http://cs231n.github.io
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
https://playground.tensorflow.org/
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