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Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension ϕ(x) ∈ RD , such that the data becomes
separable.

▶ ϕ is called a feature mapping.
▶ The classification function wTx + b becomes nonlinear:wTϕ(x) + b
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Kernel Function

Given a feature mapping ϕ, we define the kernel function to be

K(x, z) = ϕ(x)Tϕ(z)

Some kernel functions are easier to compute than ϕ(x), e.g.

K(x, z) = (xTz)2

=

( n∑
i=1

xizi

) n∑
j=1

xjzj

 =
n∑

i=1

n∑
j=1

xixjzizj

= ϕ(x)Tϕ(z)

where ϕ(x) =


x1x1
x1x2

...
xnxn−1
xnxn

 takes O(n2) operations to compute, while

(xTz)2 only takes O(n)
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Kernel SVM
In the dual problem, replace ⟨xi, yj⟩ with ⟨ϕ(xi), ϕ(yi)⟩ = K(xi, xj)

max
α

W(α) =
m∑

i=1
αi −

1
2

m∑
i,j=1

y(i)y(j)αiαjK(xi, xj)

s.t. 0 ≤ αi ≤ C, i = 1, . . . ,m
m∑

i=1
αiy(i) = 0

No need to compute w∗ =
∑m

i=1 α
∗
i y(i)ϕ(x(i)) explicitly since

f(x) = wTϕ(x) + b =

( m∑
i=1

αiy(i)ϕ(x(i))
)T

ϕ(x) + b

=
m∑

i=1
αiy(i)⟨ϕ(x(i)), ϕ(x)⟩+ b

=
m∑

i=1
αiy(i)K(x(i), x) + b
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Kernel Matrix
kernel functions measure the similarity between samples x, z, e.g.
▶ Linear kernel: K(x, z) = (xTz)
▶ Polynomial kernel: K(x, z) = (xTz + 1)p

▶ Gaussian / radial basis function (RBF) kernel:
K(x, z) = exp

(
− ||x−z||2

2σ2

)

Can any function
K(x, y) be a kernel
function?
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Kernel Matrix

Represent kernel function as a matrix K ∈ Rm×m where
Ki,j = K(xi, xj) = ϕ(xi)Tϕ(xj).

Theorem (Mercer)
Let K : Rn × Rn → R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x(i), . . . , x(m)}, K is symmetric positive
semi-definite.
i.e. Ki,j = Kj,i and xTKx ≥ 0 for all x ∈ Rn
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Kernel SVM Summary

▶ Input: m training samples (x(i), y(i)), yi ∈ {−1, 1}, kernel function
K : X × X → R, constant C > 0

▶ Output: non-linear decision function f(x)
▶ Step 1: solve the dual optimization problem for α∗

max
α

W(α) =
m∑

i=1
αi −

1
2

m∑
i,j=1

y(i)y(j)αiαjK(x(i), x(j))

s.t. 0 ≤ αi ≤ C,
m∑

i=1
αiy(i) = 0, i = 1, . . . ,m

▶ Step 2: compute the optimal decision function

b∗ = y(j) −
m∑

i=1
α∗

i y(i)K(x(i), x(j)) for some 0 < αj < C

f(x) =
m∑

i=1
αiy(i)K(x(i), x) + b∗

In practice, it’s more efficient to compute kernel matrix K in advance.
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SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM
▶ Break a large SVM problem into smaller chunks, update two αi’s at

a time
▶ Implemented by most SVM libraries.

Other related algorithms
▶ Support Vector Regression (SVR)
▶ Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the

algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)
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