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Today’s Lecture

Supervised Learning (Part II)
▶ Discriminative & Generative Models
▶ Gaussian Discriminant Analysis
▶ Naïve Bayes
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Ask me a question

Q1
In SGD, is the randomness from selecting a single data point randomly
within an epoch, or from shuffling the data and then starting from a
random point to traverse?
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Discriminative & Generative Models
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Two Learning Approaches

Classify input data x into two classes y ∈ {0, 1}

Discriminate between
classes of data points

Model the underlying distribu-
tion of the data

yang (李阳)
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Discriminative Learning Algorithms
A class of learning algorithms that try to learn the
conditional probability p(y|x) directly or learn
mappings directly from X to Y.

▶ e.g. linear regression, logistic regression, k-Nearest Neighbors ...
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Generative Learning Algorithms
A class of learning algorithms that model the joint
probability p(x, y).

▶ Equivalently, generative algorithms model p(x|y) and p(y)
▶ p(y) is called the class prior
▶ Learned models are transformed to p(y|x) later to classify data using

Bayes’ rule

Bayes Rule
The posterior distribution on y given x:

p(y|x) = p(x|y)p(y)
p(x)
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Bayes Rule
The posterior distribution on y given x:

p(y|x) = p(x|y)p(y)
p(x)

Make predictions in a generative model:

argmax
y

p(y|x) = argmax
y

p(x|y)p(y)
p(x)

= argmax
y

p(x|y)p(y)

No need to calculate p(x).
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Generative Models

Generative classification algorithms:
▶ Continuous input: Gaussian Discriminant Analysis
▶ Discrete input: Naïve Bayes
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Gaussian Discriminant Analysis
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Gaussian Discriminant Analysis: Overview

Goal
Binary classification with input in X = Rn and label in Y = {0, 1}

Main steps
1. Select a data generating distribution .

y ∼ Bernoulli(ϕ)
x|y = 0 ∼ N(µ0,Σ), x|y = 1 ∼ N(µ1,Σ)

2. Estimate model parameters ϕ, µ0 ,µ1 and Σ from training data.
3. For any new sample x′, predict its label by computing

p(y|x = x′;ϕ, µ0, µ1,Σ)

yang (李阳)
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Multivariate Normal Distribution

Multivariate normal (or multivariate Gaussian) distribution N(µ,Σ)

▶ µ ∈ Rn is the mean vector,
▶ Σ ∈ Rn×n is the covariance matrix. Σ is symmetric and SPD.

Density function:

p(x;µ,Σ) = 1
(2π)n/2 |Σ|1/2

e(− 1
2 (x−µ)TΣ−1(x−µ))

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:
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Multivariate Normal Distribution

Let X ∈ Rn be a random vector. If X ∼ N(µ,Σ),

E[X] =
∫

x
p(x;µ,Σ)dx = µ

Cov(X) = E
[
(X − E[X])(X − E[X])T] = Σ
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Gaussian Discriminative Analysis

Isotropic Gaussian Distribution

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Σ =

[
1 0
0 1

]
Σ =

[
0.6 0
0 0.6

]
Σ =

[
2 0
0 2

]

Diagonal entries of Σ controls the “spread” of the distribution
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Gaussian Discriminative Analysis

3
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zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[

1 0
0 1

]

; Σ =

[

1 0.5
0.5 1

]

; .Σ =

[

1 0.8
0.8 1

]

.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Σ =

[
1 0
0 1

]
Σ =

[
1 0.5

0.5 1

]
Σ =

[
1 0.8

0.8 1

]

The distribution is no longer oriented along the axes when off-diagonal
entries of Σ are non-zero.



14/31

Gaussian Discriminant Analysis (GDA) Model

Given parameters ϕ, µ0, µ1,Σ,

y ∼ Bernoulli(ϕ)
x|y = 0 ∼ N (µ0,Σ)

x|y = 1 ∼ N (µ1,Σ)

Probability density functions:

p(y) = ϕy(1 − ϕ)1−y

p(x|y = 0) = 1
(2π)n/2 |Σ|1/2

e(− 1
2 (x−µ0)

TΣ−1(x−µ0))

p(x|y = 1) = 1
(2π)n/2 |Σ|1/2

e(− 1
2 (x−µ1)

TΣ−1(x−µ1))
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Log likelihood of the data:

l(ϕ, µ0, µ1,Σ) = log
m∏

i=1
p(x(i), y(i);ϕ, µ0, µ1,Σ)

= log
m∏

i=1
p(x(i)|y(i);µ0, µ1,Σ)p(y(i);ϕ)

Maximum likelihood estimate of the parameters:

ϕ =
1
m

m∑
i=1

1{y(i) = 1}

µb =

∑m
i=1 1{y(i) = b}x(i)∑m

i=1 1{y(i) = b} for b = 0, 1

Σ =
1
m

m∑
i=1

(x(i) − µy(i))(x(i) − µy(i))
T
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Maximum likelihood estimation of GDA
GDA finds a linear decision boundary at which
p(y = 1|x) = p(y = 0|x) = 0.5
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GDA and Logistic Regression

p(y = 1|x;ϕ, µ0, µ1,Σ) can be written in the form:

p(y = 1|x;ϕ,Σ, µ0, µ1) =
1

1 + e−θTx

θ =

[
θ1
θ2

]
=

[
Σ−1(µ1 − µ0)

1
2 (µ

T
0 Σ

−1µ0 − µT
1 Σ

−1µ1)− log 1−ϕ
ϕ

]
, x =


x1
...

xn
1


Similarly,

p(y = 0|x;ϕ,Σ, µ0, µ1) =
1

1 + eθTx

If p(x|y) ∼ N (µ,Σ), p(y|x) is a logistic function.
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yang (李阳)
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GDA and Logistic Regression

GDA
▶ Maximizes the joint likelihood

∏m
i=1 p(x(i), y(i))

▶ Modeling assumptions: x|y=b ∼ N (µb,Σ), y ∼ Bernoulli(ϕ)
▶ When modeling assumptions are correct, GDA is asymptotically

efficient and data efficient

Logistic Regression
▶ Maximizes the conditional likelihood

∏m
i=1 p(y(i)|x(i))

▶ Modeling assumptions: p(y|x) is a logistic function; no restriction on
p(x)

▶ More robust and less sensitive to incorrect modeling assumptions.
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Naïve Bayes
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Naïve Bayes: Motivationg Example

A simple generative learning algorithm for discrete input variables

Example: Spam filter (document classification)
Classify email messages x to spam (y = 1) and non-spam (y = 0) classes.

A sample spam email

yang (李阳)

yang (李阳)
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Example: Spam Filter

Binary text features
Given a dictionary of size n, represent a
message composed of dictionary words as
x ∈ {0, 1}n:

xi =

{
1 i-th dictionary word is in message
0 otherwise

x =



0
0
...
1
...
1
...
0



a
aardvark
...
casino
...
payout
...
zyzzyva
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Naïve Bayes Model

Probability of observing email x1, . . . , xn given spam class y :

p(x1, . . . , xn|y) = p(x1|y)p(x2|y, x1), . . . , p(xn|y, x1, . . . , xn−1)

Naïve Bayes (NB) assumption
xi’s are conditionally independent given y:

p(xi|y, x1, . . . , xi−1) = p(xi|y)

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y) =
n∏

i=1
p(xi|y)

yang (李阳)
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Naïve Bayes Parameters

Multi-variate Bernoulli event model
x|y generated from n independent Bernoulli trials

p(x, y) = p(y)p(x|y) = p(y)
n∏

i=1
p(xi|y)

▶ y ∼ Bernoulli(ϕy) : assume email class (spam vs no-spam) is
randomly generated with prior p(y) = ϕy

y(1 − ϕy)1−y

▶ xi|y = b ∼ Bernoulli(ϕi|y=b), b = 0, 1 : given y = b, each word xi is
included in the message independently with
p(xi = 1|y = b) = ϕi|y=b. i.e.

p(xi|y = b) = ϕxi
i|y=b(1 − ϕi|y=b)

1−xi

Model parameters:
▶ ϕy
▶ ϕi|y=1, ϕi|y=0 for i = 1, . . . , n

yang (李阳)



23/31

Naïve Bayes Parameter Learning

Likelihood of i.i.d. training data (x(1), y(1)), . . . , (x(m), y(m)):

L(ϕy, ϕj|y=0, ϕj|y=1) =
m∏

i=1
p(x(i), y(i))

Maximum likelihood estimation of parameters:

ϕy =
1
m

m∑
i=1

1{y(i) = 1} % of spam emails

ϕj|y=b =

∑m
i=1 1{x(i)j = 1, y(i) = b}∑m

i=1 1{y(i) = b} for b = 1, 0

% of spam(non-spam) emails containing jth dictionary word
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Naïve Bayes Prediction

Given new example with feature x, compute the posterior probability

p(y = 1|x) = p(x|y = 1)p(y = 1)
p(x)

=
p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 0)p(y = 0)

=

∏n
i=1 p(xi|y = 1)p(y = 1)∏n

i=1 p(xi|y = 1)p(y = 1) +
∏n

i=1 p(xi|y = 0)p(y = 0)

Choose label y = 1 (spam) if p(y = 1|x) > T where T ∈ [0, 1] is a
threshold .. e.g. T = 0.5
T tradeoff between wrongly blocked non-spam (FPs) vs. wrongly blocked
spams (FNs).
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Laplace smoothing

Issue with Naïve Bayes prediction:
▶ Suppose word xj hasn’t been seen in the training data,

ϕj|y=1 =

ϕj|y=0 = 0
▶ Can not compute class posterior p(y = 1|x) = 0

0 .

Laplace smoothing
Let z ∈ {1, . . . , k} be a multinomial random variable. Given m
independent observations z(1) . . . z(m), maximum likelihood estimation of
ϕj = p(z = j) with Laplace smoothing is

ϕj =

∑m
i=1 1{z(i) = j}+ 1

m + k

▶ ϕj ̸= 0 for all j
▶ ∑k

j=1 ϕj = 1
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Naïve Bayes with Laplace smoothing

Apply Laplace smoothing to ϕj|y=b for b ∈ {0, 1}

ϕj|y=b =

∑m
i=1 1{x(i)j = 1, y(i) = b}+ 1∑m

i=1 1{yi = b}+ 2

In practice we don’t apply Laplace smoothing to ϕy = p(y = 1), which is
greater than 0.
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Naïve Bayes Summary

Naïve Bayes (NB) assumption
xi’s are conditionally independent given y:

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y) =
n∏

i=1
p(xi|y)

Different event models:
▶ Multi-variate Bernoulli model: represent a document of dictionary

size n as n independent Bernoulli trails.
▶ Multinomial event model: represent document of n words as

x = {x1, . . . , xn} where xi = {1, . . . ,K} and K is the dictionary size
(optional)

yang (李阳)
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Naïve Bayes and Multinomial Event Model

Alternative text representation
▶ xi ∈ {1, . . . ,K} where K is the dictionary size
▶ Represent email of n words as x = {x1, . . . , xn}

”a free gift...” → {x1 = 1, x2 = 1300, x3 = 2433, . . . }

dictionary id 1 2 ... 1300 . . . 2433 . . .
word a aa ... free . . . gift . . .



29/31

Naive Bayes and Multinomial Event Model

Multinomial event model
▶ first sampling y ∈ {0, 1} from p(y)

y ∼ Bernoulli(ϕy)

▶ Select x1, x2, . . . , xn independently from the same Multinomial
distribution p(xi|y)

xi|y = b ∼ Multinomial(ϕ1|y=b, . . . , ϕK|y=b), b = 0, 1
ϕk|y=b = p(xj = k|y = b) for all j ∈ {1, . . . , n}

For any word k in the dictionary, ϕk|y is the probability of k appear
in an email given email class y

▶ Joint probability: p(x1, . . . , xn, y) = p(y)
∏n

i=1 p(xi|y)
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Multinomial event model parameters

Assume p(xj = k|y) is the same for all j
▶ ϕy = p(y)
▶ ϕk|y=1 = p(xj = k|y = 1) for k = 1, . . . ,K
▶ ϕk|y=0 = p(xj = k|y = 0) for k = 1, . . . ,K

Likelihood of training set (x(1), y(1)), . . . , (x(m), y(m)):

L(ϕy, ϕk|y=0, ϕk|y=1) =
m∏

i=1
p(x(i), y(i))

=
m∏

i=1
p(x(i)1 , . . . , x(i)ni , y

(i))

=
m∏

i=1
p(y(i);ϕy)

ni∏
j=1

p(xj
(i)|y;ϕk|y=0, ϕk|y=1)

where ni is the # words in the i-th email.
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Maximum likelihood estimation with Laplace smoothing

▶ ϕy =
1
m

m∑
i=1

1{y(i) = 1}

▶ ϕk|y=1 =

∑m
i=1

∑ni
j=1 1{x(i)j = k, y(i) = 1}+ 1∑m
i=1 1{y(i) = 1}ni + K

▶ ϕk|y=0 =

∑m
i=1

∑ni
j=1 1{x(i)j = k, y(i) = 0}+ 1∑m
i=1 1{y(i) = 0}ni + K

K is the dictionary size.
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