A Tutorial on Transfer Learning

Yang Li 2024/6/14

Outline

- What's Transfer Learning
- Traditional transfer learning algorithms
 - Task transfer learning
 - Domain adaptation
 - Transfer bound on domain adaptation
- When to transfer?
 - Transferability estimation
- Research trends
 - Transfer learning in the age of foundation models

Why we need transfer learning?

When facing a new learning task

- Lack of annotations: Training labels may be expensive to obtain
- Limited training time or resource: can't train from scratch every time

Battery capacity estimation

Transfer learning

Human learners can inherently transfer knowledge between
tasks

Transfer learning

Human learners can inherently transfer knowledge between tasks

Transfer learning

Human learners can inherently transfer knowledge between tasks

How can machines recognize and apply relavent knowledge from previous learning experience?

Transfer Learning at 1000 feet

• Transfer knowledge from one or more source tasks or domains to a target domain or task.

Transfering might reduce target learning performance (negative transfer)

Two Branches of Transfer Learning Paradigms

Inductive Learning: Learn decision function f from training data, test on unseen data

$$x \longrightarrow f \longrightarrow y$$

Reinforcement Learning: sequential decision making problems

Inductive Transfer Learning Examples

- Domain-specific computer vision tasks
- Common to transfer pre-trained features from ImageNet

(a) No damage

ImageNet 1000-class classification task

(d) Con Structural Dan

Yuqing Zhao et. al. Deep Image-Based Structural

K-Shot Learning

 Transfer latent knowledge of handwrit other tasks

50 classification tasks in different ലി വ 7.3 (- ح HHVCBSSS ŤÅ ከዋለ щ Ч 1 a s z d 1 7 12 2 3 9 2 ٦) <u>विस्ट्रि</u>ये थ य य र म म म म s anoth 로핀씨용현업외교학에그머프다프 EZ $\overline{\mathbf{O}}$ (9 -ନଠଢ଼ଷ ମ ୧ ୧ ~ ~ ~ えいり 万 のとわらなシックノッッを ΩŊ ROJEROJI H W MAEL OD ᡘ F وسا **太上下** Ш 0 9 1 22 22/20 L 9 r n u G Q P P y ar in ? 6 ম 4 Ы Ъ 5 K Д ム LUYNYG&Y57Miaz R \overline{T} 10 . 2 . 0 / NADAGOS দ R ମ୍ବ ন ۳ U N 김 ZONY/ X9E a/, > 日前上、人工X户一米人人米过今 1000 00 5 8

œ

K-Shot Learning

Reinforcement Transfer Learning Examples

- Reinforcement learning for robotic control, e.g
 - SIM2Real: transfer learned policy/value function from simulated robot to physical robot

Simulated marble maze game

Real maze on robotic arm

Applications of Transfer Learning

- Reinforcement learning for robotic control, e.g
 - Transfer between robots and between tasks

Devin (2016) Learning Modular Neural Network Policies for Multi-Task Multi-Robot Transfer

Transfer Learning vs Multi-Task Learning

TL is more likely to encounter in real world than MTL

TL: Source task is learned without knowledge of any target tasks

Outline

- What's Transfer Learning
- Traditional transfer learning algorithms
 - Task transfer learning
 - Domain adaptation
 - Transfer bound on domain adaptation
- When to transfer?
 - Transferability estimation
- Research trends

Terminologies

- Domain: $D = \{X, P_X\}$
- Task: $T = \{Y, f\}$

input Terminologies features *****

- Domain: $D = \{X, P_X\}$
- Task: $T = \{Y, f\}$

input Terminologies features • Domain: $D = \{X, P_X\}$ • Task: $T = \{Y, f\}$ input distribution

Transfer learning: improve the performance of predictive function f_t for T_t by discover and transfer latent knowledge from (D_s, T_s) , where $D_s \neq D_t$ and/or $T_s \neq T_t$

Transfer Learning

Task Transfer Learning: adapt source hypothesis or feature to target task

Transfer Learning

Domain adaptation: Learn domain agnostic representations

T_s/T_t: Vehicle Detection

D_t (night)

Transfer Learning

Task Transfer Learning: adapt source hypothesis or feature to target task

Domain adaptation: Learn domain agnostic representations

Most transfer learning problems in practice are hybrid!

Task Transfer Learning

Pre-trained Model + Fine Tuning

e.g object classification -> scene classification

Task Transfer Learning

Pre-trained Model + Fine Tuning

e.g object classification -> scene classification

intuition: low level features are shared across most vision tasks

Heterogeneous Task Transfer Learning

 Heterogeneous task transfer learning using encoder-decoder network

Heterogeneous Task Transfer Learning

 Heterogeneous task transfer learning using encoder-decoder network

Heterogeneous Task Transfer Learning

 Heterogeneous task transfer learning using encoder-decoder network

Outline

- What's Transfer Learning
- Traditional transfer learning algorithms
 - Task transfer learning
 - Domain adaptation
 - Transfer bound on domain adaptation
- When to transfer?
 - Transferability estimation
- Research trends

Domain Adaptation Techniques

Instance-based approach •

- Mapping-based approach
- **Target Domain** Mapping

arget Domain

Adversarial-based approach

Instance-based approaches

 select partial instances from the source domain as supplements to the training set in the target domain

Partial instances in the source domain can be utilized by the target domain with appropriate weights

Boosting for instance-based transfer

- TrAdaBoost (Dai 2007)
 - Use AdaBoost to filter out source domain instances that are dissimilar to target domain
 - Reweight source domain instances to resemble target domain distribution
 - Train model with reweighted source + target domain instances

• TaskTrAdaBoost (2010): a boosting technique for transferring from multiple sources

Mapping-based approach

 Mapping instances from the source domain and target domain into a new data space

Maximal Mean Discrepency (MMD)

 Maximal Mean Discrepency : a kernel-based 2 sample test for the null hypothesis P=Q (Fortet and Mourier, 1953)

$$D_{MMD}[P,Q] \triangleq \sup_{\phi \in \mathcal{F}} \left(\mathbb{E}_{P}[\phi(X)] - \mathbb{E}_{Q}[\phi(Y)] \right)$$

- where $X \sim P, Y \sim Q$
- feature map $\phi(\cdot)$
- Used in Transfer Component Analysis (TCA) (Yang, 2018) to correct domain shift

$$D_{MMD}(X_S, X_T) = \left\| \frac{1}{N_S} \sum_{x_s \in X_S} \phi(x_s) - \frac{1}{N_T} \sum_{x_t \in X_T} \phi(x_t) \right\|_{\mathcal{H}}$$

Use MMD as a Domain Regularization Term

• Given pre-trained source model, train an adpation network that minimizes classification error and domain MMD

$$L = L_C(X_L, y) + \lambda D_{MMD}^2(X_S, X_T)$$

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance

Use MMD as a Domain Regularization Term

- Training step:
 - 1. Select the layer to transfer from using MMD metric
 - 2. Train an adaptation layer f_a on source and target data using MMD as a regularizer
- Testing step:
 - Transform target input by $f_a(X_T)$

$$L = L_C(X_L, y) + \lambda D_{MMD}^2(X_S, X_T)$$

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance

Variations with MMD-based domain adaptation

- Deep Adaptation Network (Long et.al. 2015):
 - Use multi-kernel MMD (MK-MMD) $D_{MMD}[P, Q, K] \triangleq \|(\mathbb{E}_{P}[\phi(X)] - \mathbb{E}_{Q}[\phi(Y)])\|_{\mathcal{H}_{K}}$
 - Fine-tune source task jointly with MMD constraints on multiple layers

- Joint Adaptation (2018): adapt joint distributions instead of $P(X_s),\,Q(X_t)$

Adversarial-based approach

• Adopt adversarial training in learning transferable representation.

Effective features should be discriminative for the main learning task and indiscriminative between the source domain and target domain.

Adversarial-based approach

Ajakan et al. (2014) Domain-adversarial neural networks.

• Standard deep neural network training

Domain Adversarial Neural Networks

Ajakan et al. (2014) Domain-adversarial neural networks.

• Gradient Reversal

Domain Adversarial Neural Networks (DANN) Ajakan et al. (2014) Domain-adversarial neural networks.

• DNN adapted feature distribution

source domain (MINIST)

target domain (MNIST-M)

TSNE visualization of CNN extracted features

- Instance-based approach: select and reweight instances in the source domain to be similar to the target distribution
- Mapping-based approach: map source and target data to latent space where source and target domains are similar
- Adversarial-based approach: find features that are indiscriminative between source and target domains

- Instance-based approach: select and reweight instances in the source domain to be similar to the target distribution
 easy to implement, work with any base classifiers
- Mapping-based approach: map source and target data to latent space where source and target domains are similar
- Adversarial-based approach: find features that are indiscriminative between source and target domains

- Instance-based approach: select and reweight instances in the source domain to be similar to the target distribution
 easy to implement, work with any base classifiers
- Mapping-based approach: map source and target data to latent space where source and target domains are similar easy to incorporate to neural network training
- Adversarial-based approach: find features that are indiscriminative between source and target domains

- Instance-based approach: select and reweight instances in the source domain to be similar to the target distribution
 easy to implement, work with any base classifiers
- Mapping-based approach: map source and target data to latent space where source and target domains are similar easy to incorporate to neural network training
- Adversarial-based approach: find features that are indiscriminative between source and target domains good performance in computer vision

- Instance-based approach: select and reweight instances in the source domain to be similar to the target distribution
 easy to implement, work with any base classifiers
- Mapping-based approach: map source and target data to latent space where source and target domains are similar easy to incorporate to neural network training
- Adversarial-based approach: find features that are indiscriminative between source and target domains good performance in computer vision

Why does such methods work?

- Instance-based approach: select and reweight instances in the source domain to be similar to the target distribution
 easy to implement, work with any base classifiers
- Mapping-based approach: map source and target data to latent space where source and target domains are similar easy to incorporate to neural network training
- Adversarial-based approach: find features that are indiscriminative between source and target domains good performance in computer vision

Why does such methods work?

A detour to learning theory

- Given input $x \sim D$ with discrete alphabet \mathcal{X} and label $y \in \{0,1\}$
- A hypothesis is a function $h : \mathcal{X} \to \{0,1\}$
- Generalization error (risk) of hypothesis h :

$$\epsilon(h) = \mathbb{E}_{x \sim D}[|h(x) - y|]$$

Empirical risk of hypothesis h given N samples (x_i, y_i) drawn
i.i.d. from D:

$$\hat{\epsilon}(h) = \frac{1}{N} \sum_{i=1}^{N} |h(x_i) - y_i|$$

- Source risk: $\epsilon_S(h) = \mathbb{E}_{x_S \sim P}[|h(x_S) y_S|]$
- Target risk: $\epsilon_T(h) = \mathbb{E}_{x_T \sim Q}[|h(x_T) y_T|]$

Ben-David et.al. (2010). A theory of learning from different domains

Theorem. Let $h \in \mathcal{H}$ be a hypothesis, $\epsilon_S(h)$ and $\epsilon_T(h)$ be risks of source and target respectively, then

 $\epsilon_T(h) \leq \epsilon_S(h) + d_{\mathcal{H}}(P,Q) + C_0 \quad \leftarrow \begin{array}{c} \mathsf{C}_0: \text{ a constant for the} \\ \text{complexity of } \mathcal{H} \end{array}$

where

$$d_{\mathcal{H}}(P,Q) \triangleq 2 \sup_{\eta \in \mathcal{H}} \left| \Pr_{P}[\eta(x_{S}) = 1] - \Pr_{Q}[\eta(x_{T}) = 1] \right|$$

is the H-divergence between P and Q.

Ben-David et.al. (2010). A theory of learning from different domains

Theorem. Let $h \in \mathcal{H}$ be a hypothesis, $\epsilon_S(h)$ and $\epsilon_T(h)$ be risks of source and target respectively, then

 $\epsilon_T(h) \leq \epsilon_S(h) + d_{\mathcal{H}}(P,Q) + C_0 \quad \leftarrow \begin{array}{c} \mathsf{C}_0: \text{ a constant for the} \\ \text{complexity of } \mathcal{H} \end{array}$

where

$$d_{\mathcal{H}}(P,Q) \triangleq 2 \sup_{\eta \in \mathcal{H}} \left| \Pr_{P}[\eta(x_{S}) = 1] - \Pr_{Q}[\eta(x_{T}) = 1] \right|$$

is the H-divergence between P and Q.

Lemma. The H-divergence can be bounded by the empirical estimate:

$$d_{\mathcal{H}}(P,Q) \leq \hat{d}_{\mathcal{H}}(P,Q) + C_1$$

Ben-David et.al. (2010). A theory of learning from different domains

Theorem. Let $h \in \mathcal{H}$ be a hypothesis, $\epsilon_S(h)$ and $\epsilon_T(h)$ be risks of source and target respectively, then

$$\epsilon_T(h) \le \epsilon_S(h) + d_{\mathcal{H}}(P,Q) + C_0 \leftarrow \frac{C_0: \text{ a constant for the complexity of } \mathcal{H}}{\mathsf{complexity of } \mathcal{H}}$$

where

$$d_{\mathcal{H}}(P,Q) \triangleq 2 \sup_{\eta \in \mathcal{H}} \left| \Pr_{P}[\eta(x_{S}) = 1] - \Pr_{Q}[\eta(x_{T}) = 1] \right|$$

is the H-divergence between P and Q.

Lemma. The H-divergence can be bounded by the empirical estimate:

$$d_{\mathcal{H}}(P,Q) \leq \hat{d}_{\mathcal{H}}(P,Q) + C_1$$

Make P and Q as indistinguishable as possible e.g. minimize MMD, MK-MMD, domain discriminative loss, etc Decrease the upper bound on target risk !

Outline

- What's Transfer Learning
- Traditional transfer learning algorithms
 - Task transfer learning
 - Domain adaptation
 - Transfer bound on domain adaptation
- When to transfer?
 - Transferability estimation
- Research trends

Motivating Example 1: driving trajectory prediction

Can we *transfer* the San Francisco model to San Diego?

How much data collection \$\$ can be saved?

Apoorv Singh, TRAJECTORY-PREDICTION WITH VISION: A SURVEY

Motivating Example 2: Model selection for few-shot tasks

Motivating Example 2: Model selection for few-shot tasks

ResNet50

40

Motivating Example 2: Model selection for few-shot tasks

ResNet50

Large-scale studies on empirical transferability has attracted huge attention

Taskonomy (2018): investigated the transferability among 26 image-based indoor scene understanding tasks on low-data scenario

26 Task-Specific Networks3000 Transfer Networks (include high-order relations)

47,829 GPU hours

A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik and S. Savarese, "Taskonomy: Disentangling Task Transfer Learning," CVPR 2018 42

Large-scale studies on empirical transferability has attracted huge attention

Taskonomy (2018): investigated the transferability among 26 image-based indoor scene understanding tasks on low-data scenario

26 Task-Specific Networks3000 Transfer Networks (include high-order relations)

47,829 GPU hours

A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik and S. Savarese, "Taskonomy: Disentangling Task Transfer Learning," CVPR 2018 42

Large-scale studies on empirical transferability has attracted huge attention

VTAB (2020): Visual Task Adaptation

Benchmark

18 Models pertained on ImageNet

19 target tasks from various domains

Different transfer algorithms tested

	MBB	CIF	cat	Ca	CIR	Cie	DN	UTD	50F	H0	B11	Pets	Kesi	He1i	SVHN	sen	cs3
Sup-Rotation-100%	690.2	848	94.6	85.9	898	92.5	76.5	75.9	38.8	94.7	82.3	91.5	94.9	79.5	97.0	70.2	100
Bup Exempler 100	900.1	84.1	04.4	86.7	008	02.7	76.8	74.5	08.6	03.4	84.0	01.8	05.1	70.5	07.1	63.4	100
Sup-100%	89.7	838	94.1	83.9	598	92.1	76.4	74.D	3.86	93.Z	80.7	91.5	95.3	793	97.0	70.7	100
Semi-Exemplar-10	K 83.8	827	85.3	86.0	<u>998</u>	95.1	76.8	70.5	98.6	92.2	81.5	89.0	94.7	78.8	97.0	67.4	100
Senii-Rotation-103	6 83.6	62.4	86.1	78.6	89.0	90.2	76.1	72.4	98.7	93.2	61.0	07.E	94.9	79.0	96.9	63.7	100
Retation	83.4	73.6	88.3	86.4	898	93.3	76.8	633	98.3	83.4	82.6	718	93.4	786	96.9	63.5	100
Exomolar	81.8	70.7	819	81,7	69.8	96.8	74.7	€1.1	98.E	79.3	782	67.6	03.5	79.0	96.7	63.2	100
Rel.Pat.Loc	83.1	657	76.6	85.3	895	87.7	71.5	65.2	97.8	78.8	750	66.8	91.5	79.8	93.7	53.0	100
Jigsaw	83.0	65.3	76.1	83.0	996	88.6	72.0	639	97.9	77.9	747	65.4	92.3	801	93.9	59.2	100
From-Scietch	75.4	€4.4	55,9	81.2	\$97	80.4	71.5	01.3	2.80	50.3	68.4	20.8	03.3	76.0	96.0	52.7	100
Uncond-BigGAN	63.2	581	73.E	82.2	47.6	54.9	54.8	449	39.8	63.5	57,4	30.9	75.4	75.9	93.0	45.3	86.1
VAE	65.8	112	48.4	81.3	\$8.4	90.1	59.7	16.D	92.E	18.4	57.0	14.0	65.J	74.2	93.1	29.3	100
WAE-MIVD	64.9	38.8	50.8	80.5	581	89.3	52.6	11.0	94.1	20.8	61.6	16.2	64.5	738	90.9	31.6	100
Cond-EigGAN	51.4	563	0.14 8	81.3	12.4	24.E	51.4	448	94.5	63.B	49.7	31.6	76.5	75.3	91.4	44.3	6.16
WAE-GAN	43.5	24.8	42.0	77.1	52.2	70.2	37.3	8.67	81.5	15.5	62.3	13.1	33.4	736	78.5	12.8	977
WAE-UKL	45.8	23 Z	417	76.4	44.5	67.8	36.7	12.3	78.1	17.2	55.1	12.3	35.5	736	65.5	12.0	98.1

Zhai et. al. A Large-scale Study of Representation Learning with the Visual Task Adaptation Benchmark, 2020
Mach Learn (2010) 79: 151-175 DOI 10.1007/s10994-009-5152-4

A theory of learning from different domains

Shai Ben-David • John Blitzer • Koby Crammer • Alex Kulesza • Fernando Pereira • Jennifer Wortman Vaughan

Domain Adaptation: Learning Bounds and Algorithms

Received: 28 February 2009 / Revised: 12 September 2009 / Accepted: 18 Septer Published online: 23 October 2009 © The Author(s) 2009. This article is published with open access at Springerlink.

Yishay Mansour Google Research and Tel Aviv Univ. mansour@tau.ac.il Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Afshin Rostamizadeh Courant Institute New York University rostami@cs.nyu.edu

Abstract

Bridging Theory and Algorithm for Domain Ac

This paper addresses the general problem of domain adaptation which arises in a variety of applimany other areas. Quite often, little or no labeled dat available from the *target domain*, but labeled data fro *source domain* somewhat similar to the target as well as la amounts of unlabeled data from the target domain are at $o_{\frac{4}{2}}$

Yuchen Zhang^{*12} Tianle Liu^{*23} Mingsheng Long¹² Michael I. Jordan⁴

Abstract

This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories

 Focus on the theoretical optimal performance

Mach Learn (2010) 79: 151-175 DOI 10.1007/s10994-009-5152-4

A theory of learning from different domains

Shai Ben-David • John Blitzer • Koby Crammer • Alex Kulesza • Fernando Pereira • Jennifer Wortman Vaughan

Domain Adaptation: Learning Bounds and Algorithms

Received: 28 February 2009 / Revised: 12 September 2009 / Accepted: 18 Septer Published online: 23 October 2009 © The Author(s) 2009. This article is published with open access at Springerlink.

Yishay Mansour Google Research and Tel Aviv Univ. mansour@tau.ac.il Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Afshin Rostamizadeh Courant Institute New York University rostami@cs.nyu.edu

Abstract

Bridging Theory and Algorithm for Domain Ac

This paper addresses the general problem of domain adaptation which arises in a variety of applimany other areas. Quite often, little or no labeled dat available from the *target domain*, but labeled data fro *source domain* somewhat similar to the target as well as la amounts of unlabeled data from the target domain are at o_1

Yuchen Zhang^{*12} Tianle Liu^{*23} Mingsheng Long¹² Michael I. Jordan⁴

Abstract

This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories

Mach Learn (2010) 79: 151-175 DOI 10.1007/s10994-009-5152-4

A theory of learning from different domains

Shai Ben-David • John Blitzer • Koby Crammer • Alex Kulesza • Fernando Pereira • Jennifer Wortman Vaughan

Focus on the theoretical optimal performance

Strict model assumptions

Domain Adaptation: Learning Bounds and Algorithms

Received: 28 February 2009 / Revised: 12 September 2009 / Accepted: 18 Septer Published online: 23 October 2009 © The Author(s) 2009. This article is published with open access at Springerlink.

Yishay Mansour Google Research and Tel Aviv Univ. mansour@tau.ac.il Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Afshin Rostamizadeh Courant Institute New York University rostami@cs.nyu.edu

Abstract

Bridging Theory and Algorithm for Domain Ac

This paper addresses the general problem of domain adaptation which arises in a variety of applimany other areas. Quite often, little or no labeled dat available from the *target domain*, but labeled data fro *source domain* somewhat similar to the target as well as k amounts of unlabeled data from the target domain are at o_1

Yuchen Zhang^{*12} Tianle Liu^{*23} Mingsheng Long¹² Michael I. Jordan⁴

Abstract

This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories

Mach Learn (2010) 79: 151-175 DOI 10.1007/s10994-009-5152-4

A theory of learning from different domains

Shai Ben-David • John Blitzer • Koby Crammer • Alex Kulesza • Fernando Pereira • Jennifer Wortman Vaughan

Focus on the theoretical optimal performance

- Strict model assumptions
- Intractable model complexity
 measures

Domain Adaptation: Learning Bounds and Algorithms

Received: 28 February 2009 / Revised: 12 September 2009 / Accepted: 18 Septer Published online: 23 October 2009 © The Author(s) 2009. This article is published with open access at Springerlink.

Yishay Mansour Google Research and Tel Aviv Univ. mansour@tau.ac.il Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Afshin Rostamizadeh Courant Institute New York University rostami@cs.nyu.edu

Abstract

Bridging Theory and Algorithm for Domain Ac

This paper addresses the general problem of domain adaptation which arises in a variety of applimany other areas. Quite often, little or no labeled dat available from the *target domain*, but labeled data fro *source domain* somewhat similar to the target as well as k amounts of unlabeled data from the target domain are at o_1

Yuchen Zhang^{*12} Tianle Liu^{*23} Mingsheng Long¹² Michael I. Jordan⁴

Abstract

This paper addresses the problem of unsupervised domain adaption from theoretical and algorithmic perspectives. Existing domain adaptation theories

How to quantify transferability from data ?

Theoretically meaningful

How to quantify transferability from data ?

Mathematically meaningful

Empirical transferability is the likelihood of the target training data (X_t, Y_t) using source feature extractor θ_s

$$Trf(S \to T) = \begin{cases} \hat{\mathbb{E}} \left[\log P(Y_t | X_t; \theta_s, h_t) \right] & \text{(retrain head)} \\ \hat{\mathbb{E}} \left[\log P(Y_t | X_t; \theta_t : \theta_t^{(0)} = \theta_s, h_t) \right] & \text{(fine-tune)} \end{cases}$$

Empirical transferability is the likelihood of the target training data (X_t, Y_t) using source feature extractor θ_s

$$Trf(S \to T) = \begin{cases} \hat{\mathbb{E}} \left[\log P(Y_t | X_t; \theta_s, h_t) \right] & \text{(retrain head)} \\ \hat{\mathbb{E}} \left[\log P(Y_t | X_t; \theta_t : \theta_t^{(0)} = \theta_s, h_t) \right] & \text{(fine-tune)} \end{cases} \end{cases}$$

Analytical transferability: estimate transferability w/o training the target network

e.g.

- Proxy A-Distance (Ben-David 2006)
- Wasserstein distance (Kantorovich 1942)

e.g.

- Proxy A-Distance (Ben-David 2006)
- Wasserstein distance (Kantorovich 1942)

Does not apply to different label space or label distribution!

Cross-Task Transferability

Cross-Task Transferability

Cross-Task Transferability is estimated via optimal target loss in a simplified transfer model (e.g softmax regression)

Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer learning." In 2019 IEEE ICIP, pp. 2309-2313. 2019.

extractor

Only need to compute $\mathscr{H}(f_{s})$ for source selection

Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer learning." In 2019 IEEE ICIP, pp. 2309-2313. 2019.

By local information geometry, given zeromean feature f(x), the optimal target loss is

$$L(f_s, W^{\star}) = Const(X, Y) - \mathcal{H}(f_s) + o(\epsilon^2)$$

frozen feature softmax extractor

Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer learning." In 2019 IEEE ICIP, pp. 2309-2313. 2019.

frozen feature softmax extractor By local information geometry, given zeromean feature f(x), the optimal target loss is

$$L(f_{s}, W^{\star}) = Const(X, Y) - \mathcal{H}(f_{s}) + o(\epsilon^{2})$$

H-score of $f(X)$
 $\mathcal{H}(f_{s}) = tr\left(cov(f_{s}(X))^{-1}cov(\mathbb{E}_{P_{X|Y}}[f_{s}(X) \mid Y]))\right)$

Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer learning." In 2019 IEEE ICIP, pp. 2309-2313. 2019.

frozen feature softmax extractor By local information geometry, given zeromean feature f(x), the optimal target loss is

$$L(f_{s}, W^{\star}) = Const(X, Y) - \mathcal{H}(f_{s}) + o(\epsilon^{2})$$

H-score of $f(X)$
 $\mathcal{H}(f_{s}) = tr\left(cov(f_{s}(X))^{-1}cov(\mathbb{E}_{P_{X|Y}}[f_{s}(X) \mid Y]))\right)$
Higher H-score

Performance

DIEIUE

Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer learning." In 2019 IEEE ICIP, pp. 2309-2313. 2019.

frozen feature softmax extractor By local information geometry, given zeromean feature f(x), the optimal target loss is

$$L(f_{s}, W^{\star}) = Const(X, Y) - \mathcal{H}(f_{s}) + o(\epsilon^{2})$$

H-score of $f(X)$
 $\mathcal{H}(f_{s}) = tr\left(cov(f_{s}(X))^{-1}cov(\mathbb{E}_{P_{X|Y}}[f_{s}(X) \mid Y]))\right)$
Normalized H-score $\frac{\mathcal{H}(f_{s})}{\mathcal{H}(f_{t}^{\star})}$ Higher H-score \longleftrightarrow Better

Performance

 $\mathscr{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X))^{-1}\operatorname{cov}(\mathbb{E}_{X|Y}[f(X) \mid Y]))$

$$\mathscr{H}(f) = \operatorname{tr}(\operatorname{cov}(f(X))^{-1}\operatorname{cov}(\mathbb{E}_{X|Y}[f(X) \mid Y]))$$

feature
redundancy \downarrow

Statistically, H-score characterizes the asymptotic error probability of the test statistics based on f(X)

Higher H-score ↔ Faster error decay with increasing sample size

H-Score is **negatively correlated with target log-loss** on ImageNet (Resnet50) -> Cifar100, under different training size

- 6 Source models: Layers 4a 5f in ResNet50
- Target dataset: Cifar 100-class classification on 5K, 10K, ..., 50K images

Validates our claim $L(f, \theta^*) = Const(X, Y) - \mathcal{H}(f) + o(\epsilon^2)$

H-Score is **negatively correlated with target log-loss** on ImageNet (Resnet50) -> Cifar100, under different training size

- 6 Source models: Layers 4a 5f in ResNet50
- Target dataset: Cifar 100-class classification on 5K, 10K, ..., 50K images

Validates our claim $L(f, \theta^*) = Const(X, Y) - \mathcal{H}(f) + o(\epsilon^2)$

H-Score is **positively correlated with target** training & testing accuracy

Target sample size: 20,000

On Taskonomy Benchmark, H-Score is positively correlated with empirical-based transferability with ~6x speedup

Query Image

3D Keypoints

Tep 5 prediction: televisior_room living mem attic recreation room wet tar

Depth

2D Keypoints

Object Class.

Scene Class.

Image Reshading

3D Edges

H-Score also has known limitations,

- numerical instability
- regression tasks (LEEP by Nguyen et. al. 2020)
- same-domain assumption

Task transferability (H-Score, LEEP..) assumes source and target task has the same input distribution $P_s(x) = P_t(x)$

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate transferability of learned representations. ICML, 2020.

- numerical instability
- regression tasks (LEEP by Nguyen et. al. 2020)
- same-domain assumption

Task transferability (H-Score, LEEP..) assumes source and target task has the same input distribution $P_s(x) = P_t(x)$

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate transferability of learned representations. ICML, 2020.

Decompose "transfer hardness" into domain difference and task difference

$$OTCE = \lambda_1 \hat{W}_D + \lambda_2 \hat{W}_T + b$$

Decompose "transfer hardness" into domain difference and task difference (Domain Difference)

$$OTCE = \lambda_1 \hat{W}_D + \lambda_2 \hat{W}_T + b$$

Decompose "transfer hardness" into domain difference and task difference (Domain Difference) (Task Difference)

$$OTCE = \lambda_1 \hat{W}_D + \lambda_2 \hat{W}_T + b$$

Decompose "transfer hardness" into domain difference and task difference (Domain Difference) (Task Difference)

Outline

- What's Transfer Learning
- Traditional transfer learning algorithms
 - Task transfer learning
 - Domain adaptation
 - Transfer bound on domain adaptation
- When to transfer?
 - Transferability estimation
- Research trends

Beyond Transfer Learning

- Multi-source transfer learning: how to efficiently, adaptively combine features from multiple source tasks in transfer learning?
- Continuous domain adaptation: leverage intermediate domains to adapt model to distant target tasks

Beyond Transfer Learning

- Multi-source transfer learning: how to efficiently, adaptively combine features from multiple source tasks in transfer learning?
- Continuous domain adaptation: leverage intermediate domains to adapt model to distant target tasks
 Source task

Target task

Sequentially transfer

Beyond Transfer Learning

- Multi-source transfer learning: how to efficiently, adaptively combine features from multiple source tasks in transfer learning?
- Continuous domain adaptation: leverage intermediate domains to adapt model to distant target tasks
 Source task

Target task

Sequentially transfer

Transfer learning using foundation models

New Challenges for transferring from foundation models

- Zero-shot/Few-shot adaptation
- Full update is too slow: parameter-efficient model adaptation
- No access to source data: Source data free model selection
- New transfer paradigms
 - Transfer attention-maps for Vision Transformer
 - Prompt tuning