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MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.

22

Outline

• What’s Transfer Learning


• Traditional transfer learning algorithms


• Task transfer learning


• Domain adaptation


• Transfer bound on domain adaptation  


• When to transfer？


• Transferability estimation


• Research trends


• Transfer learning in the age of foundation models



Why we need transfer learning？

When facing a new learning task


• Lack of annotations：Training labels may be expensive 
to obtain


• Limited training time or resource: can’t train from 
scratch every time

Medical image classification

normal emphysema fibrosis

Battery capacity estimation
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How can machines recognize and apply relavent knowledge from 
previous learning experience?



Transfer Learning at 1000 feet

• Transfer knowledge from one or more source tasks or domains 
to a target domain or task.
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Fig. 1. Transfer learning is machine learning with an additional source of information
apart from the standard training data: knowledge from one or more related tasks.

The goal of transfer learning is to improve learning in the target task by
leveraging knowledge from the source task. There are three common measures by
which transfer might improve learning. First is the initial performance achievable
in the target task using only the transferred knowledge, before any further learn-
ing is done, compared to the initial performance of an ignorant agent. Second is
the amount of time it takes to fully learn the target task given the transferred
knowledge compared to the amount of time to learn it from scratch. Third is the
final performance level achievable in the target task compared to the final level
without transfer. Figure 2 illustrates these three measures.

If a transfer method actually decreases performance, then negative transfer
has occurred. One of the major challenges in developing transfer methods is
to produce positive transfer between appropriately related tasks while avoiding
negative transfer between tasks that are less related. A section of this chapter
discusses approaches for avoiding negative transfer.

When an agent applies knowledge from one task in another, it is often nec-
essary to map the characteristics of one task onto those of the other to specify
correspondences. In much of the work on transfer learning, a human provides
this mapping, but some methods provide ways to perform the mapping auto-
matically. Another section of the chapter discusses work in this area.
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Fig. 2. Three ways in which transfer might improve learning.
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Two Branches of Transfer Learning Paradigms
Inductive Learning: Learn decision function f from training 
data, test on unseen data 


Reinforcement Learning: sequential decision making problems

fx y



Inductive Transfer Learning Examples

Yuqing Zhao et. al. Deep Transfer Learning for 
Image-Based Structural Damage Recognition 
 


• Domain-specific computer vision tasks  


• Common to transfer pre-trained features from ImageNet 

Deep transfer learning for image-based structural damage recognition 751
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Fig. 1. Hierarchy tree of Structural ImageNet.

analysis and decision making. As a pilot study, in this
article, we focus on one branch of the tree, starting
from the object level node and separating recognition
tasks independently to alleviate strong dependency on
large-scale labeled data. Therefore, we designed the
following: (1) binary classification task for component
type identification, (2) binary classification task for
spalling condition check, (3) three-classes classification
task for damage level evaluation, and (4) four-classes
classification task for damage type determination.
While in application, each image is labeled with four
tags as the four attributes according to these tasks.

Out of 10,000 images in the Structural ImageNet,
2,000 were selected, preprocessed, and labeled man-
ually with the above-mentioned four tags based on
domain knowledge, which forms a small data set for
experiments. While in the selection phase, we only
selected images on object level presenting moderate
distance from camera to object to avoid inconsistencies
in damage level task, for example, minor damage can
be seen as moderate damage if the distance is too close.
Moreover, we ruled out inappropriate images such as
axial damage and then carefully selected images which
can be easily labeled following well-defined criteria
with less controversy.

For preprocessing, several steps were preformed:
(1) to reduce possible inconsistency in classification,

we cropped the images to make structural components
be the major targets (instead of using some images on
structural level, we just cropped for subparts, for ex-
ample, beam, column, and wall), (2) to avoid significant
distortions to image features due to stretching since
rescaling is used in training, second round cropping was
applied to make the aspect ratio of the images roughly
around 1 or 1.05 for the sake of training, and (3) to
avoid too low quality of images, those with resolutions
lower than 448 × 448 were eliminated from data set.

For labeling, as mentioned above, to alleviate the
strong dependency of large-scale labeled data and lower
the task complexity, in the following experiments, four
different tasks corresponding to the four tags are ad-
dressed, and assumed as independent while in the train-
ing process. With more input to Structural ImageNet in
the future, the experiments will be conducted following
the sequence of the hierarchy tree.

2.1 Component type

Component type identification is a binary classifi-
cation task with two classes: beam/column and wall
(Figure 2). To prevent occurrence of dominating class
due to lack of images and possible label inconsistency
due to rotation action for data augmentation (refer to

Structural Damage Detection

ImageNet 1000-class 
classification task



Learning with Small Samples: K-Shot Learning

OMIGLOT dataset


• When the training set of a task only has  k samples


• e.g. one-shot alphabet classification:
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Figure 1: The Omniglot challenge of performing five concept learning tasks at a human level. A) Two trials of one-shot classification,
where a single image of a new character is presented (top) and the goal is to select another example of that character amongst other
characters from the same alphabet (in the grid below). In panels B)-E), human participants and Bayesian Program Learning (BPL) are
compared on four tasks. B) Nine human drawings (top) are shown with the ground truth parses (human) and the best model parses
(machine). C) Humans and BPL were given an image of a new character (top) and asked to produce new examples. D) Humans and
BPL were given a novel alphabet and asked to produce new characters for that alphabet. E) Humans and BPL produced new characters
from scratch. The grids generated by BPL are C (by row): 1, 2; D: 2, 2; E: 2, 2. Reprinted and modified from Lake et al. (2015).

has been widely adopted and that the challenge has been
well-received by the community. There has been genuine
progress on one-shot classification, but it has been dif-
ficult to gauge since researchers have adopted di↵erent
splits and training procedures that make the task easier.
The other four tasks have received less attention, and
critically, no new algorithm has attempted to perform
all of the tasks together. Human-level understanding re-
quires developing a single model that can do all of these
tasks, acquiring conceptual representations that support
fast and flexible, task-general learning. We conjectured
that compositionaliy and causality are essential to this
capability (Lake et al., 2017a) yet most new approaches
aim to “learn from scratch,” utilizing learning to learn
in ingenious new ways while incorporating composition-

ality and causality only to the extent that they can be
learned from images. People never learn anything from
scratch in this way, and thus the Omniglot challenge is
not just to learn from increasingly large amounts of back-
ground training (e.g., 30 alphabets, or more with aug-
mentation) and minimal inductive biases, only to tackle
one of many tasks. Instead, the challenge is to learn from
a small amount of background training (e.g., 5 alphabets)
and the kinds of inductive biases people bring to the do-
main (whatever one conjectures those biases are), with
the aim of tackling the full suite of tasks with a single
algorithm. To facilitate research in this direction, we are
re-releasing the Omniglot dataset with the drawing data
in a new format, and we highlight two more human-like
minimal splits containing only five alphabets for learn-
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K-Shot Learning

• One-shot person re-identification from video

Learn to classify 
characters with one 

training sample per classBak et. al. (2017) One-Shot Metric Learning for Person Re-
identification 


Domain-Adversarial Neural Networks

VIPER PRID CUHK

Figure 8: Matching and non-matching pairs of probe-gallery images from di↵erent person
re-identification data sets. The three data sets are treated as di↵erent domains
in our experiments.

Recently, several papers with significantly improved re-identification performance (Zhang
and Saligrama, 2014; Zhao et al., 2014; Paisitkriangkrai et al., 2015) have been presented,
with Ma et al. (2015) reporting good results in cross-data-set evaluation scenario. At the
moment, deep learning methods (Yi et al., 2014) do not achieve state-of-the-art results prob-
ably because of the limited size of the training sets. Domain adaptation thus represents a
viable direction for improving deep re-identification descriptors.

5.3.1 Data Sets and Protocols

Following Ma et al. (2015), we use PRID (Hirzer et al., 2011), VIPeR (Gray et al., 2007),
CUHK (Li and Wang, 2013) as target data sets for our experiments. The PRID data set
exists in two versions, and as in Ma et al. (2015) we use a single-shot variant. It contains
images of 385 persons viewed from camera A and images of 749 persons viewed from camera
B, 200 persons appear in both cameras. The VIPeR data set also contains images taken
with two cameras, and in total 632 persons are captured, for every person there is one image
for each of the two camera views. The CUHK data set consists of images from five pairs of
cameras, two images for each person from each of the two cameras. We refer to the subset
of this data set that includes the first pair of cameras only as CUHK/p1 (as most papers
use this subset). See Figure 8 for samples of these data sets.

We perform extensive experiments for various pairs of data sets, where one data set
serves as a source domain, i.e., it is used to train a descriptor mapping in a supervised
way with known correspondences between probe and gallery images. The second data set is
used as a target domain, so that images from that data set are used without probe-gallery
correspondence.

In more detail, CUHK/p1 is used for experiments when CUHK serves as a target domain
and two settings (“whole CUHK” and CUHK/p1) are used for experiments when CUHK
serves as a source domain. Given PRID as a target data set, we randomly choose 100 persons
appearing in both camera views as training set. The images of the other 100 persons from
camera A are used as probe, all images from camera B excluding those used in training (649
in total) are used as gallery at test time. For VIPeR, we use random 316 persons for training
and all others for testing. For CUHK, 971 persons are split into 485 for training and 486
for testing. Unlike Ma et al. (2015), we use all images in the first pair of cameras of CUHK
instead of choosing one image of a person from each camera view. We also performed two
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serves as a source domain, i.e., it is used to train a descriptor mapping in a supervised
way with known correspondences between probe and gallery images. The second data set is
used as a target domain, so that images from that data set are used without probe-gallery
correspondence.

In more detail, CUHK/p1 is used for experiments when CUHK serves as a target domain
and two settings (“whole CUHK” and CUHK/p1) are used for experiments when CUHK
serves as a source domain. Given PRID as a target data set, we randomly choose 100 persons
appearing in both camera views as training set. The images of the other 100 persons from
camera A are used as probe, all images from camera B excluding those used in training (649
in total) are used as gallery at test time. For VIPeR, we use random 316 persons for training
and all others for testing. For CUHK, 971 persons are split into 485 for training and 486
for testing. Unlike Ma et al. (2015), we use all images in the first pair of cameras of CUHK
instead of choosing one image of a person from each camera view. We also performed two
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Figure 3: Spatial variations: (a) learned background distor-
tion coefficients α(n); (b) N ×N cost matrix, which is used
as an input to the Hungarian algorithm for finding optimal
patch correspondence.

ment of patches. These spring constraints were learned di-
rectly from data using structural SVMs. [47] assumed the
correspondence structure to be fixed and learned it using a
boosting-like approach. Instead, we define the patch corre-
spondence task as a linear assignment problem. Given N
patches from bounding box image i and N patches from
bounding box image j we create a N ×N cost matrix that
contains patch similarity scores within a fixed neighborhood
(see Fig 3(b)). To avoid patches freely changing their loca-
tion, we introduce a global one-to-one matching constraint
and solve a linear assignment problem
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where Ωij is a permutation vector mapping patches c
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to patches cnj and Ωij(n) and n determine patch locations,
∆(·, ·) is a spatial regularization term that constrains the
search neighborhood, where η corresponds to distance be-
tween two patch locations and threshold δ determines the al-
lowed displacement (different δ’s are evaluated in Fig 7(a)).
We find the optimal assignment Ω∗

ij (patch correspondence)
using the Kuhn-Munkres (Hungarian) algorithm [29]. This
yields the color dissimilarity:
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3.3. Total dissimilarity

By incorporating patches, Eq. (2) becomes
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In the next section, we extensively evaluate both texture and
color components as well as hyper-parameter γ.

Figure 4: Sample images from the CCH dataset: the top
and bottom lines correspond to images from different cam-
eras; columns illustrate the same person and the last column
shows images of our ColorChecker chart.

4. Experiments

We carried out experiments on 5 datasets: VIPeR [20],
iLIDS [61], CUHK01 [31], PRID2011 [23] and our new
dataset, CCH. To learn a texture representation (fc7 of
JSTLI ) and α(n)’s, we additionally used CUHK03 [32].
Re-identification results are reported using the CMC curve
[20] and its rank-1 accuracy. The CMC curve provides the
probability of finding the correct match in the top r ranks.

4.1. Datasets and evaluation protocols

CCH (ColorCHecker) is our new dataset that consists of
23 individuals with 3379 images registered by two cameras
in significantly different lighting conditions (see Fig. 4). A
single pair of images of our ColorChecker chart was used
to compute Σ+

σ .
VIPeR [20] is one of the most popular person re-
identification datasets. It contains 632 image pairs of pedes-
trians captured by two outdoor cameras. VIPeR images
contain large variations in lighting conditions, background
and viewpoint (see Fig. 5(a)).
CUHK01 [31] contains 971 people captured with two cam-
eras. The first camera captures the side view of pedestrians
and the second camera captures the front or back view ( see
Fig. 5(b)).
i-LIDS [61] consists of 476 images with 119 individuals.
The images come from airport surveillance cameras. This
dataset is very challenging because there are many occlu-
sions due to luggage and crowds (see Fig. 5(c)).
PRID2011 [23] consists of person images recorded from
two different static surveillance cameras. Characteristic
challenges of this dataset are significant differences in il-
lumination (see Fig. 5(d)). Although there are two camera
views containing 385 and 749 identities, respectively, only
200 people appear in both cameras.
CUHK03 [32] is one of the largest published person re-
identification datasets. It contains 1467 identities, so it fits
very well for learning the JSTL model [55]. We used this
dataset as an auxiliary dataset for training both deep texture
representation and background distortion coefficients.
Evaluation protocols We fixed the evaluation protocol
across all datasets. For computing color dissimilarity, all
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23 individuals with 3379 images registered by two cameras
in significantly different lighting conditions (see Fig. 4). A
single pair of images of our ColorChecker chart was used
to compute Σ+
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VIPeR [20] is one of the most popular person re-
identification datasets. It contains 632 image pairs of pedes-
trians captured by two outdoor cameras. VIPeR images
contain large variations in lighting conditions, background
and viewpoint (see Fig. 5(a)).
CUHK01 [31] contains 971 people captured with two cam-
eras. The first camera captures the side view of pedestrians
and the second camera captures the front or back view ( see
Fig. 5(b)).
i-LIDS [61] consists of 476 images with 119 individuals.
The images come from airport surveillance cameras. This
dataset is very challenging because there are many occlu-
sions due to luggage and crowds (see Fig. 5(c)).
PRID2011 [23] consists of person images recorded from
two different static surveillance cameras. Characteristic
challenges of this dataset are significant differences in il-
lumination (see Fig. 5(d)). Although there are two camera
views containing 385 and 749 identities, respectively, only
200 people appear in both cameras.
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representation and background distortion coefficients.
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rectly from data using structural SVMs. [47] assumed the
correspondence structure to be fixed and learned it using a
boosting-like approach. Instead, we define the patch corre-
spondence task as a linear assignment problem. Given N
patches from bounding box image i and N patches from
bounding box image j we create a N ×N cost matrix that
contains patch similarity scores within a fixed neighborhood
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Re-identification results are reported using the CMC curve
[20] and its rank-1 accuracy. The CMC curve provides the
probability of finding the correct match in the top r ranks.

4.1. Datasets and evaluation protocols

CCH (ColorCHecker) is our new dataset that consists of
23 individuals with 3379 images registered by two cameras
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single pair of images of our ColorChecker chart was used
to compute Σ+
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trians captured by two outdoor cameras. VIPeR images
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CUHK01 [31] contains 971 people captured with two cam-
eras. The first camera captures the side view of pedestrians
and the second camera captures the front or back view ( see
Fig. 5(b)).
i-LIDS [61] consists of 476 images with 119 individuals.
The images come from airport surveillance cameras. This
dataset is very challenging because there are many occlu-
sions due to luggage and crowds (see Fig. 5(c)).
PRID2011 [23] consists of person images recorded from
two different static surveillance cameras. Characteristic
challenges of this dataset are significant differences in il-
lumination (see Fig. 5(d)). Although there are two camera
views containing 385 and 749 identities, respectively, only
200 people appear in both cameras.
CUHK03 [32] is one of the largest published person re-
identification datasets. It contains 1467 identities, so it fits
very well for learning the JSTL model [55]. We used this
dataset as an auxiliary dataset for training both deep texture
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Fig. 1. Marble maze game. (Left) Top view of the marble maze after a plexiglass top has been removed (leaving holes in the outermost edge). A paper
rim is used to cover the holes. The black dots in each gate between rings are used for alignment. The view also shows the world aligned x and y axes.
(Middle) The marble maze mounted on the robot arm. (Right) A rendering of the simulated marble maze under some chosen lighting conditions (without
added noise).

(beyond) human level performance on a variety of tasks [1]–
[4].

TL has been an active area of research in the context of
deep learning. For example, tasks such as object detection
and classification can avoid costly training time by using
pre-trained networks and fine-tuning [5], [6], where typically
only the weights in the last couple of layers are updated. TL
from simulated to real has also been applied to learn robot
tasks [7]–[11]. To reduce the time required for fine-tuning in
TL, the authors in [12] propose to make simulated data look
more like the real world. In [13] the authors propose a form of
fine-tuning where the inverse dynamics for the real robot are
recovered. It requires a simulator and training which produces
reasonable estimates of the real world situation. The drawback
of this method is that it requires long online training times,
whereas our goal is to minimize the duration of the online
training time. The authors in [14] propose model-based RL,
where some of the physics parameters are estimated online.
The difficulty of the task we aim to solve is in the fact that the
motion of the marbles is controlled via tilting of the platform.
Estimating physics in our case is thus very challenging.

By randomization of the appearance, the learning can
become robust against appearance changes and readily transfer
to the real world domain [15], [16]. The method proposed
in [17] exploits an ensemble of simulated source domains
and adversarial training to obtain robust policies. This policy
search approach relies on trajectories and roll-outs which
solve the task. The approach proposed in [18] uses model-
based RL to learn a controller entirely in simulation, allowing
for zero-shot TL. Since we are considering tasks involving
(much) more complex dynamics, we instead follow a similar
approach as [19], and perform randomization of appearance,
physics and system parameters with model-free RL.

Model-agnostic meta-learning (MAML) [20], aims to learn
a meta-policy that can be quickly adapted to new (but similar)
tasks. In the case of complex dynamics it is not clear how

easily MAML could be applied. Appearance and dynamics
randomization can be considered as forms of meta-learning.
Other approaches aim to learn new tasks, or refine previously
learned tasks, without ”forgetting”, e.g., [21]. Our emphasis
instead is on reducing the amount of time required for fine-
tuning in TL.

Our simulator provides observations of the state in simu-
lation, similar to the real world. In [22] the critic receives
full states, whereas the actor receives observations of states.
Coupled with appearance randomization, zero-shot transfer
can be achieved. The full state requires that the physics
parameters to produce complex dynamics match those of
the real world. However, precisely determining the physics
parameters is non-trivial.

Formulating reward functions is not straightforward. The
authors in [23] propose to discover robust rewards to enable
the learning of complicated tasks. Adding additional goals
(sub-goals), basically a form of curriculum learning [24], can
improve the learning as well [25]. The latter approach may
be applied to break up the goal of a marble maze into stages.
However, in this paper we show that a simple reward function
which governs the overall goal of the game is sufficient.

The authors in [26] propose a game-like environment for
generating synthetic data for benchmark problems related to
reinforcement learning. We developed our simulator along
the same lines as [26].

In [27] the authors propose to model both the dynamics
and control in order to solve the marble maze game. This is
a complementary approach to the TL approach proposed in
this paper, and we believe that each approach has its own
strengths and weaknesses.

III. PRELIMINARIES

We briefly review some concepts from (deep) reinforcement
learning (RL) using model-free asynchronous actor-critic, and
define some terminology that we will use in the remainder of
this paper. In the next section we will discuss our approach.

x

y

Fig. 1. Marble maze game. (Left) Top view of the marble maze after a plexiglass top has been removed (leaving holes in the outermost edge). A paper
rim is used to cover the holes. The black dots in each gate between rings are used for alignment. The view also shows the world aligned x and y axes.
(Middle) The marble maze mounted on the robot arm. (Right) A rendering of the simulated marble maze under some chosen lighting conditions (without
added noise).

(beyond) human level performance on a variety of tasks [1]–
[4].

TL has been an active area of research in the context of
deep learning. For example, tasks such as object detection
and classification can avoid costly training time by using
pre-trained networks and fine-tuning [5], [6], where typically
only the weights in the last couple of layers are updated. TL
from simulated to real has also been applied to learn robot
tasks [7]–[11]. To reduce the time required for fine-tuning in
TL, the authors in [12] propose to make simulated data look
more like the real world. In [13] the authors propose a form of
fine-tuning where the inverse dynamics for the real robot are
recovered. It requires a simulator and training which produces
reasonable estimates of the real world situation. The drawback
of this method is that it requires long online training times,
whereas our goal is to minimize the duration of the online
training time. The authors in [14] propose model-based RL,
where some of the physics parameters are estimated online.
The difficulty of the task we aim to solve is in the fact that the
motion of the marbles is controlled via tilting of the platform.
Estimating physics in our case is thus very challenging.

By randomization of the appearance, the learning can
become robust against appearance changes and readily transfer
to the real world domain [15], [16]. The method proposed
in [17] exploits an ensemble of simulated source domains
and adversarial training to obtain robust policies. This policy
search approach relies on trajectories and roll-outs which
solve the task. The approach proposed in [18] uses model-
based RL to learn a controller entirely in simulation, allowing
for zero-shot TL. Since we are considering tasks involving
(much) more complex dynamics, we instead follow a similar
approach as [19], and perform randomization of appearance,
physics and system parameters with model-free RL.

Model-agnostic meta-learning (MAML) [20], aims to learn
a meta-policy that can be quickly adapted to new (but similar)
tasks. In the case of complex dynamics it is not clear how

easily MAML could be applied. Appearance and dynamics
randomization can be considered as forms of meta-learning.
Other approaches aim to learn new tasks, or refine previously
learned tasks, without ”forgetting”, e.g., [21]. Our emphasis
instead is on reducing the amount of time required for fine-
tuning in TL.

Our simulator provides observations of the state in simu-
lation, similar to the real world. In [22] the critic receives
full states, whereas the actor receives observations of states.
Coupled with appearance randomization, zero-shot transfer
can be achieved. The full state requires that the physics
parameters to produce complex dynamics match those of
the real world. However, precisely determining the physics
parameters is non-trivial.

Formulating reward functions is not straightforward. The
authors in [23] propose to discover robust rewards to enable
the learning of complicated tasks. Adding additional goals
(sub-goals), basically a form of curriculum learning [24], can
improve the learning as well [25]. The latter approach may
be applied to break up the goal of a marble maze into stages.
However, in this paper we show that a simple reward function
which governs the overall goal of the game is sufficient.

The authors in [26] propose a game-like environment for
generating synthetic data for benchmark problems related to
reinforcement learning. We developed our simulator along
the same lines as [26].

In [27] the authors propose to model both the dynamics
and control in order to solve the marble maze game. This is
a complementary approach to the TL approach proposed in
this paper, and we believe that each approach has its own
strengths and weaknesses.

III. PRELIMINARIES

We briefly review some concepts from (deep) reinforcement
learning (RL) using model-free asynchronous actor-critic, and
define some terminology that we will use in the remainder of
this paper. In the next section we will discuss our approach.
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3) We present a detailed evaluation of our method on a
range of simulated tasks for both visual and non-visual
policies.

To the best of our knowledge, this is the first method
to decompose policy neural networks into interchangeable
modules than can perform zero-shot transfer with novel
module combinations.

II. RELATED WORK

Robotic skill learning via reinforcement learning has been
studied extensively in recent years [5], [6], [7], [8], and
transfer learning in particular has been recognized for some
time as an important direction in robotic learning [9], [10],
[11], [12], [13], due to its potential for reducing the burden
of expensive on-policy data collection for learning large
repertoires of complex skills. [14] and [15] transfer between
tasks by storing symbolic knowledge in knowledge bases.
Work by Guestrin et al. learned to play many versions
of a computer strategy game by decomposing the value
function into different domains [16]. The PG-Ella algorithm
uses policy gradients for sequential multitask learning [17].
Past work in transfer on robotics domains includes shaping
the target reward function from the source policy [18],
[19] and learning a mapping between tasks [20]. Another
transfer approach used by [21] is to split each task into
sub-tasks and transfer the sub-tasks between tasks. An early
work by Caruana uses backpropagation to learn many tasks
jointly [10]. Our work differs from these prior methods in
that we explicitly consider transfer across tasks with two
factors of variation, which in our experiments are robot
identity and task identity. This allows us to decompose the
policy into robot-specific and task-specific modules, which
perform zero-shot transfer by recombining novel pairs of
modules. Our method is complementary to prior transfer
learning techniques in that we address primarily the ques-
tion of policy representation, while prior methods focus on
algorithmic questions.

Beyond robotic learning, recent work in computer vision
and other passive perception domains has explored both
transfer learning and recombination of neural network mod-
ules. Pretraining is a common transfer learning technique
in deep learning [22]. However, pretraining cannot provided
zero-shot generalization, and finetuning is ill-defined outside
of supervised learning. Domain adaptation techniques have
been used to adapt training data in the face of systematic
domain shift [23], and more recently, work on modular net-
works for visual question answering has been demonstrated
with good results [24]. Our method differs from these prior
approaches by directly considering robotic policy learning,
where the policy must consider both the invariances and task-
relevant differences across domains.

Although our method is largely agnostic to the choice of
policy learning algorithm, we use the guided policy search
method in our experiments [4]. This algorithm allows us to
train high-dimensional neural network policy representations,
which can be readily decomposed into multiple intercon-
nected modules. Other recent work on high-dimensional

Fig. 1: The 3DoF and a 4DoF robot which specify one degree of

variation (robots) in the universe described in Section III as well

as the tasks of opening a drawer and pushing a block which specify

the other degree of variation (tasks) in the universe.

Fig. 2: The possible worlds enumerated for all combinations of

tasks and robots for the universe described in Section III

neural network policy search has studied continuous control
tasks for simulated robots [2], [25], playing Atari games
[1], and other tasks [26]. Recent work on progressive neural
network also proposes a representation suitable for transfer
across Atari games [27], but does not provide for zero-shot
generalization to new domains, and work by Braylen et al.
used evolutionary algorithms to recombine networks trained
for different Atari games, but again did not demonstrate
direct zero-shot generalization [28]. We further emphasize
that our approach is not in fact specific to neural networks,
and our presentation of the method describes a generic
framework of composable policy modules that can easily be
extended to other representations.

III. MODULAR POLICY NETWORKS

The problem setting that this work addresses is enabling
transfer across situations that can vary along some predefined
discrete degrees of variation (DoVs). These DoVs can be
different robot morphologies, different task goals, different
object characteristics, and so forth. We define a “world” w

to be an instantiation of these DoVs, and our “universe”
U to be the set of all possible worlds. To illustrate this
formalism, consider a universe with the following 2 DoVs:
robot structure (3 DoF and 4 DoF), and task (open drawer
and pushing a block). This universe would have 4 possible
worlds: 3 DoF arm opening a drawer, 3 DoF arm pushing a

Push box

Robot 1 (3-link) Robot 2 (4-link)
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Transfer Learning Multi-task Learning

Fig. 3. As we define transfer learning, the information flows in one direction only, from
the source task to the target task. In multi-task learning, information can flow freely
among all tasks.

We will make a distinction between transfer learning and multi-task learn-
ing [5], in which several tasks are learned simultaneously (see Figure 3). Multi-
task learning is clearly closely related to transfer, but it does not involve des-
ignated source and target tasks; instead the learning agent receives information
about several tasks at once. In contrast, by our definition of transfer learning,
the agent knows nothing about a target task (or even that there will be a target
task) when it learns a source task. It may be possible to approach a multi-task
learning problem with a transfer-learning method, but the reverse is not possi-
ble. It is useful to make this distinction because a learning agent in a real-world
setting is more likely to encounter transfer scenarios than multi-task scenarios.

TRANSFER IN INDUCTIVE LEARNING

In an inductive learning task, the objective is to induce a predictive model from a
set of training examples [28]. Often the goal is classification, i.e. assigning class la-
bels to examples. Examples of classification systems are artificial neural networks
and symbolic rule-learners. Another type of inductive learning involves model-
ing probability distributions over interrelated variables, usually with graphical
models. Examples of these systems are Bayesian networks and Markov Logic
Networks [34].

The predictive model learned by an inductive learning algorithm should make
accurate predictions not just on the training examples, but also on future exam-
ples that come from the same distribution. In order to produce a model with this
generalization capability, a learning algorithm must have an inductive bias [28]
– a set of assumptions about the true distribution of the training data.

The bias of an algorithm is often based on the hypothesis space of possible
models that it considers. For example, the hypothesis space of the Naive Bayes
model is limited by the assumption that example characteristics are condition-
ally independent given the class of an example. The bias of an algorithm can also
be determined by its search process through the hypothesis space, which deter-
mines the order in which hypotheses are considered. For example, rule-learning
algorithms typically construct rules one predicate at a time, which reflects the

3

TL is more likely to encounter in real world than MTL

TL: Source task is learned without 
knowledge of any target tasks
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MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.
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Fig. 1. Learning process of transfer learning.

Definition 1. (Transfer Learning). Given a learning task Tt based on Dt,
and we can get the help from Ds for the learning task Ts. Transfer learning aims
to improve the performance of predictive function fT (·) for learning task Tt by
discover and transfer latent knowledge from Ds and Ts, where Ds 6= Dt and/or
Ts 6= Tt. In addition, in the most case, the size of Ds is much larger than the
size of Dt, Ns � Nt.

Surveys [19] and [25] divide the transfer learning methods into three major

categories with the relationship between the source domain and the target do-

main, which has been widely accepted. These suverys are good summary of the

past works on transfer learning, which introduced a number of classic transfer

learning methods. Further more, many newer and better methods have been pro-

posed recently. In recent years, transfer learning research community are mainly

focused on the following two aspects: domain adaption and multi-source domains

transfer.

Nowadays, deep learning has achieved dominating situation in many research

fields in recent years. It is important to find how to e↵ectively transfer knowledge

by deep neural network, which called deep transfer learning that defined as

follows:

Definition 2. (Deep Transfer Learning). Given a transfer learning task de-
fined by hDs, Ts,Dt, Tt, fT (·)i. It is a deep transfer learning task where fT (·) is
a non-linear function that reflected a deep neural network.

3 Categories

Deep transfer learning studies how to utilize knowledge from other fields by

deep neural networks. Since deep neural networks have become popular in var-

ious fields, a considerable amount of deep transfer learning methods have been

proposed that it is very important to classify and summarize them. Based on the

techniques used in deep transfer learning, this paper classifies deep transfer learn-

ing into four categories: instances-based deep transfer learning, mapping-based

Ds

Dt



Transfer Learning Definition

 Terminologies


• Domain:


• Task:

D = {X, PX}

T = {Y, f}

Transfer learning: improve the performance of predictive 
function      for      by discover and transfer latent knowledge 
from             , where              and/or

ft Tt
(Ds, Ts) Ds ≠ Dt Ts ≠ Tt

task    . Transfer learning aims to

input 
features

input 
distribution

predictive 
function PY|X

labels

A Survey on Deep Transfer Learning 3

Learning Task

Learning Task

Knowledge Transfer 
Learning

Target Domain

Source Domain

Fig. 1. Learning process of transfer learning.

Definition 1. (Transfer Learning). Given a learning task Tt based on Dt,
and we can get the help from Ds for the learning task Ts. Transfer learning aims
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Ts 6= Tt. In addition, in the most case, the size of Ds is much larger than the
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Most transfer learning problems in practice are hybrid!
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Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.

fine tuningtransfer weights

e.g  object classification ->  scene classification

freeze
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in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.
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Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.
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deep transfer learning, network-based deep transfer learning, and adversarial-

based deep transfer learning, which are shown in Table 1.

Table 1. Categorizing of deep transfer learning.

Approach category Brief description Some related works
Instances-based Utilize instances in source domain by appro-

priate weight.
[4], [27], [20], [24],
[10], [26], [11]

Mapping-based Mapping instances from two domains into a
new data space with better similarity.

[23], [12], [8], [14], [2]

Network-based Reuse the partial of network pre-trained in
the source domain.

[9], [17], [15], [30],
[3], [6], [28]

Adversarial-based Use adversarial technology to find transfer-
able features that both suitable for two do-
mains.

[1], [5], [21], [22],
[13], [16]

3.1 Instances-based deep transfer learning

Instances-based deep transfer learning refers to use a specific weight adjust-

ment strategy, select partial instances from the source domain as supplements

to the training set in the target domain by assigning appropriate weight values

to these selected instances. It is based on the assumption that ”Although there
are di↵erent between two domains, partial instances in the source domain can
be utilized by the target domain with appropriate weights.”. The sketch map of

instances-based deep transfer learning are shown in Fig. 2.

Source Domain Target Domain

……

Fig. 2. Sketch map of instances-based deep transfer learning. Instances with light blue
color in source domain meanings dissimilar with target domain are exclude from train-
ing dataset; Instances with dark blue color in source domain meanings similar with
target domain are include in training dataset with appropriate weight.

TrAdaBoost proposed by [4] use AdaBoost-based technology to filter out in-

stances that are dissimilar to the target domain in source domains. Re-weighted

A Survey on Deep Transfer Learning 5

instances in source domain to compose a distribution similar to target domain.

Finally, training model by using the re-weighted instances from source domain

and origin instances from target domain. It can reduce the weighted training er-

ror on di↵erent distribution domains that preserving the properties of AdaBoost.

TaskTrAdaBoost proposed by [27] is a fast algorithm promote rapid retraining

over new targets. Unlike TrAdaBoost is designed for classification problems,

ExpBoost.R2 and TrAdaBoost.R2 were proposed by [20] to cover the regression

problem. Bi-weighting domain adaptation (BIW) proposed [24] can aligns the

feature spaces of two domains into the common coordinate system, and then

assign an appropriate weight of the instances from source domain. [10] propose

a enhanced TrAdaBoost to handle the problem of interregional sandstone mi-

croscopic image classification. [26] propose a metric transfer learning framework

to learn instance weights and a distance of two di↵erent domains in a parallel

framework to make knowledge transfer across domains more e↵ective. [11] in-

troduce an ensemble transfer learning to deep neural network that can utilize

instances from source domain.

3.2 Mapping-based deep transfer learning

Mapping-based deep transfer learning refers to mapping instances from the

source domain and target domain into a new data space. In this new data space,

instances from two domains are similarly and suitable for a union deep neural

network. It is based on the assumption that ”Although there are di↵erent between
two origin domains, they can be more similarly in an elaborate new data space.”.
The sketch map of instances-based deep transfer learning are shown in Fig. 3.

Source Domain

Target Domain

……Mapping

New Data Space

Fig. 3. Sketch map of mapping-based deep transfer learning. Simultaneously, instances
from source domain and target domain are mapping to a new data space with more
similarly. Consider all instances in the new data space as the training set of the neural
network.
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……

Source Domain

Target Domain

Source label

Target label

Domain label

Adversarial Layer

Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small di↵erence between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

The adversarial-based deep transfer learning has obtained the flourishing

development in recent years due to its good e↵ect and strong practicality. [1]

introduce adversarial technology to transfer learning for domain adaption, by

using a domain adaptation regularization term in the loss function. [5] proposed

an adversarial training method that suitable for most any feed-forward neural

model by augmenting it with few standard layers and a simple new gradient

reversal layer. [21] proposed a approach transfer knowledge cross-domain and

cross-task simultaneity for sparsely labeled target domain data. A special joint

loss function was used in this work to force CNN to optimize both the distance

between domains which defined as LD = Lc+�Ladver, where Lc is classification

loss, Ladver is domain adversarial loss. Because the two losses stand in direct

opposition to one another, an iterative optimize algorithm are introduced to

update one loss when fixed another. [22] proposed a new GAN loss and com-

bine with discriminative modeling to a new domain adaptation method. [13]

proposed a randomized multi-linear adversarial networks to exploit multiple fea-

ture layers and the classifier layer based on a randomized multi-linear adversary

to enable both deep and discriminative adversarial adaptation. [16] utilize a

domain adversarial loss, and generalizes the embedding to novel task using a

metric learning-based approach to find more tractable features in deep transfer

learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep

transfer learning. Deep transfer learning is classified into four categories for the
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deep transfer learning, network-based deep transfer learning, and adversarial-

based deep transfer learning, which are shown in Table 1.

Table 1. Categorizing of deep transfer learning.

Approach category Brief description Some related works
Instances-based Utilize instances in source domain by appro-

priate weight.
[4], [27], [20], [24],
[10], [26], [11]

Mapping-based Mapping instances from two domains into a
new data space with better similarity.

[23], [12], [8], [14], [2]

Network-based Reuse the partial of network pre-trained in
the source domain.

[9], [17], [15], [30],
[3], [6], [28]

Adversarial-based Use adversarial technology to find transfer-
able features that both suitable for two do-
mains.

[1], [5], [21], [22],
[13], [16]

3.1 Instances-based deep transfer learning

Instances-based deep transfer learning refers to use a specific weight adjust-

ment strategy, select partial instances from the source domain as supplements

to the training set in the target domain by assigning appropriate weight values

to these selected instances. It is based on the assumption that ”Although there
are di↵erent between two domains, partial instances in the source domain can
be utilized by the target domain with appropriate weights.”. The sketch map of

instances-based deep transfer learning are shown in Fig. 2.
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……

Fig. 2. Sketch map of instances-based deep transfer learning. Instances with light blue
color in source domain meanings dissimilar with target domain are exclude from train-
ing dataset; Instances with dark blue color in source domain meanings similar with
target domain are include in training dataset with appropriate weight.

TrAdaBoost proposed by [4] use AdaBoost-based technology to filter out in-

stances that are dissimilar to the target domain in source domains. Re-weighted
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instances in source domain to compose a distribution similar to target domain.

Finally, training model by using the re-weighted instances from source domain

and origin instances from target domain. It can reduce the weighted training er-

ror on di↵erent distribution domains that preserving the properties of AdaBoost.

TaskTrAdaBoost proposed by [27] is a fast algorithm promote rapid retraining

over new targets. Unlike TrAdaBoost is designed for classification problems,

ExpBoost.R2 and TrAdaBoost.R2 were proposed by [20] to cover the regression

problem. Bi-weighting domain adaptation (BIW) proposed [24] can aligns the

feature spaces of two domains into the common coordinate system, and then

assign an appropriate weight of the instances from source domain. [10] propose

a enhanced TrAdaBoost to handle the problem of interregional sandstone mi-

croscopic image classification. [26] propose a metric transfer learning framework

to learn instance weights and a distance of two di↵erent domains in a parallel

framework to make knowledge transfer across domains more e↵ective. [11] in-

troduce an ensemble transfer learning to deep neural network that can utilize

instances from source domain.

3.2 Mapping-based deep transfer learning

Mapping-based deep transfer learning refers to mapping instances from the

source domain and target domain into a new data space. In this new data space,

instances from two domains are similarly and suitable for a union deep neural

network. It is based on the assumption that ”Although there are di↵erent between
two origin domains, they can be more similarly in an elaborate new data space.”.
The sketch map of instances-based deep transfer learning are shown in Fig. 3.

Source Domain

Target Domain

……Mapping

New Data Space

Fig. 3. Sketch map of mapping-based deep transfer learning. Simultaneously, instances
from source domain and target domain are mapping to a new data space with more
similarly. Consider all instances in the new data space as the training set of the neural
network.

How to measure domain similarity?

a space where Xs and Xt are 
distributed similarly

P(XS)

Q(XT)



Maximal Mean Discrepency (MMD)

• Maximal Mean Discrepency : a kernel-based 2 sample test for 
the null hypothesis P=Q  (Fortet and Mourier, 1953) 


• where

• feature map


• Used in Transfer Component Analysis (TCA) (Yang, 2018) to 
correct domain shift 

DMMD(XS, XT) =
1
NS ∑

xs∈XS

ϕ(xs) −
1

NT ∑
xt∈XT

ϕ(xt)

ℋ

ϕ( ⋅ )

DMMD[P, Q] ≜ sup
ϕ∈ℱ

(𝔼P[ϕ(X)] − 𝔼Q[ϕ(Y )])

X ∼ P, Y ∼ Q



Use MMD as a Domain Regularization Term

• Given pre-trained source model, train an adpation network 
that minimizes classification error and domain MMD

mains appear as similar as possible. This principle forms
the essence of our proposed approach. We learn deep rep-
resentations by optimizing over a loss which includes both
classification error on the labeled data as well as a domain

confusion loss which seeks to make the domains indistin-
guishable.

We propose a new CNN architecture, outlined in Fig-
ure 1, which uses an adaptation layer along with a do-
main confusion loss based on maximum mean discrepancy
(MMD) [6] to automatically learn a representation jointly
trained to optimize for classification and domain invariance.
We show that our domain confusion metric can be used both
to select the dimension of the adaptation layers, choose an
effective placement for a new adaptation layer within a pre-
trained CNN architecture, and fine-tune the representation.

Our architecture can be used to solve both supervised

adaptation, when a small amount of target labeled data is
available, and unsupervised adaptation, when no labeled
target training data is available. We provide a comprehen-
sive evaluation on the popular Office benchmark for classi-
fication across visually distinct domains [29]. We demon-
strate that by jointly optimizing for domain confusion and
classification, we are able to significantly outperform the
current state-of-the-art visual domain adaptation results. In
fact, for the case of minor pose, resolution, and lighting
changes, our algorithm is able to achieve 96% accuracy
on the target domain, demonstrating that we have in fact
learned a representation that is invariant to these biases.

2. Related work
The concept of visual dataset bias was popularized

in [32]. There have been many approaches proposed in
recent years to solve the visual domain adaptation prob-
lem. All recognize that there is a shift in the distribu-
tion of the source and target data representations. In fact,
the size of a domain shift is often measured by the dis-
tance between the source and target subspace representa-
tions [6, 13, 23, 26, 28]. A large number of methods have
sought to overcome this difference by learning a feature
space transformation to align the source and target represen-
tations [29, 25, 13, 16]. For the supervised adaptation sce-
nario, when a limited amount of labeled data is available in
the target domain, some approaches have been proposed to
learn a target classifier regularized against the source clas-
sifier [33, 2, 1]. Others have sought to both learn a feature
transformation and regularize a target classifier simultane-
ously [20, 12].

Recently, supervised convolutional neural network
(CNN) based feature representations have been shown to
be extremely effective for a variety of visual recognition
tasks [24, 11, 15, 30]. In particular, using deep representa-
tions dramatically reduce the effect of resolution and light-
ing on domain shifts [11, 21].
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Figure 2: For biased datasets (left), classifiers learned in a
source domain do not necessarily transfer well to target do-
mains. By optimizing an objective that simultaneously min-
imizes classification error and maximizes domain confusion

(right), we can learn representations that are discriminative
and domain invariant.

Parallel CNN architectures such as Siamese networks
have been shown to be effective for learning invariant repre-
sentations [7, 9]. However, training these networks requires
labels for each training instance, so it is unclear how to ex-
tend these methods to unsupervised settings.

Multimodal deep learning architectures have also been
explored to learn representations that are invariant to dif-
ferent input modalities [27]. However, this method oper-
ated primarily in a generative context and therefore did not
leverage the full representational power of supervised CNN
representations.

Training a joint source and target CNN architecture was
proposed by [8], but was limited to two layers and so was
significantly outperformed by the methods which used a
deeper architecture [24], pre-trained on a large auxiliary
data source (ex: ImageNet [4]).

[14] proposed pre-training with a denoising auto en-
coder, then training a two-layer network simultaneously
with the MMD domain confusion loss. This effectively
learns a domain invariant representation, but again, because
the learned network is relatively shallow, it lacks the strong
semantic representation that is learned by directly optimiz-
ing a classification objective with a supervised deep CNN.

3. Training CNN-based domain invariant rep-
resentations

We introduce a new convolutional neural network (CNN)
architecture which we use to learn a visual representation
that is both domain invariant and which offers strong se-
mantic separation. It has been shown that a pre-trained
CNN can be adapted for a new task through fine-tuning [15,

L = LC(XL, y) + λD2
MMD(XS, XT)

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance

 



Use MMD as a Domain Regularization Term

• Training step:

• 1. Select the layer to transfer from using MMD metric

• 2. Train an adaptation layer fa on source and target data 

using MMD as a regularizer

• Testing step: 


• Transform target input by  fa(XT) 

L = LC(XL, y) + λD2
MMD(XS, XT)

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance
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Abstract

Recent reports suggest that a generic supervised deep

CNN model trained on a large-scale dataset reduces, but

does not remove, dataset bias on a standard benchmark.

Fine-tuning deep models in a new domain can require a

significant amount of data, which for many applications is

simply not available. We propose a new CNN architecture

which introduces an adaptation layer and an additional do-

main confusion loss, to learn a representation that is both

semantically meaningful and domain invariant. We addi-

tionally show that a domain confusion metric can be used

for model selection to determine the dimension of an adap-

tation layer and the best position for the layer in the CNN

architecture. Our proposed adaptation method offers em-

pirical performance which exceeds previously published re-

sults on a standard benchmark visual domain adaptation

task.

1. Introduction
Dataset bias is a well known problem with traditional

supervised approaches to image recognition [32]. A num-
ber of recent theoretical and empirical results have shown
that supervised methods’ test error increases in proportion
to the difference between the test and training input distri-
bution [3, 5, 29, 32]. In the last few years several methods
for visual domain adaptation have been suggested to over-
come this issue [10, 33, 2, 29, 25, 22, 17, 16, 19, 20], but
were limited to shallow models. The traditional approach
to adapting deep models has been fine-tuning; see [15] for
a recent example.

Directly fine-tuning a deep network’s parameters on a
small amount of labeled target data turns out to be prob-
lematic. Fortunately, pre-trained deep models do perform
well in novel domains. Recently, [11, 21] showed that using
the deep mid-level features learned on ImageNet, instead
of the more conventional bag-of-words features, effectively
removed the bias in some of the domain adaptation settings
in the Office dataset [29]. These algorithms transferred the
representation from a large scale domain, ImageNet, as well

."."."

conv1

conv5

fc6

fc7

fc8

."."."

conv1

conv5

fc6

fc7

fc8

Unlabeled"
Images"Labeled"Images"

fc_adaptfc_adapt

domain
loss

classification
loss

Figure 1: Our architecture optimizes a deep CNN for both
classification loss as well as domain invariance. The model
can be trained for supervised adaptation, when there is a
small amount of target labels available, or unsupervised

adaptation, when no target labels are available. We intro-
duce domain invariance through domain confusion guided
selection of the depth and width of the adaptation layer, as
well as an additional domain loss term during fine-tuning
that directly minimizes the distance between source and tar-
get representations.

as using all of the data in that domain as source data for ap-
propriate categories. However, these methods have no way
to select a representation from the deep architecture and in-
stead report results across multiple layer selection choices.

Dataset bias was classically illustrated in computer vi-
sion by way of the “name the dataset” game of Torralba and
Efros [32]. Indeed, this turns out to be formally connected
to measures of domain discrepancy [23, 6]. Optimizing for
domain invariance, therefore, can be considered equivalent
to the task of learning to predict the class labels while si-
multaneously finding a representation that makes the do-
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Variations with MMD-based domain adaptation

• Deep Adaptation Network (Long et.al. 2015):

• Use multi-kernel MMD (MK-MMD)


• Fine-tune source task jointly with MMD constraints on multiple 
layers


• Joint Adaptation (2018): adapt joint distributions instead of 
P(Xs), Q(Xt)

L = LC(XL, y) + λD2
MMD(XS, XT)

Learning Transferable Features with Deep Adaptation Networks

3. Deep Adaptation Networks
In unsupervised domain adaptation, we are given a source
domainDs = {(xs

i , y
s
i )}

ns

i=1 with ns labeled examples, and
a target domain Dt = {xt

j}
nt

j=1 with nt unlabeled exam-
ples. The source domain and target domain are charac-
terized by probability distributions p and q, respectively.
We aim to construct a deep neural network which is able
to learn transferable features that bridge the cross-domain
discrepancy, and build a classifier y = θ(x) which can
minimize target risk εt (θ) = Pr(x,y)∼q [θ (x) != y] using
source supervision. In semi-supervised adaptation where
the target has a small number of labeled examples, we de-
note by Da = {(xa

i , y
a
i )} the na annotated examples of

source and target domains.

3.1. Model

MK-MMD Domain adaptation is challenging in that the
target domain has no (or only limited) labeled information.
To approach this problem, many existing methods aim to
bound the target error by the source error plus a discrepancy
metric between the source and the target (Ben-David et al.,
2010). Two classes of statistics have been explored for
the two-sample testing, where acceptance or rejection deci-
sions are made for a null hypothesis p = q, given samples
generated respectively from p and q: energy distances and
maximum mean discrepancies (MMD) (Sejdinovic et al.,
2013). In this paper, we focus on the multiple kernel variant
of MMD (MK-MMD) proposed by Gretton et al. (2012b),
which is formalized to jointly maximize the two-sample
test power and minimize the Type II error, i.e., the failure
of rejecting a false null hypothesis.

Denote by Hk be the reproducing kernel Hilbert space
(RKHS) endowed with a characteristic kernel k. The mean
embedding of distribution p in Hk is a unique element
µk(p) such that Ex∼pf (x) = 〈f (x) , µk (p)〉Hk

for all
f ∈ Hk. The MK-MMD dk (p, q) between probability dis-
tributions p and q is defined as the RKHS distance between
the mean embeddings of p and q. The squared formulation
of MK-MMD is defined as

d2k (p, q) !
∥

∥Ep [φ (xs)]−Eq

[

φ
(

xt
)]
∥

∥

2

Hk
. (1)

The most important property is that p = q iff d2k (p, q) = 0
(Gretton et al., 2012a). The characteristic kernel associated
with the feature map φ, k (xs,xt) = 〈φ (xs) ,φ (xt)〉, is
defined as the convex combination ofm PSD kernels {ku},

K !

{

k =
m
∑

u=1

βuku :
m
∑

u=1

βu = 1,βu " 0, ∀u

}

, (2)

where the constraints on coefficients {βu} are imposed to
guarantee that the derived multi-kernel k is characteristic.
As studied theoretically in Gretton et al. (2012b), the kernel

MK-
MMD

MK-
MMD

MK-
MMD

input conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

source
output

target
output

frozen frozenfrozen fine-
tune

fine-
tune

learn learnlearn learn

Figure 1. The DAN architecture for learning transferable features.
Since deep features eventually transition from general to specific
along the network, (1) the features extracted by convolutional lay-
ers conv1–conv3 are general, hence these layers are frozen, (2)
the features extracted by layers conv4–conv5 are slightly less
transferable, hence these layers are learned via fine-tuning, and
(3) fully connected layers fc6–fc8 are tailored to fit specific
tasks, hence they are not transferable and should be adapted with
MK-MMD.

adopted for the mean embeddings of p and q is critical to
ensure the test power and low test error. The multi-kernel
k can leverage different kernels to enhance MK-MMD test,
leading to a principled method for optimal kernel selection.

One of the feasible strategies for controlling the domain
discrepancy is to find an abstract feature representation
through which the source and target domains are simi-
lar (Ben-David et al., 2010). Although this idea has been
explored in several papers (Pan et al., 2011; Zhang et al.,
2013; Wang & Schneider, 2014), to date there has been no
attempt to enhance the transferability of feature representa-
tion via MK-MMD in deep neural networks.

Deep Adaptation Networks (DAN) In this paper, we ex-
plore the idea of MK-MMD-based adaptation for learning
transferable features in deep networks. We start with deep
convolutional neural networks (CNN) (Krizhevsky et al.,
2012), a strong model when it is adapted to novel tasks
(Donahue et al., 2014; Hoffman et al., 2014). The main
challenge is that the target domain has no or just limited
labeled information, hence directly adapting CNN to the
target domain via fine-tuning is impossible or is prone to
over-fitting. With the idea of domain adaptation, we are
targeting a deep adaptation network (DAN) that can exploit
both source-labeled data and target-unlabeled data. Fig-
ure 1 gives an illustration of the proposed DAN model.

We extend the AlexNet architecture (Krizhevsky et al.,
2012), which is comprised of five convolutional layers
(conv1–conv5) and three fully connected layers (fc6–
fc8). Each fc layer % learns a nonlinear mapping h!

i =
f !

(

W!h!−1
i + b!

)

, where h!
i is the %th layer hidden rep-

resentation of point xi,W! and b! are the weights and bias
of the %th layer, and f ! is the activation, taking as recti-
fier units f !(x) = max(0,x) for hidden layers or softmax
units f ! (x) = ex/

∑|x|
j=1 e

xj for the output layer. Letting

DMMD[P, Q, K] ≜ ∥(𝔼P[ϕ(X)] − 𝔼Q[ϕ(Y )])∥ℋK



Adversarial-based approach

• Adopt adversarial training in learning transferable 
representation.8 Chuanqi Tan et al.

……

Source Domain

Target Domain

Source label

Target label

Domain label

Adversarial Layer

Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small di↵erence between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

The adversarial-based deep transfer learning has obtained the flourishing

development in recent years due to its good e↵ect and strong practicality. [1]

introduce adversarial technology to transfer learning for domain adaption, by

using a domain adaptation regularization term in the loss function. [5] proposed

an adversarial training method that suitable for most any feed-forward neural

model by augmenting it with few standard layers and a simple new gradient

reversal layer. [21] proposed a approach transfer knowledge cross-domain and

cross-task simultaneity for sparsely labeled target domain data. A special joint

loss function was used in this work to force CNN to optimize both the distance

between domains which defined as LD = Lc+�Ladver, where Lc is classification

loss, Ladver is domain adversarial loss. Because the two losses stand in direct

opposition to one another, an iterative optimize algorithm are introduced to

update one loss when fixed another. [22] proposed a new GAN loss and com-

bine with discriminative modeling to a new domain adaptation method. [13]

proposed a randomized multi-linear adversarial networks to exploit multiple fea-

ture layers and the classifier layer based on a randomized multi-linear adversary

to enable both deep and discriminative adversarial adaptation. [16] utilize a

domain adversarial loss, and generalizes the embedding to novel task using a

metric learning-based approach to find more tractable features in deep transfer

learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep

transfer learning. Deep transfer learning is classified into four categories for the

Effective features  should be discriminative for the main learning task and

 indiscriminative between the source domain and target domain.



Adversarial-based approach

• Standard deep neural network training

A Survey on Deep Transfer Learning 7

Source Domain

Target Domain

Transfer

……

……

Fig. 4. Sketch map of network-based deep transfer learning. First, network was trained
in source domain with large-scale training dataset. Second, partial of network pre-
trained for source domain are transfer to be a part of new network designed for target
domain. Finally, the transfered sub-network may be updated in fine-tune strategy.

several layers into deep network. [30] learning domain adaptation and deep hash

features simultaneously in a DNN. [3] proposed a novel multi-scale convolutional

sparse coding method. This method can automatically learns filter banks at dif-

ferent scales in a joint fashion with enforced scale-specificity of learned patterns,

and provides an unsupervised solution for learning transferable base knowledge

and fine-tuning it towards target tasks. [6] apply deep transfer learning to trans-

fer knowledge from real-world object recognition tasks to glitch classifier for the

detector of multiple gravitational wave signals. It demonstrate that DNN can

be used as excellent feature extractors for unsupervised clustering methods to

identify new classes based on their morphology, without any labeled examples.

Another very noteworthy result is that [28] point out the relationship between

network structure and transferability. It demonstrated that some modules may

not influence in-domain accuracy but influence the transferability. It point out

what features are transferable in deep networks and which type of networks

are more suitable for transfer. Given an conclusion that LeNet, AlexNet, VGG,

Inception, ResNet are good chooses in network-based deep transfer learning.

3.4 Adversarial-based deep transfer learning

Adversarial-based deep transfer learning refers to introduce adversarial technol-

ogy inspired by generative adversarial nets (GAN) [7] to find transferable repre-

sentations that is applicable to both the source domain and the target domain.

It is based on the assumption that ”For e↵ective transfer, good representation
should be discriminative for the main learning task and indiscriminate between
the source domain and target domain.” The sketch map of adversarial-based

deep transfer learning are shown in Fig. 5.

forward pass

back-propagation

L( f(x), y)Input

δL
δθy

 Ajakan et al. (2014) Domain-adversarial neural networks.



Domain Adversarial Neural Networks

• Gradient Reversal

L( f(xs), ys)

Input

8 Chuanqi Tan et al.
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Fig. 5. Sketch map of adversarial-based deep transfer learning. In the training process
on large-scale dataset in the source domain, the front-layers of network is regarded as
a feature extractor. It extracting features from two domains and sent them to adver-
sarial layer. The adversarial layer try to discriminates the origin of the features. If the
adversarial network achieves worse performance, it means a small di↵erence between
the two types of feature and better transferability, and vice versa. In the following
training process, the performance of the adversarial layer will be considered to force
the transfer network discover general features with more transferability.

The adversarial-based deep transfer learning has obtained the flourishing

development in recent years due to its good e↵ect and strong practicality. [1]

introduce adversarial technology to transfer learning for domain adaption, by

using a domain adaptation regularization term in the loss function. [5] proposed

an adversarial training method that suitable for most any feed-forward neural

model by augmenting it with few standard layers and a simple new gradient

reversal layer. [21] proposed a approach transfer knowledge cross-domain and

cross-task simultaneity for sparsely labeled target domain data. A special joint

loss function was used in this work to force CNN to optimize both the distance

between domains which defined as LD = Lc+�Ladver, where Lc is classification

loss, Ladver is domain adversarial loss. Because the two losses stand in direct

opposition to one another, an iterative optimize algorithm are introduced to

update one loss when fixed another. [22] proposed a new GAN loss and com-

bine with discriminative modeling to a new domain adaptation method. [13]

proposed a randomized multi-linear adversarial networks to exploit multiple fea-

ture layers and the classifier layer based on a randomized multi-linear adversary

to enable both deep and discriminative adversarial adaptation. [16] utilize a

domain adversarial loss, and generalizes the embedding to novel task using a

metric learning-based approach to find more tractable features in deep transfer

learning.

4 Conclusion

In this survey paper, we have review and category current researches of deep

transfer learning. Deep transfer learning is classified into four categories for the

D( f(x), y)

 Ajakan et al. (2014) Domain-adversarial neural networks.
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Domain Adversarial Neural Networks (DANN)

• DNN adapted feature distribution

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.
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source domain (MINIST)

target domain (MNIST-M)

TSNE visualization of CNN extracted features

Non-Adapted Adapted

Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST Syn Numbers SVHN Syn Signs

Source

Target

MNIST-M SVHN MNIST GTSRB

Figure 6: Examples of domain pairs used in the experiments. See Section 5.2.4 for details.

Method
Source MNIST Syn Numbers SVHN Syn Signs

Target MNIST-M SVHN MNIST GTSRB

Source only .5225 .8674 .5490 .7900

SA (Fernando et al., 2013) .5690 (4.1%) .8644 (�5.5%) .5932 (9.9%) .8165 (12.7%)

DANN .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

Train on target .9596 .9220 .9942 .9980

Table 2: Classification accuracies for digit image classifications for di↵erent source and
target domains. MNIST-M corresponds to di↵erence-blended digits over non-
uniform background. The first row corresponds to the lower performance bound
(i.e., if no adaptation is performed). The last row corresponds to training on
the target domain data with known class labels (upper bound on the DA perfor-
mance). For each of the two DA methods (ours and Fernando et al., 2013) we
show how much of the gap between the lower and the upper bounds was covered
(in brackets). For all five cases, our approach outperforms Fernando et al. (2013)
considerably, and covers a big portion of the gap.

Method
Source Amazon DSLR Webcam

Target Webcam Webcam DSLR

GFK(PLS, PCA) (Gong et al., 2012) .197 .497 .6631

SA* (Fernando et al., 2013) .450 .648 .699

DLID (Chopra et al., 2013) .519 .782 .899

DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.
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DDC (Tzeng et al., 2014) .618 .950 .985

DAN (Long and Wang, 2015) .685 .960 .990

Source only .642 .961 .978

DANN .730 .964 .992

Table 3: Accuracy evaluation of di↵erent DA approaches on the standard Office (Saenko
et al., 2010) data set. All methods (except SA) are evaluated in the “fully-
transductive” protocol (some results are reproduced from Long and Wang, 2015).
Our method (last row) outperforms competitors setting the new state-of-the-art.
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 Ajakan et al. (2014) Domain-adversarial neural networks.
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Domain Adaptation Discussion

• Instance-based approach: select and reweight instances in the 
source domain to be similar to the target distribution


• Mapping-based approach: map source and target data to 
latent space where source and target domains are similar


• Adversarial-based approach: find features that are 
indiscriminative between source and target domains 

Why does such methods work? A detour to learning theory

easy to implement, work with any base classifiers

easy to incorporate to neural network training

good performance in computer vision



Transfer Bounds for Domain Adaptation

• Given input            with discrete alphabet     and label 


• A hypothesis is a function                 


• Generalization error (risk) of hypothesis    :


• Empirical risk of hypothesis      given N samples            drawn 
i.i.d. from    :


• Source risk: 


• Target risk: 

{(xi, yi); i = 1,…, N}

y ∈ {0,1}

ϵ(h) = 𝔼x∼D[ |h(x) − y | ]

x ∼ D

h : 𝒳 → {0,1}
h

h

̂ϵ(h) =
1
N

N

∑
i=1

|h(xi) − yi |

D
(xi, yi)

ϵS(h) = 𝔼xS∼P[ |h(xS) − yS | ]

ϵT(h) = 𝔼xT∼Q[ |h(xT) − yT | ]

𝒳



Transfer Bounds for Domain Adaptation

Theorem. Let            be a hypothesis,         and          be risks of 
source and target respectively, then


where             


 


is the H-divergence between P and Q.

h ∈ ℋ ϵS(h) ϵT(h)

ϵT(h) ≤ ϵS(h) + dℋ(P, Q) + C0

dℋ(P, Q) ≜ 2 sup
η∈ℋ

Pr
P

[η(xS) = 1] − Pr
Q

[η(xT) = 1]

C0: a constant for the 
complexity of H 

Ben-David et.al. (2010). A theory of learning from different domains
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Transfer Bounds for Domain Adaptation

Theorem. Let            be a hypothesis,         and          be risks of 
source and target respectively, then


where             


 


is the H-divergence between P and Q.

h ∈ ℋ ϵS(h) ϵT(h)

ϵT(h) ≤ ϵS(h) + dℋ(P, Q) + C0

dℋ(P, Q) ≜ 2 sup
η∈ℋ

Pr
P

[η(xS) = 1] − Pr
Q

[η(xT) = 1]

C0: a constant for the 
complexity of H 

Make P and Q as 
indistinguishable as possible 

Decrease the upper bound 
on target risk !

e.g. minimize MMD, MK-MMD, domain 
discriminative loss, etc

Ben-David et.al. (2010). A theory of learning from different domains

Lemma. The H-divergence can be bounded by the empirical estimate:

dℋ(P, Q) ≤ ̂dℋ(P, Q) + C1



Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.
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Motivating Example 1: driving trajectory prediction

Art) methods viz., Transformers and Goal-based mod-
els in section 3.

• Paper provokes researchers with a possible future di-
rections and highlights current research gaps in section
4.

2. BASICS AND CHALLENGES OF TRAJECTORY
PREDICTION

In this section we go through the challenges in trajectory-
prediction problem statement and some basic background
information required to dive deeper into top-trending tech-
niques for the modern trajectory prediction methods.

2.1. Challenges

Prediction in the self-driving domain is a complex problem
due to the following characteristics:

• Interdependence: There are inter-dependencies in the
behavior of the agents i.e. future behavior of one agent
may affect future behavior of other agents in the vicin-
ity. Hence, we need to take into account the entire sur-
rounding scene of the road including traffic-rules for
making agent’s trajectory-prediction. This makes pre-
diction modeling as a joint optimization problem for all
the agents.

• Real-time Requirement: We need to design a bulky
deep-learning module that does joint-optimization of
the agent’s trajectories. However, autonomous vehicles
needs to operated in real-time (⇠10hz) giving the pre-
diction module a very tight run-time budget.

• Accumulating Errors: Prediction module comes
after perception and tracking module in self-driving
software-stack. This means that there would be some
errors already accumulated by the other modules.
Hence prediction module’s performance is dependent
on how well previous models perform.

• Dynamic Nature: Both the ego-vehicle and agents
are moving in the scene. Future trajectories of the
agents depend on the motion of the ego vehicle as
well. Hence, ego-vehicle motion compensation needs
to be modeled while dealing with temporal data from
the sensors. Modeling everything in BEV makes this
problem somewhat simpler.

• Multi-modal Behavior: Multi-modal behavior of
agents, that is given a past history of an agent, there
could be multiple possible future trajectories. For
example a pedestrian who just stepped on to the cross-
walk with a pedesrian red-signal may continue walking
or may turn-around. Comprehensive predictor needs to

evaluate all the possible trajectories for each event with
their likelihood score.

2.2. Prediction task Problem Statement

Prediction task can be divided into two sections as per [1]:

• Intention: This is a classification task where we pre-
design a set of intention classes for an agent. For ex-
ample for a vehicle it could be: stopped; parked; or
moving. We generally treat it as a supervised learning
problem, where we need to annotate the possible clas-
sification intents of the agent.

• Trajectory: This division needs to predict a set of pos-
sible future locations for an agent in the next Tpred fu-
ture frames, referred as way-points. This constitutes
their interaction with other agents as well as with the
road as shown in Fig. 2.

Fig. 2. [9] shows how to model trajectory-predictions for dy-
namic agents on the road by making them interaction-aware
and road-aware. Veh.2’s trajectory is dependent on veh.3’s
trajectory and vice versa.

Trajectories and intentions need to be interaction-aware.
For an instance, it’s a fair assumption that an on-coming cars
might break a little if you aggressively try to enter a high-
way on a traffic-packed highway road. Generally trajectory-
prediction can be modeled in image-view (a.k.a perspective-
view) or BEV; but now-a-days it is preferred to be done in the
BEV space itself. Reason being, in BEV space we can assign
a dedicated distance range in the form of grid for our Region
of Interest (RoI). However, Image-view can have theoretically
infinite RoI because of the vanishing lines in the perspective-
view. It is easier to model occlusions in BEV space as motion
is more linearly modeled. Ego-motion compensation can be
easily done with pose-change (translation and rotation of ego-
vehicle) in BEV. Moreover, this space preserves motion and
scale of the agents i.e. a vehicle will occupy same number of
BEV pixels irrespective of how far it is from the ego-vehicle;
which is not the case with image-view.

To predict what will happen in the future, we need to have
a good idea of the past. This can be commonly done by using
output of the tracker, or it can also be done using historically

Apoorv Singh, TRAJECTORY-PREDICTION WITH VISION: A SURVEY

Can we transfer the San Francisco model to San Diego? 


How much data collection $$ can be saved?
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Motivating Example 2: Model selection for few-shot tasks
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23M

ImageNet 21k 


ResNet50

ViT-Large

Task “Sketch”

Task “Real”

Is Bigger model better? 
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Motivating Example 2: Model selection for few-shot tasks

307M

23M

ImageNet 21k 


ResNet50

ViT-Large

testing accuracy on target data (n=50)
Task “Sketch”

Task “Real”

Is Bigger model better? 

Without 
full fine-

tuning, ViT 
transfers 

poorly





Which source 
dataset/model to 

transfer from?




When and 
when not to 

transfer?
Which source 

dataset/model to 
transfer from?




How to optimally 
combine different 

pre-trained models? 

When and 
when not to 

transfer?
Which source 

dataset/model to 
transfer from?
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Taskonomy (2018): investigated the transferability among 26 
image-based indoor scene understanding tasks on low-data 
scenario  


A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik and S. Savarese, 
"Taskonomy: Disentangling Task Transfer Learning," CVPR 2018

Large-scale studies on empirical transferability has 
attracted huge attention
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VTAB (2020): Visual Task Adaptation 
Benchmark

Zhai et. al. A Large-scale Study of Representation Learning with the Visual Task Adaptation 
Benchmark, 2020

18 Models pertained 
on ImageNet

19 target tasks from 
various domains 


Different transfer 
algorithms tested

Large-scale studies on empirical transferability has 
attracted huge attention
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Theoretical solution is intractable in practice

• Focus on the theoretical 
optimal performance 

• Strict model assumptions
• Intractable model complexity 

measures
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How to quantify transferability from data ?

Source Dataset

Target 
Dataset

Fast computation


Theoretically meaningful


Differentiable


transfer Target 
model

Pre-
trained 
model

backprop



Empirical transferability is the likelihood of the target 
training data  using source feature extractor (Xt, Yt) θs

θs

Trf(S → T ) = {
𝔼̂ [log P(Yt |Xt; θs, ht)] (retrain head)

𝔼̂ [log P(Yt |Xt; θt : θ(0)
t = θs, ht)] (fine-tune)



Empirical transferability is the likelihood of the target 
training data  using source feature extractor (Xt, Yt) θs

θs

Trf(S → T ) = {
𝔼̂ [log P(Yt |Xt; θs, ht)] (retrain head)

𝔼̂ [log P(Yt |Xt; θt : θ(0)
t = θs, ht)] (fine-tune)

Lower bound



Analytical transferability: estimate transferability 
w/o training the target network

• A good transferability metric should be

• interpretable

• efficiently computable from data 

• have theoretical meaning

8

Fixed category size setting, source domain: Painting

Standard setting, source domain: Painting

LEEP [6] NCE [4] H-score [5] LogME [15] OTCEOTCEsim

Fig. 4. Visualization of the correlation between transfer accuracy and transferability metrics. Points in the figure represent different target tasks. It can be
seen that our OTCE score shows significantly better correlation with the transfer accuracy, especially under the challenging fixed category size setting.

TABLE III
QUANTITATIVE COMPARISONS AMONG TRANSFERABILITY METRICS FOR SEMANTIC SEGMENTATION TASKS, EVALUATED BY

SPEARMAN’S ⇢ COEFFICIENT AND KENDALL’S ⌧ COEFFICIENT.

Transfer setting Target task
Spearman Kendall

OTCEsim LEEP [6] LogME [15] OTCEsim LEEP [6] LogME [15]

Intra-dataset Transfer

aachen 0.774 0.627 -0.005 0.642 0.484 -0.074
cologne 0.750 0.639 0.620 0.579 0.459 0.474
erfurt 0.750 0.585 0.565 0.575 0.432 0.400
jena 0.735 0.868 0.561 0.579 0.695 0.400
strasbourg 0.791 0.680 0.838 0.632 0.505 0.684

aachen 0.771 0.371 0.371 0.600 0.333 0.200
Inter-dataset Transfer cologne 0.657 0.371 0.600 0.467 0.333 0.333
(source: BDD100K) erfurt 0.086 0.714 0.257 0.200 0.600 0.067

jena 0.600 0.314 0.657 0.467 0.200 0.467
strasbourg 0.657 0.429 0.657 0.467 0.333 0.467

aachen 0.200 0.314 0.429 0.067 0.200 0.333
Inter-dataset Transfer cologne 0.829 0.429 0.771 0.733 0.200 0.600

(source: GTA5) erfurt 0.600 0.543 0.943 0.467 0.333 0.867
jena 0.714 0.257 0.886 0.467 0.200 0.733
strasbourg 0.886 -0.029 0.429 0.733 0.067 0.200

Average 0.653 0.474 0.572 0.512 0.358 0.410
bold denotes the best result and underline denotes the 2nd best result.

Cityscapes BDD100K GTA5

Fig. 5. Examples from the semantic segmentation datasets in street scenes.

and find that when there is insufficient source training data
(⇠ 100 samples), increasing the number of training samples
will considerably improve the generalization ability of the
source model, as shown in Fig. 9 (a). Meanwhile, for the inter-

dataset transfer setting, we analyze the relationship among the
model size, the accuracy on source task (source accuracy), and

the average transfer accuracy on target tasks (see Fig. 9 (b)).
First, we find that the large scale models (Fcn8s, PspNet) do
not promise the highest transfer accuracy. However, the models
containing ⇠ 20M parameters (FrrnB, SegNet) perform best.
Second, we notice that there is no explicit causality between
the source accuracy (in dash line) and the transfer accuracy
(in solid line), i.e., high-accuracy source model does not
ensure the high transfer accuracy. Consequently, it is better
to take the analytical transferability metrics for evaluating the
generalization ability of the source model in practice.

C. OTCE-based Finetune

In this subsection, we will evaluate the effectiveness of our
transferability-guided cross-domain cross-task transfer learn-
ing method OTCE-based finetune. A very important appli-
cation scenario of transfer learning is the few-shot learning
problem, i.e., the target task only contains very few labeled

transfer 
accuracy on a 

target task
(ground truth)

transferability metric

Source tasks
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P(Ys |Xs) = P(Yt |Xt)

e.g.


Proxy A-Distance (Ben-David 2006)


Wasserstein distance (Kantorovich 
1942)


Does not apply to 
different label space or 

label distribution!  
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Cross-Task Transferability
• A good transferability metric should be


• interpretable

• efficiently computable from data 

• have theoretical meaning

P(Xs) = P(Xt)
P(Ys |Xs) ≠ P(Yt |Xt)

                                                is estimated via 
optimal target loss in a simplified transfer model 
(e.g softmax regression)



Analytical Task Transferability Metric: H-Score 
Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer 
learning." In 2019 IEEE ICIP, pp. 2309-2313. 2019.
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Only need to compute  for source selectionℋ( fs)
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H-score of f(x)

Higher H-score  
↔ Better 

Performance

L( fs, W⋆) = Const(X, Y ) − ℋ( fs) + o(ϵ2)

By local information geometry, given zero-
mean feature , the optimal target loss isf(x)
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X fs(X) Y

frozen feature 
extractor

softmax

Wθs

ℋ( fs) = tr (cov( fs(X))−1cov(𝔼PX|Y
[ fs(X) |Y ])))

ℋ( fs)
ℋ( f ⋆

t )
Normalized H-score

Only need to compute  for source selectionℋ( fs)
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Intuitively, H-score minimizes feature redundancy 
and maximize intra-class distance. 
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average inter-class 
distance↑
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Y=3



Statistically, H-score characterizes the asymptotic 
error probability of the test statistics based on  f(X)

52Higher H-score ↔ Faster error decay with increasing sample size 


Px|y=0 Px|y=1   Likelihood ratio predictor


𝔼[ f(X)]

Expected error probability 
Pe = α{Type I Error}+β{Type II Error}



H-Score is negatively correlated with target log-loss on 
ImageNet (Resnet50) -> Cifar100, under different training size

• 6 Source models:  Layers 4a - 5f in 
ResNet50 


• Target dataset: Cifar 100-class 
classification on 5K, 10K, …, 50K 
images
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H-Score is positively correlated with target 
training & testing accuracy  

54

H-score

Ac
cu
ra
cy

Target sample 
size: 20,000 



On Taskonomy Benchmark, H-Score is positively correlated 
with empirical-based transferability with ~6x speedup  

55Transferability Affinity Rank Comparison

DCG

Ranking correlation with Task Affinity 
(Zamir 2018)

Transferability Affinity Rank Comparison

DCG
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Task transferability (H-Score, LEEP..) assumes source and 
target task has the same input distribution  Ps(x) = Pt(x)

H-Score also has known limitations,

• numerical instability 

• regression tasks (LEEP by Nguyen et. al. 2020)

• same-domain assumption

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate 
transferability of learned representations.ICML, 2020.
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Task transferability (H-Score, LEEP..) assumes source and 
target task has the same input distribution  Ps(x) = Pt(x)

Cross-domain Cross-task Transferability

• numerical instability 

• regression tasks (LEEP by Nguyen et. al. 2020)

• same-domain assumption

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate 
transferability of learned representations.ICML, 2020.
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OTCE：Cross-domain Cross-task Transferability

Decompose “transfer hardness” into domain difference and 
task difference
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ŴD ŴT
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Yang Tan, Yang Li*, and Shao-Lun Huang. "OTCE: A Transferability Metric for Cross-Domain Cross-
Task Representations." CVPR，2021
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Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

MNIST ! MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

Syn Numbers ! SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 5: The e↵ect of adaptation on the distribution of the extracted features (best viewed
in color). The figure shows t-SNE (van der Maaten, 2013) visualizations of the
CNN’s activations (a) in case when no adaptation was performed and (b) in
case when our adaptation procedure was incorporated into training. Blue points
correspond to the source domain examples, while red ones correspond to the target
domain. In all cases, the adaptation in our method makes the two distributions
of features much closer.

extractor component Gf . For updating the domain classification component, we used a
fixed � = 1, to ensure that the latter trains as fast as the label predictor Gy.6

Finally, note that the model is trained on 128-sized batches (images are preprocessed by
the mean subtraction). A half of each batch is populated by the samples from the source
domain (with known labels), the rest constitutes the target domain (with labels not revealed
to the algorithms except for the train-on-target baseline).

5.2.3 Visualizations

We use t-SNE (van der Maaten, 2013) projection to visualize feature distributions at dif-
ferent points of the network, while color-coding the domains (Figure 5). As we already
observed with the shallow version of DANN (see Figure 2), there is a strong correspondence

6. Equivalently, one can use the same �p for both feature extractor and domain classification components,

but use a learning rate of µ/�p for the latter.
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• What’s Transfer Learning


• Traditional transfer learning algorithms


• Task transfer learning


• Domain adaptation


• Transfer bound on domain adaptation  


• When to transfer？


• Transferability estimation


• Research trends



• Multi-source transfer learning: how to efficiently, adaptively 
combine features from multiple source tasks in transfer 
learning?  


• Continuous domain adaptation: leverage intermediate 
domains to adapt model to distant target tasks

Beyond Transfer Learning
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New Challenges for transferring from foundation models


• Zero-shot/Few-shot adaptation 


• Full update is too slow: parameter-efficient model adaptation   


• No access to source data: Source data free model selection 


• New transfer paradigms


• Transfer attention-maps for Vision Transformer


• Prompt tuning 

Transfer learning using foundation models 


