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Outline

What’s Transfer Learning

Traditional transfer learning algorithms
- Task transfer learning
- Domain adaptation

- Transfer bound on domain adaptation

When to transfer?

- Transferability estimation

Research trends

- Transfer learning in the age of foundation models



Why we need transfer learning?

When facing a new learning task

- Lack of annotations: Training labels may be expensive
to obtain

- Limited training time or resource: can’t train from
scratch every time

Battery capacity estimation

Medical image classification

Current{ A)

| W0 20 [0RD) 14400 B0
Timeds)



Transfer learning

- Human learners can inherently transfer knowledge between
tasks

—>




Transfer learning

- Human learners can inherently transfer knowledge between
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Linear ) Machine
Learning




Transfer learning

- Human learners can inherently transfer knowledge between

Clad ot

Linear Machine

algebra Learning

How can machines recognize and apply relavent knowledge from
previous learning experience?



Transfer Learning at 1000 feet

- Transfer knowledge from one or more source tasks or domains
to a target domain or task.

Given Learn

[
Data *
L N
Target Task

Source-Task /

Knowledge




How transfer might improve target learnring
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How transfer might improve target learnring
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How transfer might improve target learnring

Less time to fully learn the

Better final (asymptotic)
performance

higher slope higher asymptote

IIIIIIIIIIIIIIIIIIIII
a

anut®

at®

------ with transfer
— Without transfer

higher start Better initial performance

performance

training

Transfering might reduce target learning
performance (negative transfer)



Two Branches of Transfer Learning Paradigms

Inductive Learning: Learn decision function f from training
data, test on unseen data

Reinforcement Learning: sequential decision making problems

ﬂwronment

- 0

) ReWard
Interpreter

Action



Inductive Transfer Learning Examples

- Domain-specific computer vision tasks
- Common to transfer pre-trained features from ImageNet

el 3

(a) No damag:

IS

(b} Flexural dama e

ImageNet 1000-class )
classification task I :i b -

(d) Combined damage

Structural Damage Detection

Yuqing Zhao et. al. Deep Transfer Learning for
Image-Based Structural Damage Recognition



Learning with Small Samples: K-Shot Learning

- When the training set of a task only has k samples

- e.g. one-shot alphabet classification:

4

Where is another?

m|BA =]
& = 7 B3
Alhiyg n
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OMIGLOT dataset



Learning with Small Samples: K-Shot Learning

- When the training set of a task only has k samples

- e.g. one-shot alphabet classification:

4

Where is another?
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OMIGLOT dataset



K-Shot Learning

- Transfer latent knowledge of handwritten characters from

other tasks

5

o

classification tasks in different alphabets
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K-Shot Learning

- One-shot person re-identification from video

VIPeR PRID2011 CUHKO1

Key Idea: Transfer knowledge from multiple domains (datasets)

Bak et. al. (2017) One-Shot Metric Learning for Person Re-
identification



Reinforcement Transfer Learning Examples

- Reinforcement learning for robotic control, e.g

- SIM2Real: transfer learned policy/value function from
simulated robot to physical robot
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Simulated marble Real maze on robotic arm
maze game



Applications of Transfer Learning

- Reinforcement learning for robotic control, e.g

- Transfer between robots and between tasks
Robot 1 (3-link) Robot 2 (4-link)

Open drawer

Push box

Devin (2016) Learning Modular Neural Network Policies for Multi-Task Multi-
Robot Transfer



Transfer Learning vs Multi-Task Learning

TL is more likely to encounter in real world than MTL

Transfer Learning Multi-task Learning

;

;

TL: Source task is learned without

e

.

’

knowledge of any target tasks



Outline

- Traditional transfer learning algorithms
- Task transfer learning
- Domain adaptation

- Transfer bound on domain adaptation

« When to transfer?

- Transferability estimation

- Research trends



Transfer Learning Definition

Terminologies
- Domain: D = {X, Py}
- Task: T=1{Y,f}
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Transfer Learning Definition

Source Domain DS

. V N\

Input
Term'inOlOg'ieS features > Learning Task |\

v
- Domain: D = {X, Py} &

* input _Transfer
- Task: T =1{Y,f} distribution Learning
/V

X

labels  predictive
function Py x > Learning Task /

. /

I
Target Domain Dt

<

-




Transfer Learning Definition

Source

Domai

nDS

Y

)

Learning Task

-

<

. Y
Input
Terminologies fciatures
.+ Domain: D = {X, Py}
input
. Task: T =1{Y,f} distribution
Pl N
labels  predictive
function Py x
.

)

-

Learning Task

/

Target Domain Dt

Transfer learning: improve the performance of predictive

function f, for T, by discover and transfer latent knowledge

from (D,,T,) , where D # D,and/or T, # T,

Transfer
Learning



Transfer Learning

D,#D, T #T,
Domai n Hybrid Task tra.nsfer
adaptation learning

Task Transfer Learning: adapt source hypothesis or feature to
target task

Ts: scene classification

living room

Tt: object detectif)n sofa, table,

lamp, ...




Transfer Learning

adaptation

Domain adaptation: Learn domain agnostic representations

Ts/Tt: Vehicle Detection

domain
shift




Transfer Learning

Task Transfer Learning: adapt source hypothesis or feature
to target task

Domain adaptation: Learn domain agnostic representations

Most transfer learning problems in practice are hybrid!



Task Transfer Learning

- Pre-trained Model + Fine Tuning

e.g object classification -> scene classification

o o o ® o o o
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Itransfer weights  fine tuning
N :




Task Transfer Learning

- Pre-trained Model + Fine Tuning

e.g object classification -> scene classification

o o o ® o o o
"0 "0 "0 "0 "0 o
® ® o o o o @

Itransfer weights  fine tuning
N .

intuition: low level features are shared across most vision tasks



Heterogeneous Task Transfer Learning

- Heterogeneous task transfer learning using encoder-decoder
network

N
L= 1y~ DAEC)II
i=1

source
encoder

source
decoder

source task
output



Heterogeneous Task Transfer Learning

- Heterogeneous task transfer learning using encoder-decoder
network

N
L= |1y~ DAEC)II
i=1

source
encoder

source task
output
transfer

v 1. 1 Transfer Function

3% order - -

224 order-j
it

source
decoder

Represéntations
source target task
ClFrozen encoder output



Heterogeneous Task Transfer Learning

- Heterogeneous task transfer learning using encoder-decoder
network

N
L= |1y~ DAEC)II
i=1

source
encoder

source
decoder

source task

N output
franster 1= 3 11y - 6|1
i=1
3d order | Lransfer Function
3w order - -

il
204 order - j;
it

Represéntations
source target task
ClFrozen encoder output



Outline

- Domain adaptation

- Transfer bound on domain adaptation

« When to transfer?

- Transferability estimation

- Research trends



Domain Adaptation Techniques

- Instance-based approach

- Mapping-based approach

- Adversarial-based approach

~_ Target Domain

Target Domain
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Instance-based approaches

- select partial instances from the source domain as supplements to
the training set in the target domain

Target Domaln . . . .
p ® o o °
XS
\ . _> . _> . ------ .
| | _ | ®
| [ _ [ ®

Partial instances in the source domain can be utilized by
the target domain with appropriate weights



Boosting for instance-based transfer

- TrAdaBoost (Dai 2007)

« Use AdaBoost to filter out source domain instances that are
dissimilar to target domain

- Reweight source domain instances to resemble target domain
distribution

- Train model with reweighted source + target domain instances

h]gher arget Doman
weights

- TaskTrAdaBoost (2010): a boosting technique for transferring from
multiple sources




Mapping-based approach

- Mapping instances from the source domain and target domain
into a new data space

Target Domain

a space where Xs and X; are
distributed similarly

..!..
...l..
:

New Data Space

Source Domain

P(Xs)

How to measure domain similarity?




Maximal Mean Discrepency (MMD)

- Maximal Mean Discrepency : a kernel-based 2 sample test for
the null hypothesis P=Q (Fortet and Mourier, 1953)

DypplP, Q1 £ sup (Ep[¢p(X)] = Eglgp(Y)])

peF

- where X~ P, Y~ Q
- feature map ¢( )

- Used in Transfer Component Analysis (TCA) (Yang, 2018) to
correct domain shift

1 1
Diypip(Xs, X1) = VS Z P(xy) — FT Z P(x;)

x,EXy X, EXr




Use MMD as a Domain Regularization Term

- Given pre-trained source model, train an adpation network
that minimizes classification error and domain MMD

L=LAX;,y)+ /1D1\2/1MD(X59 X7)

Source

Minimize classification
error

Source

Maximize domain
confusion

Target

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance



Use MMD as a Domain Regularization Term

Training step:

- 1. Select the layer to transfer from using MMD metric

- 2. Train an adaptation layer fa on source and target data

using MMD as a regularizer

classification
loss

domain
loss

Testing step: -~

fc8

- Transform target input by fa(Xt)

1)

(1

fc8

~

fc_adapt

fc7

fc6

convb

conv1

\

/

L=LAX;,y)+ /1D]\24MD(XSa X7)

e —
Labeled Images

fc_adapt

fc7

fc6

convb

conv1

\

/

— 3
Unlabeled
Images

Tzeng et. al. Deep Domain Confusion: Maximizing for Domain Invariance



Variations with MMD-based domain adaptation

- Deep Adaptation Network (Long et.al. 2015):

- Use multi-kernel MMD (MK-MMD)
DyyplP, O, K1 = [(Ep[p(X)] = Epld(N)Dl 5,

- Fine-tune source task jointly with MMD constraints on multiple
layers

(OOOOOOO)
Y
OQeee OO0
v
00++0O0
Vi
OQeee OO0
)
OQeee OO0
v
OQeee OO0

ooooooooooooooo

- Joint Adaptation (2018): adapt joint distributions instead of
P(XS)) Q(Xt)



Adversarial-based approach

- Adopt adversarial training in learning transferable
representation.

Source Domain

Target Domain

—)

@ ==p

® — CIXIZ)

\
/

Adversarial Layer

)

Effective features should be discriminative for the main learning task and
indiscriminative between the source domain and target domain.



Adversarial-based approach

Ajakan et al. (2014) Domain-adversarial neural networks.

- Standard deep neural network training

forward pass

@ | ® @ | | @ \
m—' e "0 "0 "0 0 "0 ® | L(f(x),y)
@ @ @ @ @ @ o /
< back-propagation oL

50,



Domain Adversarial Neural Networks

Ajakan et al. (2014) Domain-adversarial neural networks.

- Gradient Reversal

Aersarial Layer
Target Domain F F o @ =) Torget label

— — L(f(x),y,)
oL oL

50, 50,

SL feature ;7
56, \ AT
—— o —— L(f(x)), ;)
Source Domain . : .: . .- Source label
90
m_’ ™ ® -
® ® ® - “
® D(f(x),y)
® o o S0,y
@




Domain Adversarial Neural Networks (DANN)

Ajakan et al. (2014) Domain-adversarial neural networks.

- DNN adapted feature distribution

@ source domain (MINIST)
@ target domain (MNIST-M) 1 n

TSNE visualization of CNN gxtracted featurqs

Non-Adapted



Domain Adaptation Discussion

- Instance-based approach: select and reweight instances in the
source domain to be similar to the target distribution

- Mapping-based approach: map source and target data to
latent space where source and target domains are similar

- Adversarial-based approach: find features that are
indiscriminative between source and target domains
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Transfer Bounds for Domain Adaptation

. Given input x ~ D with discrete alphabet 2 and label y € {0,1}
- A hypothesis is a function 4 : & — {0,1}
- Generalization error (risk) of hypothesis & :

e(h) = E, pl[A(x) = y]]

- Empirical risk of hypothesis 4 given N samples (x;y;) drawn
i.i.d. from D:

1 N
e(h) = NE} | h(x;) — v, ]

. Source risk: €s(h) = E, _pl|A(xg) — yg|]
. Target risk: ep(h) = [EXTNQ[ | h(xp) — yp| ]



Transfer Bounds for Domain Adaptation

Ben-David et.al. (2010). A theory of learning from different domains

Theorem. Leth € # be a hypothesis, eq(h) and e;(h) be risks of
source and target respectively, then

Co: a constant for the
<
er(h) < e5(h) +|dz(P, Q)+ Cy “ complexity of H

dy(P, Q) £ 2 sup |Pr[n(xg) = 11 — Prn(x;) = 1]
neH P Q

where

is the H-divergence between P and Q.
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<
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Transfer Bounds for Domain Adaptation

Ben-David et.al. (2010). A theory of learning from different domains

Theorem. Leth € # be a hypothesis, eq(h) and e;(h) be risks of
source and target respectively, then

Co: a constant for the
<
er(h) < €5(h) Hdz(P, Q) [+ Co “ complexity of H

dy(P, Q) £ 2 sup |Prn(xg) = 11 — Prn(x;) = 1]
neH P Q

where

is the H-divergence between P and Q.

Lemma. The H-divergence can be bounded by the empirical estimate:

de(P, Q) + C

Make P and Q as 0 Decrease the upper bound
indistinguishable as possible on target risk !
e.g. minimize MMD, MK-MMD, domain
discriminative loss, etc
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Motivating Example 1: driving trajectory prediction

Can we transfer the San Francisco model to San Diego?

il Eieniia How much data collection $S can be saved?

Maneuver Maneuver

>

Apoorv Singh, TRAJECTORY-PREDICTION WITH VISION: A SURVEY

39



I\/Iotivating E

ImageNet 21k

ViT-Large

ResNet50

xample 2: Model selection for few-shot tasks

Task “Sketch”

- J B
-

Task “Real”

I i Is Bigger model better?

40



I\/Iotlvatmg Example 2: Model selection for few-shot tasks
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RN ada BT
e = Eah T
'&y ™ o g % ENTNY

"}r.-.-t_;! <3 i ) 3

testing accuracy on target data (n=50)
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I\/Iotlvatmg Example 2: Model selection for few-shot tasks

o {‘ "n
ImageNet Z'Fk

RN ada BT
e = Eah T
'&;,‘ ™ o g % ENTNY

"}r.-.-t_;! <3 i ) 3

testing accuracy on target data (n=50)

Task “Sketch” Without
full fine-

.. “f ) (< N E;L_l C\Ly «— tuning, ViT
* ’ — transfers
ViT-Large ‘ E poorly

Task “Real”

ResNet50
40






Which source
dataset/model to
transfer from?




When and

when not to
transfer?

Which source
dataset/model to
transfer from?




When and

when not to
transfer?

Which source
dataset/model to
transfer from?

How to optimally
combine different
pre-trained models?




Large-scale studies on empirical transferability has
attracted huge attention

Taskonomy (2018): investigated the transferability among 26
image-based indoor scene understanding tasks on low-data

scenario

26 Task-Specific Networks

3000 Transfer Networks (include
high-order relations)

47,829 GPU hours

A. R. Zamir, A. Sax, W. Shen, L. Guibas, J. Malik and S. Savarese,
“Taskonomy: Disentangling Task Transfer Learning,” CVPR 2018

42
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Large-scale studies on empirical transferability has
attracted huge attention

VTAB (2020): Visual Task Adaptation
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Theoretical solution is intractable in practice

Mach Learn (2010) 79: 151175
DOI 10.1007/s10994-009-5152-4

A theory of learning from different domains

Shai Ben-David - John Blitzer - Koby Crammer -
Alex Kulesza - Fernando Pereira -

b/
Jennifer Wortman Vaughan Domain Adaptation: Learning Bounds and Algorithms

Recerved: 28 February 2009 / Revised: 12 September 2009 / Accepted: 18 Septer

Published online: 23 Octaber 2009 Yishay Mansour Mehryar Mohri Alshin Rostamizadeh
© The Author(s) 2009. This article is published with open access at Springerlink. Google Research and Courant Institute and Courant Institute
Tel Aviv Univ. Google Research New York University
mansourftau.ac,.il mohrifcime.nyu,adu rogtemifics . nyu.edu
Abstract many other areas. Quite often, little or no labeled dat
=3 . . . available from the farpet domain, but labeled data fro
Bndglng Theory and A]gonthm for Domain A(l’lus paper addresses the general problem of do- source domain somewhat similar to the target as well as It
main adantarion which ariseg in a varietv of annli- amounts of unlaheled data from the target domain are a‘tl_ %

Yuchen Zhang " '* Tianle Lin ‘*? Mingsheng Long’* Michael 1. Jordan?*

Abstract Remarkable theoretical advances have been schieved in do-
main adaptation. Mansour ¢t al. (2009¢); Ben-David et al.
(2010) provided rigorous leaming bounds for unsupervised
domain adaptation, a most challenging scenario in this field,
These earliest theanies have later been extended in many

This paper addresses the problem of unsupervised
domain adaption from theoretical and algorithmic
perspectives. Existing domain adaptition theories



Theoretical solution is intractable in practice

« Focus on the theoretical
optimal performance

Mach Learn (2010) 79: 151175
DOI 10.1007/s10994-009-5152-4
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Empirical transferability is the likelihood of the target
training data (X,, Y,) using source feature extractor 6,
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Analytical transferability: estimate transferability
w/o training the target network
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Cross-Domain Transferability are measured using
domain divergence Dist(P(X,), P(X))

P(Y,|X,) = P(Y,| X,)

Domain: Photo

Domain: Painting
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“bed” domain adaptation
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Wasserstein distance (Kantorovich w,z-’i‘”/ < \
1942)
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label distribution!
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Cross-Task Transferability is estimated via
optimal target loss in a simplified transfer model
(e.g softmax regression)

Domain: Photo
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Analytical Task Transferability Metric: H-Score

Yajie Bao, Yang Li, et. al. "An information-theoretic approach to transferability in task transfer
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Intuitively, H-score minimizes feature redundancy
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H (f) = tr(cov(f(X)) ™ cov(Ex [ f(X) | Y1)

51



Intuitively, H-score minimizes feature redundancy
and maximize intra-class distance.

F(f) = tr(cov(f(X))[ ' cov(ExyLf(X) | Y]))

feature
redundancy!

51



Intuitively, H-score minimizes feature redundancy
and maximize intra-class distance.

I (f) = tr(eov(fOO)) eov(Exy ) [ Y]

feature average inter-class
redundancy! —>  distancet

ELNELAX) | YTII°]

51



Intuitively, H-score minimizes feature redundancy
and maximize intra-class distance.
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Statistically, H-score characterizes the asymptotic
error probability of the test statistics based on f(X)

Pry=0 | Pry=1 Likelihood ratio predictor

E[A(X)]

Expected error probability
P, = a{Type | Error}+f{Type Il Error}

Higher H-score <= Faster error decay with increasing sample size

52



H-Score is negatively correlated with target log-loss on
ImageNet (Resnet50) -> Cifar100, under different training size
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2.0 - ResNet50

- Target dataset: Cifar 100-class
classification on 5K, 10K, ..., 50K
Lo, images
\ i T S
. . . . . ke . % RN
* > Ii?g—loss > * ® &“l- H H&.-
IR a8

Hscore
|_I
(0]

53

Validates our claim L(f,6*) = Const(X,Y) — Z(f) + o(e?)



H-Score is negatively correlated with target log-loss on
ImageNet (Resnet50) -> Cifar100, under different training size

2.0 -

—o— 5K
® —o— 10K
S 1.5 —e— 20K
T —o— 30K

—e— 50K

1.0 - X
20 25 30 35 40

Log-loss

- 6 Source models: Layers 4a - 5f in

ResNeth0

- Target dataset: Cifar 100-class

classification on 5K, 10K, ..., 50K
images

ﬂ'h@% rﬂﬁ@
g. ﬂ!'- i H&.ﬂ

53

Validates our claim L(f,6*) = Const(X,Y) — Z(f) + o(e?)



H-Score is positively correlated with target

training & testing accuracy

-&— training accuracy

| —e— testing accuracy

22 23

H-score
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= g N e
pEl N 2 A RO ENER

Target sample
size: 20,000
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On Taskonomy Benchmark, H-Score is positively correlated
with empirical-based transferability with ~6x speedup

Ranking correlation with Task Affinity

30 Edges keypoint2d

l edge3d

keypoint3d
Imace Ra2shading

reshade 0.810 0.998
depth

2D Keypoints 3D Keypoints

object class.

scene class.

(Zamir 2018)
Spearman DCG
edge2d

Depth Object Class. Scene Class.

- 0.9

0.3

55



H-Score also has known limitations,

* numerical instability
* regression tasks (LEEP by Nguyen et. al. 2020)

* same-domain assumption P(y,lx)  PO:lYy)
ol ¥
Source

pseudo-label

LEEP = — Zlogp(y,pc)
=1

Task transferability (H-Score, LEEP..) assumes source and
target task has the same input distribution P (x) = P(x)

56

Cuong V Nguyen, Tal Hassner, Cedric Archambeau, and 952 Matthias Seeger. Leep: A new measure to evaluate
transferability of learned representations.|ICML, 2020.
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Traditional transfer learning algorithms

What’s Transfer Learning

- Task transfer learning

- Domain adaptation

- Transfer bound on domain adaptation

When to transfer?

- Transferability estimation

Research trends
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Transfer learning using foundation models

New Challenges for transferring from foundation models
- Zero-shot/Few-shot adaptation
. Full update is too slow: parameter-efficient model adaptation
- No access to source data: Source data free model selection
- New transfer paradigms
- Transfer attention-maps for Vision Transformer

- Prompt tuning



