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Aim: This note is to review some basic mathematical knowledge on linear algebra, calculus and probability.

We hope it can assist you in your future coursework.

1 Linear Algebra

1.1 Inner Product and trace

Definition 1. (Inner product). A function (-,-): Vx V — F is an inner product if it satisfies [1]:
e Linearity: (av + fw,x) = a (v, x) + 8 (w, x);

e Conjugate symmetry: (v, w) = (w,v);

e Positive definiteness: (v,v) > 0, with the equality iff v = 0.

T

. . . A
The most common one is the canonical inner product on R™. It says for vectors « = [x1,...,2,]" and

2] |T, we have

Yy Yis-- -y Yn

n
(z,y) £ 21y + Toyo + 0 Tl = leyz =zly.
i=1

Example 1: (Orthogonal Vectors) Vector € R is orthogonal to y € R™ when (z,y) = 0.
Example 2: (Unit Vector) Vector & € R™ is of unit length when (x, ) = 1.
Example 3: (Orthogonal Matrix) The matrix Q € R™*™ is said to be orthogonal if

QQ"=Q'Q=1

which implies that each column of Q has unit length and orthogonal to each other.
n

Definition 2. (Trace). For M € R™*" trace(M) = > M;;, where M;; is the diagonal terms of matrix M.
i=1

Theorem 1. For any matrices A, B of compatible size,

trace(AB) = trace(BA).
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1.2 Vector Norms

A norm on a vector space V gives a way of measuring lengths of vectors. Formally:

Definition 3. (Vector norm). A norm on a real vector space V is a function || - || : V — R that is:
e Nonnegatively homogeneous: ||ax|| = |af||z|| for all vectors & € V, scalars o € R;
e Positive definite: ||z|| > 0, and ||z|| = 0 iff z = 0;

e Subadditive: || - || satisfies the triangle inequality ||z + y|| < ||z|| + ||y]|, for all z,y € V.

One very important family of norms are the ¢ norms. If we take V=R", and p € [1, c0), for vector

T

x 2 [xq,...,2,]7, we have

el = (Z |w> gy W

i

The most frequent used one is the £? norm or the ”Euclidean norm”,

which coincides with our usually way of measuring lengths. T'wo other cases are of almost equal importance:
p=1,and p = oo. Setting p = 1 in (I, we obtain [jz|[; = Y, |a;].
Finally, as p becomes larger, the expression in accentuates the largest |x;| among x entries. In another

words, as p — 00, ||x||, — max; |x;|. Thus, we can extend the definition of the ¥ norm to p = oo by defining

l#lloe = max .

2 Calculus

2.1 Derivatives

Scalar b, vectors ,w,y and matrix A, we have :
O(wTzx + b)
o~ =7

o = 2 I
0A

For more derivative calculation, please refer to the Matrix Cookbook[2].
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3 Probability

3.1 Basic Properties
For events E and Es, if they are disjoint, i.e. B3 N Ey = @, then P(Ey U Ey) = P(Ey) + P(E»)
Definition 4. (Conditional probability) For events A and B, and P(A) > 0,

P(ANB)

P(BIA) = 5

We can define the conditional expectation as

EY|X =a]2 ) y-p(Y =ylX =x)
yey

Definition 5. (Covariance) For two random variables X and Y, the covariance is defined by
Cov[X,Y]=E[XY]-E[X]|E[Y]

When the covariance of X and Y is 0, we call them uncorrelated variables.

Definition 6. (Independent) For two random variables, when the joint pdf can be written as the product of
two RVs’ pdf
f(xay) = fX (‘T) fY (y) )

we call them independent.

Theorem 2. We have:
o (Multiplication Rule) For events A and B,

P(AN B) = P(A)P(B|A) = P(B)P(A|B);

o (Total probability rule) By, Ba,..., By form a partition of Q, Vi # j, B; N B; = 0,U*_; B; = Q, we have:

k
P(A) = ZIP’(Bi)IP(A|B,;);
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o (Bayes Rule)

P(B;|A) = P(ANBy)  P(AIB)P(B1)  P(A[B)P(By)

P(A) P(A) i [P(A|Bi)]P’(B¢).
=1

3.2 Gaussian Distribution
3.2.1 Normal Distribution

e If random variable X € R, X ~ AN(u,0?), where € R and o € R, then the density function of it is:

plx;p,0) = L ()
o E[X] = u; var(X) = o2

3.2.2 Multivariate Gaussian Distribution

e If random variable X € R", X ~ N (u,X), where p € R” and X € R™*™ is symmetric and positive
semi-definite (PSD), then the density function of it is:

p(e; p, X) = W exp (—%("B —p)'E (- H))

o E[X] = p; cov(X) = X.

0254

nzd:

Figure 1: Multivariate Gaussian’s p.d.f
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