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POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous years,
covered by papers and web pages, we expect the students NOT to copy, refer to,
or look at the solutions in preparing their answers (relating to an unauthorized ma-
terial is considered a violation of the honor principle). Similarly, we expect you to
not google directly for answers (though you are free to google for knowledge about
the topic). If you do happen to use other material, it must be acknowledged here,
with a citation on the submitted solution.

• Required homework submission format: You can submit homework either
as one single PDF document or as handwritten papers. Written homework needs
to be provided during the class on the due date, and a PDF document needs to be
submitted through Tsinghua’s Web Learning (http://learn.tsinghua.edu.cn/)
before the end of the due date.

• Collaborators: In a separate section (before your answers), list the names of all
people you collaborated with and for which question(s). If you did the HW entirely
on your own, PLEASE STATE THIS. Each student must understand, write, and
hand in answers of their own.

2.1. SVM and logistic regression (4 points)

Support Vector Machine (SVM) is a powerful and effective supervised machine learn-
ing algorithm. Given m samples

(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
,x(i) ∈ Rn, y(i) ∈ R, i =

1, . . . ,m, we have learnt that the optimal parameters (w ∈ Rn and b ∈ R) can be
derived by solving the optimization problem:

min
w,b

1

2
||w||2

s.t. y(i)(w⊤x(i) + b) ≥ 1, i = 1, . . . ,m (1)

The constraints in (1) indicates a hard punishment of incorrect classification. As an
alternative form, the optimization problem above can be re-written into the mini-
mization of the following function

m∑
i=1

E∞(y(i)(w⊤x(i) + b)) + λ||w||2.
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(a) (0.5 + 0.5 points) Give the definition of function E∞(·) and the constraint for
the regularization parameter λ.

(b) (1 point) Consider the logistic regression model with a target variable y ∈
{−1, 1}, and we have p(y = 1|x) = σ(w⊤x + b), where σ(·) is the Sigmoid
function. Show that the negative log-likelihood, with the addition of a quadratic
regularizer, take the form

m∑
i=1

ELR(y
(i)(w⊤x(i) + b)) + λ||w||2,

and give the definition of function ELR(·).
(c) (Bonus 1 points) In real-world applications, there might exist overlap between

the class-conditional distributions, making an exact separation of training data
unfeasible and inadequate. To avoid such limitation, SVM is modified to allow
for some training points to be misclassified. Specifically, we introduce slack
variables ξ(i) ≥ 0, such that the constraints in (1) are replaced with

y(i)(w⊤x(i) + b) ≥ 1− ξ(i), i = 1, . . . ,m,

and we therefore minimize

C
m∑
i=1

ξ(i) +
1

2
||w||2, (2)

where the parameter C > 0. Show that (2) can also be written in the form

m∑
i=1

ESV (y
(i)(w⊤x(i) + b)) + λ||w||2,

and give the definition of function ESV (·) and regularization parameter λ.
Hint: you may need to discuss the relationship of y(i)(w⊤x(i) + b) and ξ(i). A
possible way is to write down the Lagrangian for soft SVM and use its KKT
conditions.

(d) (Bonus 1 points) Plot the error functions E∞(·), ELR(·) and ESV (·) in one graph
1. Conclude your findings and discuss what may happen if we replace the error
function with other functions.

2.2. Poisson regression and the exponential family (3 points)

(a) (1 point) Consider the Poisson distribution parameterized by λ:

p(y;λ) =
e−λλy

y!
.

Show that the Poisson distribution is in the exponential family, and clearly state
what are b(y), η, T (y), and a(η).

1Function input as x-axis and output as y-axis. You may use different colors or line styles to represent
different functions.
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(b) (1 point) Consider performing regression using a GLM model with a Poisson
response variable. What is the canonical response function for the family? (You
may use the fact that a Poisson random variable with a parameter λ has mean
λ.)

(c) (1 point) For a training set {(x(i), y(i))}mi=1, let the log-likelihood of an example
log p(y(i)|x(i); θ). By taking the derivative of the log-likelihood with respect to
θj, derive the stochastic gradient ascent rule for learning using a GLM model
with Poisson responses y and the canonical response function.

2.3. Gaussian discriminant analysis (4 points)

Suppose we are given a dataset {(x(i), y(i)) : i = 1, 2, . . . ,m} consisting of m indepen-
dent examples, where x(i) ∈ Rn are n-dimension vector, and y(i) ∈ {1, 2, . . . , k}. We
will model the joint distribution of (x, y) according to:

y(i) ∼ Multinomial(ϕ1, . . . , ϕk)

x(i)|y(i) = j ∼ N(µj,Σj)

where the parameter ϕj gives p(y(i) = j) for each j ∈ {1, 2, . . . , k}.
In Gaussian Discriminant Analysis (GDA), Linear Discriminant Analysis (LDA) as-
sumes that the classes have a common covariance matrix Σj = Σ,∀j. If the Σj

are not assumed to be equal, we get Quadratic Discriminant Analysis (QDA). The
estimates for QDA are similar to those for LDA, except that separate covariance
matrices must be estimated for each class. Give the maximum likelihood estimate of
Σj in the case when k = 2.


