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POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous years,
covered by papers and web pages, we expect the students NOT to copy, refer to,
or look at the solutions in preparing their answers (relating to an unauthorized ma-
terial is considered a violation of the honor principle). Similarly, we expect to not
to google directly for answers (though you are free to google for knowledge about
the topic). If you do happen to use other material, it must be acknowledged here,
with a citation on the submitted solution.

• Required homework submission format: You can submit homework either
as one single PDF document or as handwritten papers. Written homework needs
to be provided during the class in the due date, and PDF document needs to be
submitted through Tsinghua’s Web Learning (http://learn.tsinghua.edu.cn/)
before the end of due date.

• Collaborators: In a separate section (before your answers), list the names of all
people you collaborated with and for which question(s). If you did the HW entirely
on your own, PLEASE STATE THIS. Each student must understand, write, and
hand in answers of their own.

1.1. (Logistic Regression) Given random vectors x ∈ Rn, logistic regression models the
conditional distribution of class y given x with a Bernoulli distribution parameterized
by the Sigmoid function of θ⊤x, i.e.

P (y|x;θ) = (σ(θ⊤x))y(1− σ(θ⊤x))1−y,

where θ ∈ R is the weighting parameter for x and σ(·) denotes the Sigmoid function.

(a) (0.5 points) Show that the sigmoid function

σ(z) =
1

1 + exp(−z)

satisfies the property
dσ(z)

dz
= σ(z)(1− σ(z)).
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(b) (1 point) Suppose we have m independently generated training examples(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
,x(i) ∈ Rn, y(i) ∈ R, i = 1, . . . ,m, the log-likelihood

function can be written as:

I(θ) =
m∑
i=1

y(i) log σ(θ⊤x(i)) + (1− y(i)) log
(
1− σ(θ⊤x(i))

)
.

Prove that for θj,∀j ∈ {1, . . . , n},

∂I(θ)

∂θj

=
m∑
i=1

(
y(i) − σ(θ⊤x(i))

)
x
(i)
j .

(c) (0.5+1 points) Based on former results, give the pseudo code for solving argmaxθ I(θ)
using: 1) stochastic gradient ascent; 2) batch gradient ascent.

1.2. (Ridge Regression) Ridge regression was developed as a possible solution to the
imprecision of least square estimators when linear regression models have some mul-
ticollinear (highly correlated) independent variables.

We can formulate the ridge regression loss function as the following

J(θ)
def
= ||y −Xθ||2 + λ||θ||2,

where X is the design matrix, y is the corresponding label vector, and θ is the weight
vector. For an appropriate λ,

(a) (1 point) calculate ∇θJ(θ),

(b) (1 point) give the gradient descend iteration equation with learning rate α,

(c) (1 point) derive the optimal parameter θ∗ for the normal equation method.

1.3. (Maximum Likelihood Estimation) In class, we have learnt maximum likelihood
estimation for linear model assuming the error follows the Gaussian distribution. The
maximization process results in an equivalent formulation as ordinary least square
problem. But the maximum likelihood estimation is not always directing into the
l2-norm measurement. It depends on the error distribution assumption.

As shown in Figure.1 and Figure.2, let’s consider the linear regression problem with
an error following Laplace distribution, also known as the least absolute deviation1:
for the given m samples

(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
,x(i) ∈ Rn, y(i) ∈ R, i = 1, . . . ,m,

we need to determine the parameters θ ∈ Rn for the linear model:

y(i) = θ⊤x(i) + ϵ(i),

ϵ(i) ∈ R are i.i.d. Laplacian random variables with density function:

P (z) =
1

2τ
exp(

−|z − µ|
τ

)

where τ > 0 and µ is the mean value.
1See https://en.wikipedia.org/wiki/Least_absolute_deviations#Contrasting_ordinary_

least_squares_with_least_absolute_deviations for reference on least absolute deviation.

https://en.wikipedia.org/wiki/Least_absolute_deviations##Contrasting_ordinary_least_squares_with_least_absolute_deviations
https://en.wikipedia.org/wiki/Least_absolute_deviations##Contrasting_ordinary_least_squares_with_least_absolute_deviations
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(a) (1 point) Write down the expression of conditional distribution PY |X(y|x;θ).
(b) (1 point) Write down the log-likelihood function of this problem.

(c) (1 point) For data ((1, 1)⊤, 1), ((1, 2)⊤,−1) and τ = 1, µ = 0, derive the optimal
parameter θ∗.

(d) (Bonus 2 points) The ordinary least square uses l2-norm to measure the dis-
tances and wants to minimize overall distances of data points to a linear model.
Try to give a geometric interpretation of the least absolute deviation.

Figure 1: Linear Regression with Least
Absolute Deviation

Figure 2: Error with Laplace Distribution

1.4. (MAP) Suppose we have m samples x1, x2, ..., xm independently drawn from a normal
distribution with known variance σ2 and unknown mean θ, i.e.

P (xi|θ) =
1√
2πσ2

exp(−(xi − θ)2

2σ2
).

Maximum likelihood estimation (MLE) assumes that the optimal parameter θ is the
one that generates the observed data with the highest probability, i.e. θMLE

def
=

argmaxθ P (x1, x2, ..., xm|θ). However, what if we know some additional prior infor-
mation about the distribution of θ? e.g. Let θ be a random variable following a
Gaussian distribution, i.e. θ ∼ N(ν, µ2). We can calculate the posterior distribution
of θ using Bayes’ theorem and derive the MAP estimator θMAP , i.e.

θMAP
def
= argmaxθP (θ|x1, . . . , xm) =

P (x1, . . . , xm|θ)P (θ)

P (x1, . . . , xm)
.

(a) (1 point) Find the MLE estimator for θ;

(b) (1 point) Find the MAP estimator for θ;

(c) (1 point) Compare the estimators of MLE and MAP when n is very large.

1.5. (Softmax Regression)(3 points) In multivariate classification problems, we use soft-
max function to derive the likelihood of each possible label y and predict the most
probable one for data x ∈ Rn. To train parameter matrix Θ ∈ Rn×k from the given
samples

(
x(i), y(i)

)
, i = 1, . . . ,m, we need to calculate the derivative of the softmax

model’s log-likelihood function
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ℓ(Θ)
def
=

m∑
i=1

log p(y(i)|x(i);Θ) =
m∑
i=1

k∑
l=1

1
{
y(i) = l

}
log

eθ
⊤
l x(i)∑k

j=1 e
θ⊤
j x(i)

.

Calculate ∇θ1ℓ(Θ).


