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Abstract
With the rapid development of the Internet of
Things (IoT), the need to expand the amount of
data through data-sharing to improve the model
performance of edge devices has become increas-
ingly compelling. To effectively protect data pri-
vacy while leveraging data across silos, Federated
Learning (FL) has emerged. However, communi-
cation costs in FL constitute a critical bottleneck
for broader practical applications. Traditional
approaches like Federated Averaging (FedAvg)
and recent methods targeting increased communi-
cation efficiency primarily focus on client-side
enhancements, leaving server-side aggregation
largely untapped, potentially exacerbating client-
side computations. Along with diffusion models
shining in AIGC, we pioneer their use for model
weights generation in FL’s server component,
substituting conventional aggregation algorithms.
We propose a novel federated model consoli-
dation way with heterogeneity-adaptive weights
diffusion(FedDiff) for communication efficient
FL. Rigorous experimentation verifies that our
method delivers exceptional convergence speed
and accuracy, and exhibits robustness against
weights noise.

1. Introduction
Federated Learning (FL) (Kairouz et al., 2021) has emerged
as a promising paradigm for training machine learning mod-
els in a distributed manner, enabling collaborative learning
across multiple clients, such as mobile devices (Lim et al.,
2020), without centralizing data. This is particularly ad-
vantageous for privacy-preserving applications where data
sensitivity precludes aggregation (Truex et al., 2019; Zhu
et al., 2019). However, FL faces a significant challenge in
the form of communication costs, which can be prohibitive,
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especially when the number of participating clients is large
or the models are complex (Sattler et al., 2019; Zhao et al.,
2023).

Traditional FL approaches, such as Federated Averaging
(FedAvg) (McMahan et al., 2017), have made strides in re-
ducing communication overhead by averaging local model
updates. However, these methods are primarily focused on
client-side optimizations (Li et al., 2020) and do not fully
explore potential server-side enhancements. The server, cen-
tral to aggregating client updates (Sun et al., 2024; Hsu et al.,
2019), presents an untapped opportunity for innovation that
could significantly reduce the communication bottleneck.
This raises a crucial question: Can we find a new method to
aggregate knowledge on the server side?

Diffusion Model for Weights Generation. Diffusion mod-
els (Sohl-Dickstein et al., 2015) have achieved remarkable
results in visual generation. These methods (Ho et al., 2020;
Nichol & Dhariwal, 2021; Song & Ermon, 2019; Ramesh
et al., 2021) are based on non-equilibrium thermodynam-
ics and are akin to GANs (Goodfellow et al., 2020), VAEs
(Variational Autoencoders) (Kingma & Welling, 2013), and
flow-based models (Dinh et al., 2014). Diffusion models can
be categorized into three main branches: enhancing synthe-
sis quality (e.g., DALL.E 2 (Ramesh et al., 2022), Imagen
(Saharia et al., 2022), and Stable Diffusion (Rombach et al.,
2022)), improving sampling speed (e.g., DDIM (Song et al.,
2020), Analytic-DPM (Bao et al., 2022), and DPM-Solver
(Lu et al., 2022)), and reevaluating diffusion models from
a continuous perspective, like score-based models (Song &
Ermon, 2019).

Different from these branches, the use of diffusion for
weight generation is gradually becoming practical and
promising. Works in this field, such as G.pt (Peebles et al.,
2022), MetaDiff (Zhang et al., 2024), Hyperdiffusion (Erkoç
et al., 2023), P-diff (Wang et al., 2024), and ProtoDiff (Du
et al., 2023), demonstrate that diffusion models can generate
model weights with better accuracy than the SGD (Stochas-
tic Gradient Descent) optimizer (Bottou, 1998). Remark-
ably, diffusion models can generate model weights in finite
time steps, bypassing the need for extensive SGD training.
Additionally, the federated process mirrors the denoising
process in diffusion models: both involve transitions from
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Figure 1. The left panel illustrates the standard diffusion process in
image generation. The right panel shows the parameter distribution
of batch normalization (BN) during the training of CIFAR-10 with
ResNet-18 in a federated setting.

random noise/initialization to specific distributions, and both
training trends are concave functions (illustrated in Fig. 1).
Therefore, an intuitive idea is to harness the remarkable
and efficient generative capability of diffusion models to
help consolidate model weights. To put it another way, we
aim to avoid the numerous communication rounds in hetero-
geneous FL, just as the diffusion model directly generates
model weights, bypassing hundreds or even thousands of
times of SGD training.

This idea poses two challenges: i) How to aggregate models
with the assistance of the diffusion model? ii) How to main-
tain the applicability of the diffusion model in heterogeneous
FL? To address these challenges, we introduce a novel ap-
proach to server-side optimization in FL by leveraging VAEs
and weights-generated diffusion models. Our key insight is
to train a VAE encoder coupled with a pre-trained diffusion
model on the server to generate consolidated model weights,
leading to efficient FL and replacing the standard parameter
aggregation scheme.

Our contributions are two-fold:

• We innovatively employ VAEs and diffusion models
for weight generation in the context of FL, achieving
improvements in both communication costs and accu-
racy over traditional aggregation methods.

• We introduce KL divergence loss and contrastive loss
for latent representation to fine-tune the encoder, en-
suring the applicability of the diffusion model in het-
erogeneous FL.

2. Approach
2.1. Preliminaries

Diffusion Model for Weights Generation. Based on the
exploration of previous related work, training a diffusion
model directly in the parameter space tends to have a rel-
atively high memory cost, considering the dimension of
the parameter model that needs to be generated. Therefore,
taking this into account, these studies apply the diffusion
process to the latent representations by default. That is, let’s
assume the model is θ ∈ RD, and D denotes the size of
the model weights. And we first map the model weights to
the latent space, denoted as Z. Subsequently, the following
forward and reverse processes are carried out.
Forward Process. The forward diffusion process involves
successive Gaussian noise perturbations of Z over T time
steps. At time step t,

p
(
Zt | Zt−1

)
= N

(
Zt;µt =

√
1− βtZ

t−1, βtI
)
, (1)

where βt ∈ (0, 1) is the noise variance.
Reverse Process. As in most DDPM approaches the reverse
process is approximated by a neural network such that:

pψ
(
Zt−1 | Zt

)
= N

(
Zt−1;µψ

(
Zt, t

)
,Σψ

(
Zt, t

))
,
(2)

where µψ and Σψ are neural networks parameterized by ψ.
Problem Definition. In federated learning, we solve an
optimization problem of the form:

min
θ∈RD

f(θ) =
1

m

m∑
i=1

Fi(θ), (3)

where θ denotes the model weights and Fi(θ) =
Eξ∼Di

[fi(θ, ξ)] is the loss function of the ith client and
Di is the data distribution for the ith client. For i ̸= j,Di
and Dj may be very different, and it is referred to as the
heterogeneous data setting. In this paper, {Di}Ni=1 are not
identical.

A common approach to solving Eq.(3) in federated settings
is FedAvg (McMahan et al., 2017). At each round of Fe-
dAvg, a subset of clients is selected (typically randomly)
and the server broadcasts its global model to each client.
In parallel, the clients run SGD on their own loss function
and send the resulting model to the server. The server then
updates its global model to match the average of these local
models. Suppose that at round r, the server has model θr

and samples a set S of clients. Let θri denote the model of
each client i ∈ S after local training. We rewrite FedAvg’s
update as:

θr+1 =
1

|S|
∑
i∈S

θri = θr − 1

|S|
∑
i∈S

(θr − θri ) . (4)
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Figure 2. The FedDiff framework encompasses three steps. It utilizes three contrastive loss, with LAE designated for the pre-training of
the autoencoder (AE), and LKL along with LC for the fine-tuning of the pre-trained encoder.

The Eq.(4) is a naive aggregation algorithm on the server.
This paper focuses on the server side’s aggregation or opti-
mization way. That is, it aims to use the efficient federated
model consolidation to substitute the naive federated aggre-
gation.

2.2. Neural Network Weights Generation Diffusion
model Pre-training

In this section, the paper primarily utilizes the concept of
P-diff (Wang et al., 2024). A subset of the data is selected
from the dataset to serve as a proxy dataset; these data points
are uniformly sampled and can be considered as visible data
shared by both the client and the server. We train the model
ResNet-18 (He et al., 2016) using these data with SGD
optimizer to obtain the model weights. The weights from
steps that are multiples of 10 are retained and then sorted
by accuracy from low to high, forming a pool of weights.
We use the weights pool to train an Autoencoder (AE) that
can obtain latent representations corresponding to different
accuracies and training epochs, as well as a Latent Diffusion
Model (LDM) that can output latent representations with
varying accuracies based on different time steps T .
Weight Encoding. We flatten these weights θ ∈ RD into
1-dim vector V = [v1, . . . , vi, . . . , vW ], where V ∈ RD×W

and W is the size of the weights pool. After that, an AE is
trained to reconstruct these weights V . To enhance the ro-
bustness and generalization of the AE, we introduce random
noise augmentation. The encoding and decoding processes
can be formulated as:

Z0 = gσ(V + ξV )︸ ︷︷ ︸
encoding

;V ′ = gρ(Z
0 + ξZ)︸ ︷︷ ︸

decoding

,
(5)

where gencoder (·, σ) and gdecoder (·, ρ) denote the encoder and
decoder parameterized by σ and ρ, respectively. Z0 repre-

sents the latent representations, ξV and ξZ denote random
noise that are added into input weights V and latent rep-
resentations Z0, and V ′ is the reconstructed weights. we
minimize the mean square error (MSE) loss between V ′ and
V as follows:

LAE =
1

W

W∑
i=1

∥vi − v′i∥
2
, (6)

where v′k is the reconstructed weights of k-th model.
Diffusion Model Pre-training. At this stage, we achieve
defining LDM to generate latent representations of weights
by using DDPM (Ho et al., 2020). The diffusion model
is trained on the AE embeddings Z0 with different time
steps T . To take advantage of existing architectures, we
use minimal modifications and optimize the following latent
diffusion model objective:

LLDM = EZ,ε∼N (0,1),t

[∥∥ε− εψ
(
Zt, t

)∥∥2] , (7)

where εψ (Zt, t) is implemented as a 1D-CNN.

2.3. Federated Model Consolidation

Latent Space Consolidation. At this stage, we aim to
consolidate the weights of the sampled clients and we have
access to a pre-trained AE and diffusion model that could
generate the weights from the noise. Assuming that at round
r, the server has model θr and samples a set S of clients.
Let θri denote the model of each client i ∈ S after local
training. We use the pre-trained encoder to encode the
weights θri . Therefore, after we get the latent representation
Zi = gσ(θ

r
i ), we consolidate the knowledge of sampled

clients.

Through repeated experiments and observations, it has been
found that the normal federated aggregation way leads to
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the weight distributions of the weights of the model vary-
ing tangibly with more weights concentrated on 0. So we
propose a novel method for generating new global latent
representations from the sampled clients. The essential but
simple method includes two parts: i) the distribution su-
periposition; and ii) the reparameterization trick. Let Zi
be a continuous random variable, and Zi be the normal dis-
tribution based on our prior knowledge. The global Zs is
sampled from the superimposed normal distribution. It is
then often possible to express the random variable Zs as a
deterministic function Zs = gσ(ϵ, θi; i ∈ S), where ϵ is an
auxiliary variable with independent marginal p(ϵ), and gσ(·)
is the encoding vector-valued function parameterized by σ
defined in Eq.(5).

More specifically, let Zi ∼ p(Zi|θi) = N (µi, σ
2
i ), and we

assume the normal distributions are independent. Therefore,
we consolidate independent normal distribution and approx-
imate the mean and variance of the consolidated distribution
in a simplified way:

µs =
1

|S|
∑
i∈S

µi;σ
2
s =

1

|S|
∑
i∈S

σ2
i . (8)

Next, we sample the consolidated latent representation using
the mean and variance calculated above, it can be approxi-
mated that the superimposed distribution is also a normal
distribution N (µs, σ

2
s). Then, sampling can be carried out

through the following steps: i) generate random samples ϵ(i)

from the standard normal distribution N (0, 1), and ii) uti-
lize the reparameterization technique to convert the samples
from the standard normal distribution into samples from
the superimposed distribution: Zs = [z1, . . . , zi, . . . , z|S|],
where zi = µs + σs · ϵ(i). Additionally, to constrain the
distribution of our consolidated latent space, we draw on
the ideas from VAEs and modify the MSE loss function in
Eq.(6):

LKL =
1

|S|

|S|∑
i=1

∥vi − v′i∥
2
+ αKL[N (µs, σ

2
s)||N (0, 1)].

(9)
Heterogeneity-Adaptive Weights Projection. Taking into
account that the weights we used during the pre-training
process were trained on datasets that were divided in an in-
dependent and identically distributed (iid) manner. However,
in federated aggregation, the data from different clients is
actually non-iid. Therefore, in this section, we innovatively
choose to fine-tune the pre-trained encoder to complete the
projection of the weights from non-iid to iid to ensure the
applicability of the pre-trained diffusion model in heteroge-
neous FL. Our approach primarily aims to ensure that after
the model weights from different clients is projected and
then sampled, the latent space is as close as possible to the
latent representation pool when trained with iid. Therefore,
we introduce the contrastive loss for latent representation.

That is, for a consolidated representation Zs with a certain
accuracy, we select the LR from the LR pool that is similar
in accuracy to serve as the corresponding LR Zcorr. We
compare the latent representation Zs with the one trained
using SGD as follows:

LC =
1

|S|

|S|∑
i=1

||zcorr − zi||2. (10)

Up to here, we can get the loss of the encoder as follows:

LEncoder = LKL + βLC , (11)

and we change the naive aggregation method Eq.(4) to the
consolidated approach:

θt+1 = gρ(pψ(Zs))

T∏
t=1

pψ(Z
t−1
s |Zts). (12)

where Z0
s denotes the consolidated weights output by pre-

trained latent diffusion model. Considering that the LDM
can output models with varying accuracies, as the number
of communication rounds r increases, the time steps T ∝ r
of the LDM.

3. Experiments
In this section, we present empirical evidence to verify our
framework. We train ResNet-18 on MNIST (LeCun et al.,
1998), CIFAR-10/100 (Krizhevsky et al., 2009) and TinyIm-
ageNet (Tavanaei, 2020).

3.1. Experimental Setting

Federated Setting. To simulate data heterogeneity, we im-
pose label imbalance across 10 clients, i.e. each client is
allocated a proportion of the samples of each label according
to a Dirichlet distribution with the concentration parameter
α = 0.5. The partial participation ratio is 0.5, i.e., 5 out of
10 clients are picked in each round, and |S| = 5. The local
epoch K is 100.
Diffusion Setting. We set the dataset partition ratio is 0.04,
i.e., 2000 out of 50000 images from CIFAR-10 are selected
for the weights pool.We set the total diffusion time steps
T = 200, and the selected images are further divided into
20 parts, each part is used for training ResNet-18 for 100 to
2000 times using SGD optimizer.
Compared Methods.We use the FedAvg (McMahan et al.,
2017) as our baseline. And we use the following two-
category works as our compared methods: i) Server Mo-
mentum Methods: FedAvgM (Hsu et al., 2019), SCAF-
FOLD (Karimireddy et al., 2020), STEM (Khanduri et al.,
2021), FedGM (Sun et al., 2024) and ii) Adaptive Methods:
FedAdam (Reddi et al., 2020), FedAMS (Wang et al., 2022),
FAFED (Wu et al., 2023).
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Table 1. non-IID setting. Test accuracy and the number of communication rounds required for each method to achieve 95% of its respective
highest metric. over 10 clients on the MNIST, CIFAR-10, CIFAR-100, and TinyImageNet datasets.

MNIST CIFAR-10 CIFAR-100 TinyImageNet

Methods Top-1 Acc Rounds Top-1 Acc Rounds Top-5 Acc Rounds Top-5 Acc Rounds

FedSGD 86.46± 4.02 483 49.40± 2.19 605 49.98± 1.10 560 35.75± 0.56 711
FedAVG 91.42± 2.31 334(1.4×) 54.12± 3.05 390(1.6×) 55.71± 0.35 710(0.8×) 41.61± 3.59 664(1.1×)

FedAvgM 92.20± 1.55 219(2.2×) 57.42± 2.45 319(1.9×) 54.45± 1.77 416(1.4×) 43.88± 2.47 549(1.3×)
SCAFFOLD 92.51± 1.18 246(2.0×) 57.63± 1.72 254(2.4×) 56.70± 1.19 409(1.4×) 44.34± 2.01 531(1.3×)

STEM 91.13± 1.49 194(2.5×) 59.40± 2.79 276(2.2×) 55.29± 2.37 281(2.0×) 45.48± 0.89 310(2.3×)
FedGM 93.76± 0.96 153(3.2×) 58.20± 1.72 301(2.0×) 56.11± 1.08 398(1.4×) 47.70± 2.99 433(1.6×)

FedAdam 93.15± 2.06 114(4.2×) 59.87± 2.31 313(1.9×) 54.31± 2.70 339(1.7×) 45.29± 1.09 462(1.5×)
FedAMS 90.92± 2.64 166(2.9×) 57.40± 1.57 255(2.4×) 54.38± 1.98 200(2.8×) 44.73± 1.38 411(1.7×)
FAFED 94.43± 1.80 174(2.8×) 56.07± 3.78 206(2.9×) 57.44± 3.83 343(1.6×) 46.73± 1.38 384(1.9×)

FedDiff (ours) 94.50± 2.96 73(6.6×) 62.57± 3.78 107(5.7×) 57.97± 1.74 132(4.3×) 51.60± 3.91 224(3.2×)

Training Details. The autoencoder and latent diffusion
model both include a 4-layer 1D CNNs-based encoder and
decoder. The ξV and ξZ are Gaussian noise with ampli-
tudes of 0.01 and 0.1. We set the local learning rate is 0.001
and the batch size is 64. In most cases, the whole train-
ing includes the pre-training and federated learning can be
completed within 4 hours on a single Nvidia A100 40G
GPU.

(a) Train accuracy on CIFAR-10 (b) Test accuracy on CIFAR-10 (c) t-SNE of the latent representations 

Figure 3. (a) and (b) shows the training and testing curves for
FedDiff (ResNet-18 on CIFAR-10). (c) displays the t-SNE of
the original models, models after the federated consolidation, and
adding noise operation.

3.2. Result Analysis

The goal of our experiments is four-fold: i). To compare
the performance of FedDiff with other algorithms in het-
erogeneity setting during the training phase with training
datasets; ii). To demonstrate the model performance on
the test datasets; iii). To compare the number of commu-
nication rounds required for each method to achieve 95%
of its respective highest metric; and iv). To verify the ap-
plicability of the diffusion model in FedDiff by compar-
ing the latent representaion using t-SNE (Van der Maaten
& Hinton, 2008). Fig.3 (a) and (b) shows the results for
ResNet-18 on CIFAR-10 with FedDiff, FedSGD, FedAvgM
and FedAdam. We observe that though FedAvgM converges
faster than FedSGD, it is only marginally better in terms

of testing. FedDiff, in contrast, outperforms FedAvgM and
FedSGD in both measures. Moreover, it is worth noting
that during the testing phase, FedDiff has the fastest conver-
gence rate, achieving a considerably high accuracy around
the 100th epoch. The main difference between FedDiff and
other methods lies in the early stages of federated learning,
where the convergence speed is significantly accelerated
with the help of the diffusion model. Table. 1 also proves
this point. In comparisons with more methods and more
datasets, due to the accelerated convergence speed in the
early stages of training, FedDiff has shown several times
the convergence rate of existing methods and the fastest
convergence rate achieving 95% of its highest metric com-
pared to other methods. Except for the above results, Fig.3
(c) proves the applicability of the weights generation LDM
in heterogenous FL by comparing the distributions of the
latent representations for the original and consolidated mod-
els. We can observe that FedDiff is capable of generating
novel latent representations even in the presence of weights
noise introduced by misclassified client data and the gradi-
ent noise during the communication process in real FL. This
means it can maintain robustness against weights noise.

4. Conclusion
In summary, this paper introduces the brave idea of integrat-
ing diffusion models into FL to enhance server-side opti-
mization. By designing the federated model consolidation
framework, we have harnessed the powerful and finite-step
weight generation capability of LDM to accelerate feder-
ated learning, especially in its early stages. This approach
reduces communication overhead while maintaining com-
mendable performance and has potential applications in a
variety of privacy-sensitive domains.
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