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Two types of error in the depth estimation of transparent objects:

Type I Error
Type II Error

➢ Type I Error: Light

refracts through object

and reflects back

background depth.

➢ Type II Error: Light

reflect on transparent

surface, which leads to

missing depth.

To avoid errors in depth estimation, depth restoration models are

designed: generating perfect depth based on RGB and corrupted

depth input.

Early works [1-3] focus on transparent objects placed on the table.

However, it is common for robot to percept grasped transparent

object in everyday life. Our work aims to solve this problem.
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➢ Challenges of home service robot: special object perception 

(e.g. transparent) and human-robot interaction (e.g. handover).

➢ One common scenario: how to allow robot percept and grasp a 

transparent object from human’s hand.

➢ Our approach: a sim2real method for hand-held transparent 

object restoration.

➢ Two main contributions: synthetic dataset HandTrans-14K and 

hand-aware depth restoration method.
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Illustration of local implicit function method. (a) Point cloud placed in voxels. (b) Recording

rays and intersecting voxels for missing points. (c) Predicting the position of possible point

clouds for given ray-voxel pairs.
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Hand-Aware Implicit Function of Depth Restoration Model

1. Ablation Test: Influence of different hand feature forms. 

Feature Types RMSE↓ REL↓ MAE↓ 𝜹𝟏.𝟎𝟓↑ 𝜹𝟏.𝟏𝟎↑ 𝜹𝟏.𝟐𝟓↑

No hand feature 0.014 0.029 0.010 85.18 96.08 99.60

2d hand feature 0.013 0.027 0.009 87.12 96.57 99.60

Relative 3d feature 0.013 0.027 0.009 87.54 96.61 99.53

3d hand feature 0.011 0.020 0.007 92.11 97.67 99.74

2. Seen Objects Evaluation: Model performance on seen objects 

with known shapes in HandTrans-14K dataset.

Methods RMSE↓ REL↓ MAE↓ 𝜹𝟏.𝟎𝟓↑ 𝜹𝟏.𝟏𝟎↑ 𝜹𝟏.𝟐𝟓↑

TODE-Trans 0.024 0.056 0.017 57.03 82.55 98.61

TransCG 0.012 0.026 0.008 86.91 96.96 99.76

SwinDRNet 0.009 0.015 0.005 94.82 98.26 99.87

LIDF 0.014 0.029 0.010 85.18 96.08 99.60

Ours 0.011 0.020 0.007 92.11 97.67 99.74

3. Unseen Objects Evaluation: Model generalization ability on 

unseen objects with novel shapes in HandTrans-14K dataset.

Methods RMSE↓ REL↓ MAE↓ 𝜹𝟏.𝟎𝟓↑ 𝜹𝟏.𝟏𝟎↑ 𝜹𝟏.𝟐𝟓↑

TODE-Trans 0.052 0.055 0.037 62.86 89.26 97.21

TransCG 0.027 0.064 0.020 51.54 78.54 98.79

SwinDRNet 0.022 0.049 0.015 65.07 86.79 98.79

LIDF 0.026 0.063 0.021 52.66 78.69 97.90

Ours 0.019 0.042 0.014 72.74 90.06 99.05

4. Visualization of Depth Restoration:

➢ Hand pose information can facilitate the performance of depth restoration, especially for the

model generalization ability for unseen objects.

➢ Future works: better strategy of different modality fusion and sim-to-real experiment to verify

real world performance of proposed method.

2. Hand-aware Depth Restoration

1. Local Implicit Function


