Learning Relative Depth Guidance for Human Pose Transfer

Abstract

- **Goal:** Propose a 3D parametric model-driven network for precise human pose transfer.
- Limitations: Existing methods project 3D parameters to 2D or combine 3D models with rendering, not fully utilizing 3D information.
- **Problem:** Depth ambiguity in human pose transfer leads to sub-optimal results.
- **Solution:** Integrate 3D parametric models within the diffusion framework to control pose and eliminate depth ambiguity.

Introduction

Core Problem:

Depth ambiguity

Input:

A source image of a person and a target pose represented by 3D mesh.

Solution 🖏

A generated image of the person in the source image, transformed to adopt the target pose.

References

[1] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-Resolution Image Synthesis with Latent Diffusion Models[C/OL]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA. 2022...

[2] CHEONG S, MUSTAFA A, GILBERT A. UPGPT: Universal Diffusion Model for Person Image Generation, Editing and Pose Transfer[J]. 2023.

Lihan Zhang and Ciyu Ruan TBSI, Tsinghua University, China

Quantitative Result

Quantitati						
Dataset	Method	Venue	FID↓	LPIPS↓	SSIM ↑	PSNR1
	PATN [46]	CVPR 19'	20.728	0.2533	0.6714	-
	ADGAN [21]	CVPR 20'	14.540	0.2255	0.6735	-
	GFLA [29]	CVPR 20'	9.827	0.1878	0.7082	-
	PISE [41]	CVPR 21'	11.518	0.2244	0.6537	-
Deepfashion	DPTN [43]	CVPR 22'	17.419	0.2093	0.6975	17.811
(256 x 176)	NTED [27]	CVPR 22'	8.517	0.1770	0.7156	17.740
	CASD [44]	ECCV 22'	13.137	0.1781	0.7224	<u>17.880</u>
	PIDM [1]	CVPR 23'	6.812	0.2006	0.6621	15.630
	PoCoLD [6]	ICCV 23'	8.067	0.1642	<u>0.7310</u>	-
	CFLD [19]	CVPR 24'	6.804	0.1519	0.7378	18.235
	CFLD* [19]	CVPR 24'	<u>6.713</u>	0.1704	0.7235	17.626
	Ours	-	7.110	0.1582	0.7201	17.702
Ablation e	xperiments	on indivi	dual mo	odules		
Modules	FID↓	L	PIPS↓	SS	IM↑	PSNR ↑
Baseline	7.841	().4121	0.5	192	11.494
+ DecoupAttr	6.178	().3542	0.5	655	12.834
+ 2D Prior	8 1 2 9	() 1852	07	079	17 051
	7 110		0.1052		0.7077	

$$\begin{aligned} |\epsilon - \epsilon_{\theta}(z_t, c, t)||_2^2) \\ LP(F_{2D})) \\ P(F_{Med})) \\ - [\tilde{\theta}, \tilde{\beta}]||_2 \\ \mathcal{H}(I_{ref}) \\ urier(p)) \\ F_V = \phi_V(F_{3D}) \\ \frac{F_K^T}{\bar{d}}) \cdot F_V \end{aligned}$$

- improved.
- dataset of various poses.
- true 3D control.

Future Work

• The appearance details such as hands and face need to be

• The model need to be improved under the training of larger

• Our current effects still require the assistance of a 2D mask to be achieved, and in the future we will need to achieve