
A Transformer-Based Multimodal Classification Network for Smart Tire

Tong Wu 1 Jiahao Li 1

Abstract
Recent days have witnessed more and more inter-
est in multimodal sensing and processing. With
accurate and delicate sensors invented, data from
different modalities can be captured efficiently.
Meanwhile, numerous multimodal fusion meth-
ods have been proposed. However, in the realm
of intelligent tires, the potential of multi-modal
fusion and perception technology has not yet been
explored. In this work, based on a smart tire that
applies multi-modal visuotactile sensing, we pro-
pose to carry self and cross-attention mechanisms
to fuse multiple modalities and investigate our
method for terrain classification and tire break-
age detection. We have collected over 3000 raw
data for training and evaluation, demonstrating
the effectiveness of our method and leading a new
route for the application of smart tires. To the best
of our knowledge, our current study is novel and
unique.

1. Introduction
With the continuous advancement of multimodal visuotac-
tile sensing technology, it is valuable for us to fuse multiple
modalities of data to achieve more accurate recognition or
detection. How to integrate this technology into vehicle
tires to improve their intelligence, such as precise tire status
detection, etc., has still not been studied in detail.

In modern intelligent systems, multimodal fusion methods
are widely applied in various domains such as computer
vision (Feng et al., 2017; Hou et al., 2018; Kumar et al.,
2024), natural language processing (Gandhi et al., 2023),
and robotics (Xue et al., 2020). The objective of multimodal
fusion methods is to effectively integrate and fuse infor-
mation from different sensors or modalities, enhancing the
perceptual capabilities and decision-making performance of
systems. In recent years, significant progress has been made
in multimodal fusion methods, driven by advancements in
technologies such as deep learning and neural networks.
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Intelligent tires, also known as smart tires, have emerged
as a remarkable advancement in the automotive industry.
These tires incorporate advanced sensing and communica-
tion technologies to enhance vehicle performance, safety,
and efficiency.

The increasing demand for improved safety, fuel efficiency,
and vehicle performance drives the development of intel-
ligent tires. Traditional tires have limited capabilities in
monitoring and adapting to changing road conditions or de-
tecting potential tire-related issues. Intelligent tires aim to
overcome these limitations by utilizing cutting-edge tech-
nologies to enable better control, monitoring, and optimiza-
tion of tire performance.

Intelligent tires incorporate a range of sensors such as pres-
sure sensors, temperature sensors, accelerometers, and opti-
cal sensors, tactile sensors (Lee & Taheri, 2017). These sen-
sors continuously monitor tire pressure, temperature, tread
wear, and road conditions. The collected data is processed
and analyzed in real-time, providing valuable insights to
both the driver and the vehicle’s control system. One of
the key features of intelligent tires is their ability to provide
tire condition monitoring. By continuously monitoring tire
pressure and temperature, intelligent tires can alert drivers
to potential issues such as underinflation or overheating,
which can lead to reduced fuel efficiency and increased risk
of tire failure.

By fusing and analyzing multimodal sensing data, smart
tires can achieve numerous functionalities. For example,
they can provide more accurate vehicle attitude estimation
and motion control to enhance vehicle maneuverability and
stability. Additionally, smart tires can enable real-time road
condition monitoring, allowing drivers or vehicle systems
to respond appropriately, thereby improving driving safety
and comfort. What’s more, the visuotactile sensing data
collected also provides us the opportunity to detect tire
breakage by achieving accurate terrain classification tasks,
ensuring optimal traction and safety.

In summary, the technical contributions include:

• We propose a transformer-based multimodal classifi-
cation network that leverages self-attention and cross-
attention mechanisms for extracting multimodal fea-
tures.
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Figure 1. Transformer-based multimodal classification algorithm.

• We evaluate our method on the terrain classification
task in complex environments. The results demonstrate
that our approach outperforms baseline methods and
effectively handles multimodal inputs.

• We also apply our method to tire fault detection, which
aids in identifying abnormalities in tires.

2. Related Work
Multimodal Fusing: Currently, researchers have proposed
various multimodal fusion methods. For instance, some
methods employ fusion strategies based on images and
speech (Feng et al., 2017; Hou et al., 2018; Kumar et al.,
2024), training and fusing image and speech features to
achieve more accurate object recognition and speech un-
derstanding. Other approaches combine visual and motion
sensor data (Luvizon et al., 2020; Hu et al., 2024), enabling
joint analysis of visual and motion information for tasks like
human action recognition and pose estimation. Addition-
ally, some methods (Talmor et al., 2021; Ilievski & Feng,
2017) fuse visual and language information for tasks such
as image captioning and image question answering. By

Intelligent Tire: By integrating various sensors and data
processing capabilities, intelligent tires are capable of pro-
viding real-time information about tire conditions, road con-
ditions, and vehicle dynamics. Current methods used in
intelligent tires can be divided into three aspects: Estima-
tion based on Acceleration Measurement, Strain Measure-
ment, and Global Deflection Measurement (Lee & Taheri,
2017). Xu et al. (Xu et al., 2020) use machine learning

for tire force estimation and propose an intelligent tire sys-
tem with a three-axis acceleration sensor. khaleghian et
al. (Khaleghian & Taheri, 2017) developed a fuzzy logic
algorithm that was developed and used for terrain classifi-
cation, where all different surfaces are classified into four
main categories; asphalt, concrete, grass, and sand. Optical
sensors also develop in a rapid manner, huber et al. (Huber
et al., 2022) present the concept of TireEye, which is an
optical device mounted inside the wheel well and facing the
road.

3. Method
Given a range of distinct modalities mi, i = 0, 1, ...,M − 1,
which encompass optical images of the terrain, tactile feed-
back from the underlying surface, and even partially observ-
able states like dark or smoky images, we employ a set of
encoders {Ei} tailored specifically for each modality to ex-
tract its respective features. Rather than extracting a single
global feature for each modality, we divide each modality
into Ki distinct fragments and leverage the encoder Ei to
extract Ki fragmented features. Since modalities can vary
significantly in their data distributions, this can pose chal-
lenges for modality fusion and the training process. To
alleviate these issues, we apply Layer Normalization (Lay-
erNorm) (Ba et al., 2016) to each modality. This feature
extraction process can be formulated as follows:

{fk}i = LayerNorm(Ei(Seg(mi))). (1)

To further exploit the information within each individual
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modality as well as across different modalities, we incorpo-
rate self and cross-attention mechanisms (Chen et al., 2022)
into our framework for fusing the extracted features. After
obtaining the fragmented features {fk}i for each modality
i and fragment ki, we first concatenate these features in
the fragment dimension, effectively grouping all fragments
from the same modality together. Next, we concatenate
the modality-grouped features in the modality dimension,
thereby combining features from all modalities into a sin-
gle feature map. To preserve the sequential and spatial
information within the concatenated feature map, we add
position embeddings. This step ensures that the model can
distinguish between different positions in the feature map,
enabling it to attend to relevant features based on their lo-
cation. The resulting tokenized feature representation F
encapsulates the information from all modalities and frag-
ments:

F =
[
F0 F1 · · · FM−1

]
. (2)

To compute the attention, we pass F through linear layers
to derive the queries {Qj}, keys {Kj} and values {Vj}, for
each attention head j = 1, 2, ..., N :

Qj = WQ
j F =

[
Qj,0 Qj,1 · · · Qj,M−1

]
, (3)

Kj = WK
j F =

[
Kj,0 Kj,1 · · · Kj,M−1

]
, (4)

Vj = WV
j F =

[
Vj,0 Vj,1 · · · Vj,M−1

]
, (5)

These queries, keys, and values facilitate the model’s ability
to attend to relevant features within the same modality (self-
attention) and across different modalities (cross-attention).
Then we use the following equation to calculate the attention
at head j:

Aj = Vj × softmax((Kj)
TQj/

√
d), (6)

where d is the dimension of the multimodal features and the
matrix form of (Kj)

TQj can be denoted as follows:

(Kj)
TQj =

(Kj,0)
TQj,0 (Kj,0)

TQj,1 · · ·
(Kj,1)

TQj,0 (Kj,1)
TQj,1 · · ·

...
...

. . .

 , (7)

where diagonal elements represent self-attention which uses
self-generated queries to draw self-generated keys, while
non-diagonal elements represent cross-attention which uses
queries and keys generated from different modalities to
extract features. Afterward, we pass the attention through a
feedforward network and concatenate all tokens into a fused
feature.

By leveraging these attention mechanisms, our model is
able to effectively extract and utilize information from both
individual modalities and the interplay between modalities,
enabling it to make more informed decisions and predictions
in complex, multimodal environments.

4. Results
4.1. Bimodal Terrain Classification (VTire Bimodal

Data)

We collect tactile and visual data from the tire’s contact with
16 different terrains to validate the effectiveness of bimodal
tires and multimodal sensing networks. We capture 150
images for each terrain, as shown in Fig. 2. These terrains
contain rubber tracks, painted roads, brick roads, lawns,
and gravel roads made of different colored and sized stones.
To better demonstrate the effectiveness of the system, we
design different comparison experiments.

First, to test the effectiveness of the smart tires, we com-
pare the classification accuracy in different modalities. We
process and divide the collected dataset into the following
sets: 1) Tactile data only (TO): raw data is segmented to
focus solely on the tactile region; 2) Visual data only (VO):
raw data is segmented to focus solely on the transparent
and visible region; 3) Raw VisuoTactile data (RVT): raw
data encompass both the tactile region and visible region; 4)
Segmented VisuoTactile data (SVT): raw data is segmented
into tactile region and visible region. For all cases, we split
the dataset into 70% for training and 30% for evaluation. To
simulate noise caused by mud on the transparent region, we
add salt-and-pepper noise to the visual modality. We train
our network on an Intel(R) Xeon(R) Gold 5218 with a single
GeForce RTX A6000 for 80 epochs. The learning rate is 2e-
5, and we repeated the experiment on 3 different seeds. The
training results and related indicators are shown in Table 1
and Fig. 2. It can be seen from the results that the classifica-
tion method with bimodal fusion has higher accuracy, and
SVT also achieves a better classification performance than
RVT.

Second, to further validate the effectiveness of our proposed
network, we compare it with current classical classification
algorithms. Specifically, we benchmark our method against
two baselines: 1) ResNet (Koonce & Koonce, 2021): We
utilize a pre-trained ResNet50 to extract global features for
each modality. These global features are then concatenated
and passed through a classification head; 2) LSTM (Shi
et al., 2015): We employ a ResNet18 to extract patched
features, which are subsequently processed by an LSTM to
achieve a fused feature. The fused feature is passed through
a classification head to produce the final output. Our method,
MultiModal VisoTactile Transformer (MMVTT), is con-
ceptually similar to the LSTM approach but replaces the
recurrent structure with an attention block. To ensure a
fair comparison, we design the classification heads of these
networks to be as similar as possible. The parameters of
MMVTT, LSTM, and ResNet are approximately 14M, 13M,
and 18M, respectively. All three networks are trained on
the multimodal dataset with a learning rate of 2e-5 for 80
epochs. Additionally, we conduct the experiments using
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Figure 2. Bimodal terrain classification. (a) Raw visuotactile data in different terrains; (b) The classification result of tactile data only
(TO); (c) The classification result of the sensor’s visual data only (VO); (d) The classification result of the raw visuotactile data (RVT); (e)
The classification result of segmented visuotactile data (SVT); (f) The classification result of our proposed network in different modalities;
(g) The confusion matrix of our proposed network for segmented visual image data.

Table 1. Test results under different modal and network conditions
TO VO RVT SVT

ResNet 92.7%/93.4% 59.0%/60.4% 82.3%/83.6% 92.4%/94.0%

LSTM 86.3%/86.7% 74.4%/77.2% 84.8%/87.5% 82.4%/85.7%

MMVTT 92.6%/93.8% 77.9%/77.9% 93.4%/93.9% 98.1%/98.7%

three different random seeds to minimize the likelihood of
incidental results.

The training results and related indicators are shown in Ta-
ble 1 and Fig. 2. From the results, we can see that our
proposed network outperforms ResNet and LSTM in both
last-10-epoch-average and maximum classification accuracy
in most cases, especially in bimodal classification, proving
our proposed network’s effectiveness in dealing with multi-
modal data.

4.2. Multimodal Terrain Classification (VTire Bimodal
Data + External Visual Data)

The most common method for terrain recognition is visual
processing because the visual information has a greater de-
tection distance and range. Still, for some smoke, darkness,
and other scenes, the visual detection effect will receive a
great impact, but the tactile information has better stability.
To prove this, we collect visual information from 16 differ-
ent scenes of normal, smoke, and darkness and compare it
with the effect of terrain classification of smart tires. Among
them, the data for the smoke scene was collected using a
lens wrapped in a semi-permeable film. We capture 150
images for each terrain, as shown in Fig. 3a.

In this experiment, we consider three modalities of inputs:
1) External Visual Only (EVO): only external vision is used
for classification (Although the smart tire itself has visual

perception capabilities, its perception is often fuzzy with
a limited viewing angle. Therefore, we consider adding
external vision to enhance detection accuracy further.); 2)
External Visual data + Tactile data (EVT): both external
vision and segmented tactile region data are employed; 3)
External Visual data + segmented VisuoTactile data (EVVT):
all available modalities are utilized. The multimodal data
was randomly split into training and validation datasets
with a 7:3 ratio. We applied MMVTT to the three input
modes mentioned above. Each configuration was run with
3 random initializations for 80 epochs, using a learning
rate of 2e-5. As illustrated in Table 2 and Fig. 3, the re-
sults demonstrate that the EVVT configuration achieves the
highest last-10-epoch-average and maximum accuracy with
efficient modality fusion.

Furthermore, we compare our method with the previously
mentioned baselines: ResNet and LSTM. We utilized all
modalities as input, corresponding to the EVVT input mode,
and split the data into a training ratio of 0.7. The learning
rate is set to 2e-5, and the training process is repeated three
times. Table 2 and Fig. 3 present the training and evalua-
tion results. Notably, our network outperforms the other
baselines and achieves an accuracy exceeding 99%.
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Figure 3. Multimodal terrain classification. (a) Visual images detected by an external camera under sunny, smoky, and dark conditions; (b)
The classification result of our proposed network in different modalities; (EVO: external visual only; EVT: external visual data + tactile
data; EVVT: external visual data + segmented visual data + tactile data.) (c) The classification result of different networks in segmented
visuotactile data with EVVT; (d) The loss of different networks in segmented visuotactile data with EVVT; (e) The confusion matrix of
our proposed network for EVVT.

Table 2. Test results under different modal and network conditions
EVO EVT EVVT

ResNet - - 96.1%/97.5%

LSTM - - 79.5%/83.0%

MMVTT 68.5%/70.2% 95.1%/95.6% 99.2%/99.7%

4.3. Tire Damage Detection Experiment

Tires are susceptible to damage due to contact with sharp
objects or long-distance driving while the vehicle is driv-
ing. Compared with traditional smart tires, VTire can detect
damage in real-time, such as crack, abrasion, and nail pene-
tration, thanks to high-resolution tactile data.

We experiment with different kinds of discrimination to
evaluate the capability of detecting damage. We consider 3
types of damage: 1) cracks, 2) irregular wear, 3) punctures,
and a normal state. We collect 120 images for each state of
tile and split 70% for training. We also add pepper and salt
noise to mimic the possible effects of the real environment.
MMVTT, LSTM, and ResNet are employed to learn from
the training data. We choose a learning rate of 2e-5 and run
the experiment on 3 random seeds for 80 epochs. Fig. 4
illustrates the training results and related metrics. We find
that MMVTT can detect the damage accurately and correctly
classify the type of damage in more than 97% of cases.

5. Conclusions & Discussion
In this work, we propose a transformer-based multimodal
classification algorithm based on a bimodal smart tire with
high elasticity, high transparency, and high toughness, which
overcomes the problems of the low resolution of tactile sens-
ing and small sensing area of traditional smart tires. Firstly,

Figure 4. Damage detection. (a) Common tire damage: cracks,
irregular wear, punctures, and normal tires (from left to right);
(b) Classification accuracy of different networks; (c) Loss curve
of different networks; (d) Confusion matrix for the classification
result of our proposed network.

we realize real-time classification of different terrains with
multimodal sensing. Furthermore, we achieve robust terrain
detection in complex environments with external visual in-
formation. Finally, We realize accurate tire fault detection
with raw visuotactile inputs.

There are still some limitations to address in this project.
Firstly, more types of modalities should be investigated. Cur-
rently, we only consider visual information, using ResNet
as the backbone of the encoder. However, if we encounter
other modalities, such as sequential data, different encoders
like RNNs should be considered. Secondly, more complex
tasks should be explored. In this project, we only investigate
classification tasks, which are relatively simple. We should
consider more challenging tasks, such as autonomous driv-
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ing. Additionally, we should aim for a more general model.
Concurrently, a specific model is trained for each task or
even for each dataset. A possible direction is to integrate
all the models into a single but more general one, similar
to a brain. Knowledge from one domain could potentially
benefit other domains.
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