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Abstract
To facilitate the deployment of convolutional
neural networks on resource-limited devices, fil-
ter pruning has emerged as an effective strat-
egy because of its enabled practical accelera-
tion. Evaluating the importance of filters is a cru-
cial challenge in this field. Most existing works
on filter pruning assess the importance of fil-
ters using pairwise measures such as Euclidean
distance and cosine correlation, which may not
capture the global information within the layer.
In this paper, we propose a novel filter pruning
method, IFP, which utilizes a graph-based ap-
proach to simulate the information flow among
filters, thereby capturing the total information
within each layer and assessing how much in-
formation is allocated to each filter. Assuming
mutual information among filters, we model each
filter as a linear combination of its peers and con-
struct a directed graph accordingly. Then, a ran-
dom walk is conducted on the graph, and the in-
formation distribution among filters is measured
by the stable distribution upon convergence. Fil-
ters with less information distribution are inter-
preted as containing less useful information and
can be pruned with minimal impact. We conduct
image classification on CIFAR-10 and ImageNet
to demonstrate the superiority of our IFP over
the state-of-the-arts. For example, on CIFAR-10,
IFP removes 80.28% FLOPs and 82.5% parame-
ters from ResNet-110 with even 0.20% accuracy
improvements. On ImageNet, it removes 70.2%
FLOPs and 64.8% parameters from ResNet-50
with only 1.7% top-5 accuracy drops.

1. Introduction
Deep Convolutional Neural Networks (DCNNs) have rev-
olutionized the field of computer vision by achieving state-
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of-the-art performance in various tasks (Simonyan & Zis-
serman, 2014) (He et al., 2015) (Szegedy et al., 2014).
However, deploying resource-heavy CNNs on devices with
limited computational and storage capacities presents sig-
nificant challenges. Consequently, numerous studies have
focused on model compression and CNN acceleration,
mainly including network pruning (He et al., 2018b) (Lin
et al., 2020) (Sui et al., 2021), model quantization (Liu
et al., 2018) (Qin et al., 2020) (Liu et al., 2020), low-rank
decomposition (Jaderberg et al., 2014) (Lin et al., 2016)
and knowledge distillation (Shen et al., 2019) (Hinton et al.,
2015). Among them, network pruning has been widely
studied due to its easy implementation and effective results.

Recent developments on pruning can be divided into two
categories, i.e., weight pruning and filter pruning. Weight
pruning removes individual filter weights, creating a sparse
network that often requires special hardware to achieve ac-
celeration, as it cannot efficiently utilize standard BLAS
libraries. In contrast, filter pruning, which compresses the
model by directly removing selected filters, maintains regu-
lar structures and is widely used due to its ability to enhance
acceleration on general-purpose hardware.

Generally, there are two essential issues in the filter prun-
ing, i.e., the layer importance measurement and the filter
importance measurement. For the first issue, layer im-
portance measurement is related to the per-layer pruning
rate.Existing works such as (Chin et al., 2018) (Lin et al.,
2022) (Suau et al., 2018) utilize different weight-oriented
strategies to evaluate the importance of each convolutional
layer based on pre-trained models. For the second issue,
the filter importance measurement identifies which filters
in the pre-trained model should be preserved and inherited
to initialize the pruned network structure. Previous works
(Ye et al., 2018) (He et al., 2018a) performs filter prun-
ing by following the “smaller-norm-less-important” crite-
rion, which believes that filters with smaller norms can
be pruned safely due to their less importance. However
this criterion seems too simple and is not always true.
To address this, (He et al., 2019) assumes the filters that
are close to the geometric median are redundant, which
is implemented by calculating the distance between filters
pairs. (Joo et al., 2021) proposes Linearly Replaceable
Filter (LRF), which suggests that a filter that can be ap-
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proximated by the linear combination of other filters is re-
placeable. (Lin et al., 2022) introduces a recommendation-
based filter selection scheme where each filter recommends
a group of its closest filters. More recently, graph-driven
methods have been developed to identify important filters
and achieve competitive performance. For example, Li et
al. (Li et al., 2023) utilize a graphical model to repre-
sent the similarity relationships between the output feature
maps of filters, while Shi et al. (Shi et al., 2023) introduce
von Neumann graph entropy as a novel measure for filter
importance. However, most of these approaches predom-
inantly rely on similarity metrics like Euclidean distance
or cosine similarity to measure the similarity between fil-
ters, which only considers the pairwise relationships be-
tween filters, overlooking the interactions and information
sharing among them.

To address the limitations previously discussed, we pro-
posed a novel method to evaluate the importance of filters
by focusing on the flow of information between them. Rec-
ognizing that filters can have mutual information, our ap-
proach assumes that each filter potentially shares parts of
its information with others. We model these interactions
by linearly reconstructing each filter using its peers. From
this reconstruction, the coefficients indicate the extent of
information shared between a feature map and its peers,
while the residuals represent the feature map’s unique in-
formation. Proceeding with this approach, we construct a
graph where each node represents a feature map, and the
edges between them are weighted by the coefficients from
the linear combinations. This graph representation allows
us to apply network analysis techniques to further under-
stand the dynamics of information sharing. Feature maps
that act as central nodes in this graph could be considered
as hubs of information distribution, playing pivotal roles in
the layer. More details will be shown in Section 3.

In summary, the technical contributions include: 2

• Contribution 1. We introduce a unique framework that
assesses filter importance based on information shar-
ing within the network. This methodology goes be-
yond traditional pairwise comparison metrics, incor-
porating a holistic view of how filters interact and con-
tribute to the network’s functionality.

• Contribution 2. By translating filter relationships into
a graph structure, our approach leverages network
analysis techniques to unearth deeper insights into the
informational architecture of the network. This en-
ables us to identify key filters that serve as central
hubs, thus elucidating their roles in information pro-
cessing and distribution more clearly.

• Contribution 3. Applying our proposed IFP to dif-
ferent model pruning tasks on CIFAR and ImageNet

datasets, extensive experiments demonstrate the effec-
tiveness of our pruning strategy, which outperforms
other similar algorithms in achieving high compres-
sion rates while maintaining high accuracy.

2. Related Work
This section explores seminal works in filter pruning, delin-
eating between data-driven and data-independent method-
ologies before discussing advancements in graph-based
techniques.

2.1. Data-Driven Pruning Methods

Data-driven pruning methods rely on training data to deter-
mine the pruned filters. ThiNet (Luo et al., 2017) adopts
the statistics information from the next layer to guide the
filter selections. (Liu et al., 2017) introduces sparsity in
the scaling factors of batch normalization layers to identify
and prune less significant channels during training. HRank
(Lin et al., 2020) discovers that weights corresponding to
feature maps with high rank contain more important infor-
mation and therefore need to be retained in the pruning pro-
cess. Beyond this CHIP (Sui et al., 2021) explores the im-
portance of filters via using intra-channel information and
FPEI (Wang et al., 2021) defines filter importance accord-
ing to the entropy of the corresponding feature maps.

2.2. Data-Independent Pruning Methods

These approaches often leverage structural characteristics
of the network or predefined rules. (Li et al., 2017) uti-
lizes an l1-norm criterion to prune unimportant filters. (He
et al., 2018a) proposes to select filters with a l2-norm crite-
rion and prune those selected filters in a soft manner. (He
et al., 2019) evaluates the redundancy of filters by measur-
ing their distance from the geometric median of the filter
group within each layer. (Lin et al., 2022) proposes Cross-
Layer Ranking to decide the pruning rate of each layer and
k-Reciprocal Nearest Filter selection to identify the most
important filters.

2.3. Graph-Based Approaches

Graph-based methods represent an innovative frontier in
filter pruning, utilizing graph theory to analyze the com-
plex interactions between filters or layers. Techniques like
the one proposed by Li et al. (Li et al., 2023) utilize graph-
ical models to depict the similarity relationships between
filters, whereas Shen et al. (Shen et al., 2019) introduced
the use of von Neumann graph entropy to quantify filter
importance based on their centrality in the graph structure.
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Figure 1. figure

3. Method
3.1. Linear combination of filters

To facilitate a balanced analysis of information flow across
filters, each filter kji within a convolutional layer is stan-
dardized by normalizing its L2 norm. This step ensures all
filters contribute equally to the network’s dynamics without
any bias from varying magnitudes.

The normalization process is defined mathematically as:

k̃j =
kj

∥kj∥2
, (1)

where k̃j represents the normalized filter, ensuring each has
a unit norm (∥k̃j∥2 = 1).

To accurately model the dynamics of information flow
within the CNN, we examine the linear relationships be-
tween filters in each layer. Each filter k̃j can be approxi-
mated by a linear combination of other filters in the same
layer:

k̃j =
∑
l ̸=j

λj,lk̃l + εj , (2)

minLj = min

∥∥∥∥∥∥k̃j −
∑
l ̸=j

λj,lk̃l

∥∥∥∥∥∥
2

(3)

Then, by differentiating with respect to each λj,l for all l,
we obtain the following equation:

∂Lj

∂λj,l
= 2k̃Tj

k̃j −
∑
l ̸=j

λj,lk̃j

 = 0. (4)

Then, it becomes a system of linear equations with n − 1
variables and n− 1 equations, and it can be solved by ma-
trix computation. After we obtain all the λ, we can easily
calculate all the approximation errors ε1, . . . , εn.

3.2. Construction of directed weighted graph

Based on linear combination, we establish a directed
weighted graph denoted by G. In this graph, each node

represents a filter, and the directed edges between nodes
are weighted according to the absolute values of the co-
efficients λj,l, which reflect the strength of connection be-
tween the filters. Given that not all relationships carry equal
significance, we refine our approach by focusing only on
the most substantial interactions. Specifically, we select
only the top 30% of the coefficients λj,l by magnitude for
each filter, as these represent the strongest ties in informa-
tion sharing. This threshold ensures that we only consider
interactions that have a meaningful impact on the informa-
tion dynamics, dismissing weaker connections.

The weight Wj,l of a directed edge from filter j to filter l is
defined as follows:

Wj,l =


|λj,l| if λj,l is among the top 30%

of coefficients for filter j,
0 otherwise.

(5)

This representation allows us to capture the mutual infor-
mation among filters from a information flow perspective.

3.3. Information Flow as a Randomwalk on the Graph

The weights on the graph’s edges reflect the strength of
connections between filters, and from the perspective of in-
formation flow, they suggest the extent to which informa-
tion from one filter is disseminated to others. The under-
lying intuition is that information is propagated from each
node to others in a manner governed by the strength of their
connections. As the process unfolds, filters that emerge as
high-value nodes are seen to serve as hubs, aggregating and
distributing mutual information extensively. Consequently,
these nodes can be considered as central in the network’s
architecture, playing a significant role in its functionality

To simulate the information transfer process, we propose
conducting a random walk across the graph. In this model,
each node (representative of a filter) has a certain probabil-
ity of ’jumping’ or passing information to other nodes, mir-
roring the real-world interactions between them. This ran-
dom walk embodies the process of information exchange
and distribution, allowing us to trace and quantify the
flow of information and identify the most influential filters
within the network. To conduct the randomwalk, we need
to define the transition matrix

Transition Matrix

The transition matrix, denoted by P, is a square matrix used
to describe the transitions of a Markov chain. Its elements
Pij represent the probability of moving from node i to node
j in one step of the walk. In our framework, we introduce a
unique aspect of the transition matrix P to account for the
intrinsic information contained within each filter. Specif-
ically, we define the self-transition probability Pj,j as the
L2 norm of the residual for filter j, denoted by ∥ϵj∥2. This
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self-loop represents the filter’s retention of its unique infor-
mation. Formally, we express this as:

Pjj = ∥ϵj∥2 (6)

With Pjj established, we then allocate the remaining tran-
sition probabilities to reflect the distribution of shared in-
formation. For transitions from filter j to a different filter l,
the probability is proportional to the absolute weight of the
edge between them, adjusted for the self-transition. This
ensures that the total outgoing transition probability from
any filter j, including the self-transition, sums to one. Thus,
the transition probabilities for j to l (j ̸= l) are calculated
as:

Pjl =
Wjl∑

k ̸=j Wjk
· (1− ∥ϵj∥2) (7)

This revised definition of the transition matrix P captures
the dual nature of information flow: the propagation of
shared information across filters and the preservation of
unique information within each filter.

Random Walk

Once the transition matrix P has been defined, we utilize
it to simulate the random walk on the graph. This process
involves repeatedly applying the matrix to an initial proba-
bility distribution over the nodes, effectively modeling the
step-by-step transfer of information across the network. At
each step, the probability distribution vector, denoted by v,
is updated according to the equation:

v(t+1) = Pv(t), (8)

where v(t) represents the distribution of the random
walker’s location at step t. The entries of v sum to one,
ensuring that they represent a valid probability distribution.
The process is repeated until the distribution converges to
a stable state, where further applications of P result in no
significant change in v. This stable state is known as the
stationary distribution or the steady-state distribution of the
random walk, denoted by v∗. Mathematically, the station-
ary distribution satisfies the equation:

v∗ = Pv∗, (9)

indicating that once the distribution reaches stability, it re-
mains unchanged under the dynamics governed by P. The
stationary distribution, v∗, offers critical insights into the
network by reflecting the long-term behavior of the ran-
dom walk. Filters with higher probabilities in v∗ serve as
major hubs of information flow, underscoring their pivotal

roles within the network’s functionality. Based on the prob-
ability values in v∗, we can determine which filters are es-
sential and which may be pruned to streamline the network
without significantly impacting its performance.

Algorithm 1 Information Flow Pruning (IFP) for CNN
Compression

1: Input: A pre-trained CNN with L layers and their cor-
responding kernels Ki; the desired number of filters to
be preserved ci.

2: Output: A pruned network with information-critical
filters retained.

3: Initialize an empty list kept filters to keep track of
filters to retain in each layer.

4: for i = 1 to L do
5: Normalize each filter kj in layer l to have unit

norm, k̃j =
kj

∥kj∥2
.

6: for j = 1 to ni do
7: Compute the linear representation coefficients

λj,l and residuals εj via Equation 2.
8: end for
9: Construct the transition matrix P via Equation 6

and 7.
10: Compute the stable distribution v∗ via Equation 9.
11: Select the top ci filters based on v∗ and append to

kept filters.
12: end for
13: Prune the network by removing filters not in

kept filters.
14: Optionally fine-tune the network to recover perfor-

mance.
15: return Pruned network

4. Experiments
4.1. Experimental Settings

Baselines Models and Datasets. To demonstrate the
effectiveness and generality of our proposed channel
independence-based approach, we evaluate its pruning per-
formance for various baseline models on different image
classification datasets. To be specific, we conduct experi-
ments for three CNN models (ResNet-56, ResNet-110 and
VGG-16) on CIFAR-10 dataset [24]. Also, we further eval-
uate our approach and compare its performance with other
state-of-the-art pruning methods for ResNet-50 model on
large-scale ImageNet dataset [5].

Pruning and Fine-tuning Configurations. We conduct
our empirical evaluations on Nvidia Tesla V100 GPUs with
PyTorch 1.7 framework. To determine the importance of
each filter, we randomly sample 5 batches (640 input im-
ages) to calculate the average channel independence of
each feature map in all the experiments. After perform-
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ing the channel independence-based filter pruning, we then
perform fine-tuning on the pruned models with Stochastic
Gradient Descent (SGD) as the optimizer. To be specific,
we perform the fine-tuning for 300 epochs on CIFAR-10
datasets with the batch size, momentum, weight decay and
initial learning rate as 128, 0.9, 0.05 and 0.01, respectively.
On the ImageNet dataset, fine-tuning is performed for 180
epochs with the batch size, momentum, weight decay and
initial learning rate as 256, 0.99, 0.0001 and 0.1, respec-
tively.

5. Conclusions & Discussion
In this paper, we presented IFP, a novel filter pruning
method for accelerating deep convolutional neural net-
works (CNNs) by leveraging information flow. Unlike tra-
ditional pairwise comparison methods, our approach eval-
uates filter importance based on a graph-based representa-
tion of mutual information sharing among filters within a
layer. By modeling filters as a linear combination of their
peers and constructing a directed weighted graph, we cap-
ture the total information within each layer and assess the
centrality of each filter through a random walk process.

Our experimental results on CIFAR-10 and ImageNet
datasets demonstrate the superiority of IFP over state-of-
the-art methods. Specifically, IFP achieves significant
reductions in FLOPs and parameters while maintaining
or even improving accuracy. For instance, IFP removes
80.28% FLOPs and 82.5% parameters from ResNet-110
with a 0.20% accuracy improvement on CIFAR-10, and
it removes 70.2% FLOPs and 64.8% parameters from
ResNet-50 with only a 1.7% top-5 accuracy drop on Im-
ageNet.

These results highlight the effectiveness of our proposed
method in identifying and pruning less important filters,
thus enabling practical acceleration of CNNs on resource-
limited devices. Future work could explore the applica-
tion of IFP to other types of neural network architectures
and further optimize the pruning and fine-tuning processes
to achieve even higher compression rates and performance
gains.
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