Backpropagation Derivation for a Two-Layer Neural Network

Tong Wu

October 17, 2024

Introduction

We consider a two-layer neural network with the following structure:

- Input layer of size n_0
- Hidden layer of size n_1
- Output layer of size n_2

The goal is to compute the gradients of the loss L with respect to the weight matrices and bias vectors using backpropagation.

Forward Propagation

Let the input be $\mathbf{x} \in \mathbb{R}^{n_0}$. The forward propagation equations are:

$$
z[1] = W[1]x + b[1],\na[1] = σ (**z**^[1]),
\n**z**^[2] = **W**^[2]**a**^[1] + **b**^[2],
\n
$$
\hat{\mathbf{y}} = f(\mathbf{z}^{[2]}),
$$
$$

Here:

- $\mathbf{W}^{[1]} \in \mathbb{R}^{n_1 \times n_0}$ is the weight matrix for the hidden layer.
- $\mathbf{b}^{[1]} \in \mathbb{R}^{n_1}$ is the bias vector for the hidden layer.
- $\sigma(\cdot)$ is the activation function (e.g., sigmoid or ReLU) applied elementwise.
- $\mathbf{W}^{[2]} \in \mathbb{R}^{n_2 \times n_1}$ is the weight matrix for the output layer.
- $\mathbf{b}^{[2]} \in \mathbb{R}^{n_2}$ is the bias vector for the output layer.
- $f(\cdot)$ is the activation function of the output layer (We take elementwise function e.g. sigmoid as an example).
- $\hat{\mathbf{y}} \in \mathbb{R}^{n_2}$ is the predicted output.

Loss Function

Assume we have a loss function $L(\hat{y}, y)$ where y is the true label. For simplicity, we assume the loss is the mean squared error (MSE):

$$
L = \frac{1}{2} \|\mathbf{y} - \hat{\mathbf{y}}\|^2,
$$

Backpropagation

To update the weights, we need to calculate the gradients of the loss L with respect to the weight matrices $W^{[1]}$, $W^{[2]}$ and the biases $b^{[1]}$, $b^{[2]}$.

Step 1: Gradient at the Output Layer

First, compute the derivative of the loss with respect to the prediction $\hat{\mathbf{y}}$:

$$
\frac{\partial L}{\partial \hat{\mathbf{y}}} = \hat{\mathbf{y}} - \mathbf{y},
$$

Then compute the derivative of the loss with respect to the output layer pre-activation $z^{[2]}$:

$$
\frac{\partial L}{\partial \mathbf{z}^{[2]}} = \frac{\partial L}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{z}^{[2]}} \stackrel{\mathbf{w} \mathbf{h} \mathbf{y} ?}{=} \frac{\partial L}{\partial \hat{\mathbf{y}}} \circ f'(\mathbf{z}^{[2]}) = (\hat{\mathbf{y}} - \mathbf{y}) \circ f'(\mathbf{z}^{[2]}),
$$

where \circ denotes element-wise multiplication and $f'(\mathbf{z}^{[2]})$ is the derivative of the output activation function. For example, if $f(.)$ is the identity function (regression case), then $f'(\mathbf{z}^{[2]}) = 1$.

Now using chain rule, the gradient with respect to the weights and biases in the output layer are:

$$
\begin{aligned} \frac{\partial L}{\partial {\bf W}^{[2]}} &= \frac{\partial L}{\partial {\bf z}^{[2]}}\frac{\partial {\bf z}^{[2]}}{\partial {\bf W}^{[2]}} \stackrel{\text{why?}}= \frac{\partial L}{\partial {\bf z}^{[2]}}({\bf a}^{[1]})^T, \\ \frac{\partial L}{\partial {\bf b}^{[2]}} &= \frac{\partial L}{\partial {\bf z}^{[2]}}\frac{\partial {\bf z}^{[2]}}{\partial {\bf b}^{[2]}} &= \frac{\partial L}{\partial {\bf z}^{[2]}}, \end{aligned}
$$

Step 2: Gradient at the Hidden Layer

The derivative at the hidden layer is computed by backpropagating similarly. First we calculate the derivative of first activation $a^{[1]}$:

$$
\frac{\partial L}{\partial \mathbf{a}^{[1]}} = \frac{\partial L}{\partial \mathbf{z}^{[2]}} \frac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{a}^{[1]}} \stackrel{\mathbf{w} \mathbf{h} \mathbf{y} ?}{=} (\mathbf{W}^{[2]})^T \frac{\partial L}{\partial \mathbf{z}^{[2]}},
$$

Then we can calculate pre-activation easily:

$$
\frac{\partial L}{\partial \mathbf{z}^{[1]}} = \frac{\partial L}{\partial \mathbf{a}^{[1]}} \frac{\partial \mathbf{a}^{[1]}}{\partial \mathbf{z}^{[1]}} = (\mathbf{W}^{[2]})^T \delta^{[2]} \circ \sigma'(\mathbf{z}^{[1]}),
$$

where $\sigma'(\mathbf{z}^{[1]})$ is the derivative of the activation function σ with respect to $\mathbf{z}^{[1]}$.

Now, the gradients with respect to the weights and biases in the hidden layer are:

$$
\frac{\partial L}{\partial \mathbf{W}^{[1]}} = \frac{\partial L}{\partial \mathbf{z}^{[1]}}(\mathbf{x})^T,
$$

$$
\frac{\partial L}{\partial \mathbf{b}^{[1]}} = \frac{\partial L}{\partial \mathbf{z}^{[1]}},
$$

Summary of Gradients

The gradients for backpropagation are:

$$
\frac{\partial L}{\partial \mathbf{W}^{[2]}} = \left[(\hat{\mathbf{y}} - \mathbf{y}) \circ f'(\mathbf{z}^{[2]}) \right] (\mathbf{a}^{[1]})^T,
$$

$$
\frac{\partial L}{\partial \mathbf{b}^{[2]}} = (\hat{\mathbf{y}} - \mathbf{y}) \circ f'(\mathbf{z}^{[2]}),
$$

$$
\frac{\partial L}{\partial \mathbf{W}^{[1]}} = \left[(\mathbf{W}^{[2]})^T \left((\hat{\mathbf{y}} - \mathbf{y}) \circ f'(\mathbf{z}^{[2]}) \right) \circ \sigma'(\mathbf{z}^{[1]}) \right] (\mathbf{x})^T,
$$

$$
\frac{\partial L}{\partial \mathbf{b}^{[1]}} = (\mathbf{W}^{[2]})^T \left((\hat{\mathbf{y}} - \mathbf{y}) \circ f'(\mathbf{z}^{[2]}) \right) \circ \sigma'(\mathbf{z}^{[1]}),
$$

Figure 1: Visualization of Backpropogation: From Scalars to Linear Algebra.