Backpropagation Derivation for a Two-Layer

Neural Network

Tong Wu
October 17, 2024

Introduction

We consider a two-layer neural network with the following structure:

e Input layer of size ng

e Hidden layer of size ny

e Output layer of size no

The goal is to compute the gradients of the loss L with respect to the weight
matrices and bias vectors using backpropagation.

Forward Propagation

Let the input be x € R™. The forward propagation equations are:
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Here:

W e R %70 is the weight matrix for the hidden layer.
bltl € R™ is the bias vector for the hidden layer.

o(-) is the activation function (e.g., sigmoid or ReLU) applied element-
wise.

WL € R?2X71 i the weight matrix for the output layer.

b2l € R is the bias vector for the output layer.



e f(-) is the activation function of the output layer (We take element-
wise function e.g. sigmoid as an example).

e y¥ € R™ is the predicted output.

Loss Function

Assume we have a loss function L(¥,y) where y is the true label. For simplicity,
we assume the loss is the mean squared error (MSE):
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Backpropagation
To update the weights, we need to calculate the gradients of the loss L with
respect to the weight matrices W, W2 and the biases bl!!, b2

Step 1: Gradient at the Output Layer

First, compute the derivative of the loss with respect to the prediction y:
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Then compute the derivative of the loss with respect to the output layer
pre-activation z[?:
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where o denotes element-wise multiplication and f’(z[?!) is the derivative of
the output activation function. For example, if f(-) is the identity function
(regression case), then f’(zl?) = 1.

Now using chain rule, the gradient with respect to the weights and biases in
the output layer are:
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Step 2: Gradient at the Hidden Layer

The derivative at the hidden layer is computed by backpropagating similarly.
First we calculate the derivative of first activation all:
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Then we can calculate pre-activation easily:
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where o’(z[!) is the derivative of the activation function o with respect to z!.
Now, the gradients with respect to the weights and biases in the hidden layer
are:
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Summary of Gradients

The gradients for backpropagation are:
oL
oWl [(

oL
obl2l

§-y)o f(z%)] @7,




-/

|

Figure 1: Visualization of Backpropogation: From Scalars to Linear

Algebra.



