
Backpropagation Derivation for a Two-Layer

Neural Network

Tong Wu

October 17, 2024

Introduction

We consider a two-layer neural network with the following structure:

• Input layer of size n0

• Hidden layer of size n1

• Output layer of size n2

The goal is to compute the gradients of the loss L with respect to the weight
matrices and bias vectors using backpropagation.

Forward Propagation

Let the input be x ∈ Rn0 . The forward propagation equations are:

z[1] = W[1]x+ b[1],

a[1] = σ(z[1]),

z[2] = W[2]a[1] + b[2],

ŷ = f(z[2]),

Here:

• W[1] ∈ Rn1×n0 is the weight matrix for the hidden layer.

• b[1] ∈ Rn1 is the bias vector for the hidden layer.

• σ(·) is the activation function (e.g., sigmoid or ReLU) applied element-
wise.

• W[2] ∈ Rn2×n1 is the weight matrix for the output layer.

• b[2] ∈ Rn2 is the bias vector for the output layer.

1



• f(·) is the activation function of the output layer (We take element-
wise function e.g. sigmoid as an example).

• ŷ ∈ Rn2 is the predicted output.

Loss Function

Assume we have a loss function L(ŷ,y) where y is the true label. For simplicity,
we assume the loss is the mean squared error (MSE):

L =
1

2
∥y − ŷ∥2,

Backpropagation

To update the weights, we need to calculate the gradients of the loss L with
respect to the weight matrices W[1],W[2] and the biases b[1],b[2].

Step 1: Gradient at the Output Layer

First, compute the derivative of the loss with respect to the prediction ŷ:

∂L

∂ŷ
= ŷ − y,

Then compute the derivative of the loss with respect to the output layer
pre-activation z[2]:

∂L

∂z[2]
=

∂L

∂ŷ

∂ŷ

∂z[2]
why?
=

∂L

∂ŷ
◦ f ′(z[2]) = (ŷ − y) ◦ f ′(z[2]),

where ◦ denotes element-wise multiplication and f ′(z[2]) is the derivative of
the output activation function. For example, if f(·) is the identity function
(regression case), then f ′(z[2]) = 1.

Now using chain rule, the gradient with respect to the weights and biases in
the output layer are:

∂L

∂W[2]
=

∂L

∂z[2]
∂z[2]

∂W[2]

why?
=

∂L

∂z[2]
(a[1])T ,

∂L

∂b[2]
=

∂L

∂z[2]
∂z[2]

∂b[2]
=

∂L

∂z[2]
,

2



Step 2: Gradient at the Hidden Layer

The derivative at the hidden layer is computed by backpropagating similarly.
First we calculate the derivative of first activation a[1]:

∂L

∂a[1]
=

∂L

∂z[2]
∂z[2]

∂a[1]
why?
= (W[2])T

∂L

∂z[2]
,

Then we can calculate pre-activation easily:

∂L

∂z[1]
=

∂L

∂a[1]
∂a[1]

∂z[1]
= (W[2])T δ[2] ◦ σ′(z[1]),

where σ′(z[1]) is the derivative of the activation function σ with respect to z[1].
Now, the gradients with respect to the weights and biases in the hidden layer

are:

∂L

∂W[1]
=

∂L

∂z[1]
(x)T ,

∂L

∂b[1]
=

∂L

∂z[1]
,

Summary of Gradients

The gradients for backpropagation are:

∂L

∂W[2]
=

[
(ŷ − y) ◦ f ′(z[2])

]
(a[1])T ,

∂L

∂b[2]
= (ŷ − y) ◦ f ′(z[2]),

∂L

∂W[1]
=

[
(W[2])T

(
(ŷ − y) ◦ f ′(z[2])

)
◦ σ′(z[1])

]
(x)T ,

∂L

∂b[1]
= (W[2])T

(
(ŷ − y) ◦ f ′(z[2])

)
◦ σ′(z[1]),

3



Figure 1: Visualization of Backpropogation: From Scalars to Linear
Algebra.

4


