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Midterm Breakdown
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Review

Overfit & Underfit

Underfit Both training error and testing error are large
Overfit Training error is small, testing error is large
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Model capacity: the ability to fit a wide variety of functions
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Review

Model Capacity

Changing a model’s capacity controls whether it is more likely to overfit
or underfit

— - Training error
Underfitting zone| Overfitting zone

—— Generalization error

Error

0 Optimal Capacity
Capacity

How to formalize this idea?
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Review

Bias and Variance

Suppose data is generated by the following model:
y = h(x)+e
with E[e] = 0, Var(e) = o2

> h(x): true hypothesis function, unknown

> hp(x): estimated hypothesis function based on training data
D = {(xM,yM), ... (x(m y(mM)} sampled from Pxy

> Model bias: Bias(hp(x)) = Ep[hp(x) — h(x)] Expected
estimation error of the model over all choices of training data D

» Model variance: Var(hp(x)) = Ep[hp(x)?] — Ep[hp(x)]?
Variance of the model over all choices of D
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Review

Bias - Variance Tradeoff
If we measure generalization error by MSE for test sample (x, y)
MSE = E[(hp(x) — y)?] = Bias(hp(x))? + Var(hp(x)) + o2,
> o2 represents irreducible error (caused by noisy data)

> in practice, increasing capacity tends to increase variance and
decrease bias.
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Underfitting zone

Overfitting zone
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Review

Today’s Lecture

» How to measure model capacity?

» Can we find a theoretical guarantee for model generalization?

A brief introduction to learning theory
» Empirical risk minimization

» Generalization bound for finite and infinite hypothesis space

Final project information.
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Learning |heory

Introduction to Learning Theory

» Empirical risk estimation
» Learning bounds

> Finite Hypothesis Class
> Infinite Hypothesis Class
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Learning theory

How to quantify generalization error?

Q KTA < Q(m::(_r";“ L

Figure: Prof. Vladimir Vapnik in front of his famous theorem
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Simplified assumption: y € {0,1}
> Training set: S = (x(),y);i=1,... mwith (x() y()) ~D
» For hypothesis h, the training error or empirical risk/error in

learning theory is defined as

{(h) = S 1) £ 40}

i=1

» The generalization error is

E(h) = ]E(x,y)ND 1{h(X) 3& y}

PAC assumption: assume that training data and test data (for
evaluating generalization error) were drawn from the same distribution D
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Hypothesis Class and ERM

Hypothesis class

The hypothesis class 7 used by a learning algorithm is the set of all
classsifiers considered by it.
e.g. Linear classification considers hy(x) = 1{67x > 0}

Empirical Risk Minimization (ERM): the “simplest" learning
algorithm: pick the hypothesis h from hypothesis class H that minimizes
training error
h = argmin &(h)
heH
How to measure the generalization error of empirical risk minimization
over H?

» Case of finite H
» Case of infinite H
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Case of Finite H

Goal: give guarantee on generalization error ¢(h)
> Show &(h) (training error) is a good estimate of e(h) for all h
» Derive an upper bound on €(h)

For any h; € H, the event of h; miss-classification given sample
(x,y) ~ D:
Z =1Uhi(x) # y}

Z; = 1{hi(xY)) # yU)} : event of h; miss-classifying sample xU)
Training error of h; € H is:
1 & , .
e(h) = — 1{h;(xV )
oh) = = SO 1) # )

j=1

)= > 7z =[]
j=1

Testing error of h; € H is: e(h;) = E[Z]

nnnnnnnnnn
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Preliminaries

Here we make use of two famous inequalities:

Lemma 1 (Union Bound)
Let A1, Ay, ..., Ak be k different events, then

P(ALU---UA) < P(A1) + -+ P(Ax)

Probability of any one of k events happening is less the sums of their
probabilities.
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Preliminaries

Lemma 2 (Hoeffding Inequality, Chernoff bound)

Let Zy,...,Zy, be m i.id. random variables drawn from a Bernoulli(¢)
distribution. i.e. P(Zi=1)=¢ , P(Z;=0)=1—¢. Let § = # Yz
be the sample mean of RVs.
For any v > 0, R

P(lp — | > v) < 2exp(—2v°m)

The probability of ) having large estimation error is small when m is
large!

ning 1 heory
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Case of Finite H

Training error of h; € H is:

where Z; ~ Bernoulli(e(h;))
By Hoeffding inequality,

P(le(hi) — &(hi)| > 7) < 2e727'™
By Union bound,

P(Vh e H.|e(h) — &(h)| <) > 1 — 2ke 2™

nnnnnnnnnn
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Uniform Convergence Results

Corollary 3

Given v and § > 0, If
1 2k
m > 2 = log — 5
Then with probability at least 1 — &, we have |e(h) — é(h)| < v for all H.
m is called the algorithm’s sample complexity.

Remarks

» Lower bound on m tell us how many training examples we need to
make generalization guarantee.

» # of training examples needed is logarithm in k
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Uniform Convergence Results

Corollary 4
With probability 1 — 6, for all h € H,sample size m,

() — ()] < /5 log

What is the convergence result when we pick h = argming,c, €(h)
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Uniform Convergence Theorem for Finite H

Using previous corollaries, we can bound e(h):

Theorem 5 (Uniform convergence)
Let |H| = k, and m,d be fixed. With probability at least 1 — &, we have
1 2k

e(h) < (Irj'rélqu e(h)) +2 o log 5

> minyey €(h) (also denoted as e(h*)) is the generalization error of the
best possible hypothesis in 7.

> Bias Variance Trade-off: If || increases, minyc €(h) woud

decrease, but q/i log % would increase due to having larger k.
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Infinite hypothesis class: Challenges

Can we apply the same theorem to infinite H?

Example

» Suppose H is parameterized by d real numbers. e.g.
0 = [01,02,...,04] € R in linear regression with d — 1 unknowns.

> In a 64-bit floating point representation, size of hypothesis class:
|H| — 264d

» How many samples do we need to guarantee e(h) < e(h*) + 27 to
hold with probability at least 1 — 67

1, 264 d 1

To learn well, the number of samples has to be linear in d

nnnnnnnnnn
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Infinite hypothesis class: Challenges

Size of H depends on the choice of parameterization

Example

2n + 2 parameters:
huy = H{(ug = v5) + (uf = vi)xa + -+ + (u; = vi)xn > 0}
is equivalent the hypothesis with n + 1 parameters:

hg(X) = ]1{00 +O1x1 + -+ 0,x, > 0}

We need a complexity measure of a hypothesis class invariant to
parameterization choice
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Infinite hypothesis class: Vapnik-Chervonenkis theory

A computational learning theory developed during 1960-1990 explaining
the learning process from a statistical point of view.
Alexey Chervonenkis (1938-2014), Russian mathemati-
cian

Vladimir Vapnik (Facebook Al Research, Vencore Labs)
Most known for his contribution in statistical learning
theory

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Data



Learning |heory

Shattering a point set

> Given d points x() € X, i=1,...,d, H shatters S if H can realize
any labeling on S.

Figure: Example: S = {x), x® x()} where x() € R?.

X1

Suppose y\) € {0,1}, how many possible labelings does S have?
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Shattering a point set

> Example: Let H,7F > be the linear threshold function in R? (e.g.

the perceptron algorithm)

h(x) 1 wixi+wexe > b
X) =
0 otherwise
X X X X
X @) X @]
X2 X X X2
X X O @]
X Xy Xy Xy
O @) @) O
X O X @)
X, X, X2 X2
X X O O
X X X X

Figure: H,7F > shatters S = {x(l),x(2),x(3)}
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VC Dimension

The Vapnik-Chervonenkis dimension of H, or VC(H), is the cardinality
of the largest set shattered by H.

> Example: VC(Hi1r2) =3
N
+ —_

Figure: H;7r can not shatter 4 points: for any 4 points, label points on the
diagonal as '+'. (See Radon’s theorem)

» To show VC(H) > d , it's sufficient to find one set of d points
shattered by H

» To show VC(#H) < d, need to prove H doesn't shatter any set of d
points
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VC Dimension

> Example: VC(AxisAlignedRectangles) = 4

0 ® ®
] © © °
o o) - ®
O 0 2 & 3
(0] e} ®
(@) o) ®
®
o 1| ® $2’$ o 4

Figure: Axis-aligned rectangles can shatter 4 points.
VC(AxisAlignedRectangles) > 4
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VC Dimension

> Example: VC(AxisAlignedRectangles) = 4

O
1D

D
@

Figure: For any 5 points, label topmost, bottommost, leftmost and rightmost
points as “+".  VC(AxisAlignedRectangles) < 5
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Discussion on VC Dimension

More VC results of common H:
» VC(PositiveHalf-Lines) = 1,X =R

EEEE

|
> VC(Intervals) =2,X =R
» VC(LTF inR")=n+1,X =R" < prove this at home!

Proposition 1
If H is finite, VC dimension is related to the cardinality of H:

VC(H) < log|H|

Proof. Let d = VC|H|. There must exists a shattered set of size d on
which H realizes all possible labelings. Every labeling must have a
corresponding hypothesis, then || > 29
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Learning bound for infinite H

Theorem 6
Given H, let d = VC(H).
> With probability at least 1 — §, we have that for all h

le(h) — &(h)| < O <\/% |og§ + % log %)

» Thus, with probability at least 1 — 6, we also have

A d m 1 1
< e(h* Zlog = 4+ = log =
e(h)_e(h)+O<\/mlogd+mlog5>
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Learning bound for infinite H

Corollary 7

For |e(h) — €(h)| < v to hold for all h € H with probability at least 1 — 9,
it suffices that m = O, 5(d).

Remarks
» Sample complexity using H is linear in VC(H)

» For “most"? hypothesis classes, the VC dimension is linear in terms
of parameters

» For algorithms minimizing training error, # training examples
needed is roughly linear in number of parameters in H.

Not always true for deep neural networks
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VC Dimension of Deep Neural Networks

Theorem 8 (Cover, 1968; Baum and Haussler, 1989)

Let N be an arbitrary feedforward neural net with w weights that
consists of linear threshold activations, then VC(N') = O(w log w).

Recent progress

> For feed-forward neural networks with piecewise-linear activation
functions (e.g. ReLU), let w be the number of parameters and / be
the number of layers, VC(N') = O(wl log(w)) [Bartlett et. al., 2017]

» Among all networks with the same size (number of weights), more
layers have larger VC dimension , thus more training samples are
needed to learn a deeper network

Bartlett and W. Maass (2003) Vapnik-Chervonenkis Dimension of Neural Nets

Bartlett et. al., (2017) Nearly-tight VC-dimension and pseudodimension bounds for piecewise
linear neural networks.
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Summary

» We can control generalization by adjusting the complexity of
hypothesis H

» VC dimension as a useful measure of complexity.

We could bound the performance of a learning algorithm in terms of
VC(H) and the amount of data we have.

Limitation of VC Dimension
» The bound is not very tight as VC is distribution independent
» Only defined for binary classification
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Rademacher Complexity

» Named after German-American Mathematician Hans Rademacher

» A more modern notion of complexity that is distribution
dependent and defined for any class of real-valued functions.

» Rademacher Complexity (Informal): The ability of a hypothesis
(function) class to fit random noise o; € {+1,—1}. Higher
Rademacher complexity, greater capacity to overfit.

Polynomial Fits to Random Points

@ Random Points
—— f1 (2nd order polynomial)
154 —— f2 (8th order polynomial)

0.51

0.0 1

—~0.5
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Mathematical Definition

Empirical Rademacher Complexity
> Let F be a class of real-value functions f : Z — R.

> Given a set of examples S = {z(), 2(?) ... z(M} each drawn from
a fixed distribution D, the empirical Rademacher complexity of F is:

sup E Z J;f(Z;)] ,

m
fer m—

Rs(F) = E,

where o; are i.i.d. Rademacher variables (taking values 41 with
equal probability).
Rademacher Complexity
» The Rademacher complexity of F over a distribution D is:

Rn(F) = Eswon [Rs(F)|

measures the expected noise-fitting-ability of F over all data sets S
drawn according to D
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Learning

Rademacher-based uniform convergence

For a function f € F and a sample S = {z,..., zy}, the empirical
expectation (sample mean) of f is:

fs[f] = %Z f(z).
i=1

Theorem 9

Let F C {f : Z — [a,a+ 1]} be any class of bounded real-value
functions.

With probability at least 1 — 6 (for a confidence level 6 € (0,1)), for any
function f € F :

E.oplf(2)] < Bslf] + 208, (F) + 1/ B0/

We bound the expectation of each function in terms of its sample mean,
the Rademacher complexity of the class, and an error term.
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Connection to Loss Functions

Take binary classification as an example:
> let ¥ =R, Y ={-1,+1},and Z=X x Y
» Given a hypothesis class H of functions h: X — ), we can define a
class of loss functions L(H) = {l, : Z — R|lh € H}:

1 — h(x
In(z) = In(x,y) = L{h(x) # y} = #
» The (empirical) expectation of /,(z) is the (empirical) error of h:

m

Bsli(2)] = — > 1{h(x) £ v} = é(h)

Ep{h(2)] = El1{(x) # y}] = e(h)

» By Theorem 9, we can show

e(h) <é(h) + 2Rm(L(H)) + '”(Iln/5)

In(1/96)

m

=é(h) + Rm(H) +
Why is 2R (H) = Ry(L(H))?
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Summary

> Rademacher complexity R,,(H) depends on the underlying
distribution D from which sample points are drawn.

> Uniform convergence of the generalization error can be derived
using Rademacher complexity for any bounded loss function
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Final Project Information

See http://yangli-feasibility.com/home/classes/1£d2024fall/
project.html

> Project Timeline

Deadline Task
11-Nov Submit group assignment
22-Nov Submit project proposal
6-Dec Team meeting with course staff
25-Dec | Submit poster PDF file (Submission will be closed at 11:59am)
27-Dec Poster session
3-Jan Submit final report
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