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Today's Lecture

Practical tools to improve machine learning performance:
» Bias and variance trade off
» Model selection and feature selection

» Regularization

» Generic techniques
» Neural network regularization tricks

» Midterm information



Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis h
is the expected loss over m training samples

m

€0.1(h) = ;Z 1{h ’) ) # y( (classification, 0-1 loss)

i=1
és(h) = Z |A(xD) — yD|12 (regression, least-square loss)
1
The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
Goal of machine learning

» make training error small (optimization)
» make the gap between empirical and generalization error small



Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large

Model capacity: the ability to fit a wide variety of functions



Model Capacity

Changing a model's capacity controls whether it is more likely to overfit
or underfit

» Choose a model's hypothesis space: e.g. increase # of features
(adding parameters)

» Find the best among a family of hypothesis functions
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How to formalize this idea?



Bias & Variance

Suppose data is generated by the following model:
y=h(x)+e
with E[e] = 0, Var(e) = o2

h(x): true hypothesis function — fixed value

D: training data {(x(1), yM), ... (x{™ Am)} sampled from
Pxy

h(x; D): estimated ilypothesis function based on D, sometimes
written as h(x) for short — random variable



Bias & Variance

Bias of a model: The expected estimation error of h over all choices of
training data D sampled from Pxy,

Bias(h) = Ep[h(x) — h(x)] = Ep[h(x)] — h(x)

When we make wrong assumptions about the model, h will have large
bias (underfit)

Variance of a model: How much h move around its mean

~

Var(h) = Ep[(h(x) — En(h(x))’]
= Ep[h(x)?] — Ep[h(x)]?

When the model overfits “spurious” patterns, it has large variance
(overfit).



Bias - Variance Tradeoff

MSE Decomposition
We can decompose the expected error of MSE on a new sample (x,y):
MSE = Ep,[(h(x) — y)*] = Bias(h)* + Var(h) + o°,

> o2 represents irreducible error

» in practice, increasing capacity tends to increase variance and
decrease bias.
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Model Selection

For a given task, how do we select which model to use?
» Different learning models
> e.g. SVM vs. logistic regression for binary classification
» Same learning models with different hyperparameters
> e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.



Hold-out cross validation

Given training set S and candidate models Ms,...,M,:
1. Randomly split S into Strain and Se, (e.8. 70% Strain)
2. Training each M; on S;.ain,

3. Select the model with smallest empirical error on S,

Disavantages of hold-out cross validation
> "wastes” about 30% data

» chances of an unfortunate split



K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.
1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k= 5)
2. Forj=1...k
Train each model on 5\§;, then validate on §;,
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3. Select the model with the smallest average empirical error among
all k trails.



Leave-One-Out Cross Validation

A special case of k-fold cross validation, when k= m.

1. For each training example x;
Train each model on S\{x;}, then evaluate on x;,

2. Select the model with the smallest average empirical error among all
m trails.

Often used when training data is scarce.



Other Cross Validation Methods

» Random subsampling

» Bootstrapping: sample with replacement from training examples
(used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.



Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with weight decay:

J0) = log p(y|47; 0) + A||6] 13

i=1

» Use prior probability: max-a-posteriori estimation



Parameter Norm Penalty

Adding a regularization term to the loss (error) function:

JX, Yi0) = JX Y:0) +x Q)

——
data-dependent loss regularizer
where
1 ¢ 1
Q(68) = 5 D167 = 5 6llg
j=1

| | | |
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q=0.5 g=1 q=2 q=4

Figure: Contours of the regularizer (||0||7 = 1) for different g



L2 parameter penalty

When g = 2, it’s also known as Tokhonov regularization or ridge
regression

A
JX, Y. 0) = JX, Y. 0) + 5979
Gradient descent update:

0 6 —aVyl(X,Y;0)
=0 — a(VeJ(X, Y:0) + \9)
=(1—a))f—aVeJX,Y;0)

L2 penalty multiplicatively shrinks parameter 8 by a constant

Example: regularized least square

When J(X, Y;0) = 3577 (D — 87x0)2 (ordinary least squares),
fors = (XX + M) H(XTY)



L1 parameter penalty

When g =1, Q(0) = % J'.’:l |6| is also known as LASSO regression.
> If A is sufficiently large, some coefficients 6; are driven to 0.

» It will lead to a sparse model

Proposition 1
Solving ming (X, Y:0) = J(X, Y;0) + 3 Z};l |6;|9 is equivalent to

ming J(X, Y; 6)
st 017 <

for some constant 1 > 0 (x). Furthermore, 1 = ZJ';I |07 (A\)]9 where

0*(\) = argmin, J(X, Y: 6, )
> (%) assumes constraints are satisfiable (e.g. with slater’'s condition)
» Choosing A is equivalent to choosing 7 and vice versa

» Smaller A\ — larger constraint region



L1 vs L2 parameter penalty

Figure: Contour plot of unregularized error J(X, Y;8) and the constraint region
Zjn:1 “9|q <n
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The lasso (I1 regularizer) gives a sparse solution with 65 = 0.



Bayesian Statistics

Maximum likelihood estimation: 6 is an unknown constant
m a o
OpmiLe = argmaxH p(A XD 0)
o s
Bayesian view: 6 is a random variable
0 ~ p(9)
Given training set S = {x(), {0} posterior distribution of #

p(S10)p(6)

p(6]S) = o(5)



Fully Bayesian statistics

p(S) f@ /71 p l)|X(I)7 e)p(g))de
To predict the label for new sample x, compute the posterior distribution
over training set S:

plylx, S) = /9 p(ylx, 6)p(6]5)db

The label is
Elylx, §] = / y p(ylx, S)dy
y

Fully bayesian estimate of 6 is difficult to compute, has no close-form
solution.



Bayesian Statistics

Posterior distribution on class label y using p(0]S)

pylx, S) = /0 plylx, 0)p(6]5)do

We can approximate p(y|x,6) as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of 6§ is

Omap = argmax H p( |2, 0)p(6)

i=1

p(y)|x),0) is not the same as p(y{7|x(7; §)



MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y)|x(0) ~ N (87X, o2):

Omie = arg;nax H p(Y|¥; )

i=1
= (X"X)XTY =005
The MAP estimation when 6 ~ N(0, 72/) is
Oap = argmax (H p(y|¥; 9)) p(0)
i=1
02
= argmin (29Ta +(Y—=X0)(Y— Xa))
0 T

o2

2 ~
= (X"X+ Z )7 IXTY = o s when A = =
T T



Discussion on MAP Estimation

General remarks on MAP:
» When @ is uniform, GMAP = 9MLE

» A common choice for p(6) is 0 ~ N(0,72), and Opmap corresponds
to weight decay (L2-regularization)

» When @ is an isotropic Laplace distribution, #y,4p corresponds to
LASSO ( L1-regularization).

» Oyap often have smaller norm than Oy e



Regularization for neural networks

Common regularization techniques:
» Data augmentation
» Parameter sharing

» Drop out



Data augmentation

Create fake data and add it to the training set. (Useful in certain tasks
such as object classification.)

SMMER,
EHEI[!

etc

Photograph Monet Van Gogh T Cezame

Figure: Generate images of different styles using GAN

Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019



Parameter Sharing

Force sets of parameters to be equal based on prior knowledge.

Siamese Network Similar/Not ?
» Given input X, learns a discriminative

feature (X)

» For every pair of samples (X1, X2) in
the same class, minimize their distance
in feature space ||f{X1) — X2)||?

Convolutional Neural Network (CNN)
> Image features should be invariant to translation
» CNN shares parameters across multiple image locations.

Soft parameter sharing: add a norm penalty between sets of

parameters:
Q0" 0%) = 110" - 0°|3



Drop Out

» Randomly remove a non-output unit from network by multiplying its
output by zero (with probability p)

» In each mini-batch, randomly sample binary masks to apply to all
inputs and hidden units

» Dropout trains an ensemble of different sub-networks to prevent the
“co-adaptation” of neurons

(a) Standard Neural Network (b) Network after Dropout



Midterm Information

» Time: Next Friday, November 1, 10:00am (Arrive at 9:50am)
» Location: TBA

» What to bring: Pen 4+ One A4 size notesheet (can be written on
both sides)

» Covers everything up to today.
» Midterm review session this weekend (Time & Location TBA)

Stop by my office hour if you have questions!
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