Learning From Data Lecture 7: Model Selection & Regularization

Yang Li yangli@sz.tsinghua.edu.cn

October 24, 2024

Today's Lecture

Practical tools to improve machine learning performance:

- Bias and variance trade off
- Model selection and feature selection
- Regularization
 - Generic techniques
 - Neural network regularization tricks
- Midterm information

Empirical error & Generalization error

Consider a learning task, the **empirical (training) error** of hypothesis h is the expected loss over m training samples

$$\begin{split} \hat{\epsilon}_{0,1}(h) &= \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\{h(x^{(i)}) \neq y^{(i)}\} \quad \text{(classification, 0-1 loss)} \\ \hat{\epsilon}_{LS}(h) &= \frac{1}{m} \sum_{i=1}^{m} ||h(x^{(i)}) - y^{(i)}||_2^2 \quad \text{(regression, least-square loss)} \end{split}$$

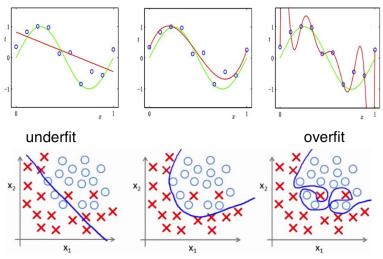
The generalization (testing) error of h is the expected error on examples not necessarily in the training set.

Goal of machine learning

- make training error small (optimization)
- make the gap between empirical and generalization error small

Overfit & Underfit

Underfit Both training error and testing error are large Overfit Training error is small, testing error is large

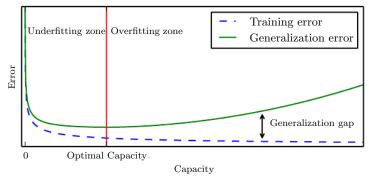


Model capacity: the ability to fit a wide variety of functions

Model Capacity

Changing a model's **capacity** controls whether it is more likely to overfit or underfit

- Choose a model's hypothesis space: e.g. increase # of features (adding parameters)
- Find the best among a family of hypothesis functions



How to formalize this idea?

Bias & Variance

Suppose data is generated by the following model:

$$y = h(x) + \epsilon$$

with $\mathbb{E}[\epsilon] = 0$, $Var(\epsilon) = \sigma^2$

h(x): true hypothesis function \rightarrow fixed value

D: training data $\{(x^{(1)},y^{(1)}),\ldots,(x^{(m)},y^{(m)})\}$ sampled from P_{XY}

 $\hat{h}(x; D)$: estimated hypothesis function based on D, sometimes written as $\hat{h}(x)$ for short ightarrow random variable

Bias & Variance

Bias of a model: The expected estimation error of \hat{h} over all choices of training data *D* sampled from P_{XY} ,

$$Bias(\hat{h}) = \mathbb{E}_D[\hat{h}(x) - h(x)] = \mathbb{E}_D[\hat{h}(x)] - h(x)$$

When we make wrong assumptions about the model, \hat{h} will have large bias (underfit)

Variance of a model: How much \hat{h} move around its mean

$$\begin{aligned} & \textit{Var}(\hat{h}) = \mathbb{E}_D[(\hat{h}(x) - \mathbb{E}_D(\hat{h}(x))^2] \\ & = \mathbb{E}_D[\hat{h}(x)^2] - \mathbb{E}_D[\hat{h}(x)]^2 \end{aligned}$$

When the model overfits "spurious" patterns, it has large variance (overfit).

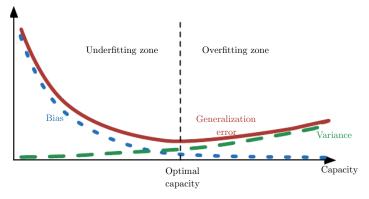
Bias - Variance Tradeoff

MSE Decomposition

We can decompose the expected error of MSE on a new sample (x,y):

$$MSE = \mathbb{E}_{D,\epsilon}[(\hat{h}(x) - y)^2] = Bias(\hat{h})^2 + Var(\hat{h}) + \sigma^2,$$

- $\blacktriangleright \ \sigma^2$ represents irreducible error
- in practice, increasing capacity tends to increase variance and decrease bias.



Model Selection

For a given task, how do we select which model to use?

- Different learning models
 - e.g. SVM vs. logistic regression for binary classification
- Same learning models with different hyperparameters
 - e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a *validation set*.

Hold-out cross validation

Given training set S and candidate models M_1, \ldots, M_n :

- 1. Randomly split S into S_{train} and S_{cv} (e.g. 70% S_{train})
- 2. Training each M_i on S_{train} ,
- 3. Select the model with smallest empirical error on S_{cv}

Disavantages of hold-out cross validation

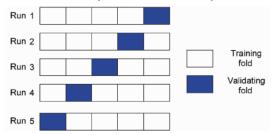
- "wastes" about 30% data
- chances of an unfortunate split

K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

- 1. Randomly split S into k disjoint subsets S_1, \ldots, S_k of m/k training examples (e.g. k = 5)
- 2. For $j = 1 \dots k$:

Train each model on $S \setminus S_j$, then validate on S_j ,



3. Select the model with the smallest **average** empirical error among all *k* trails.

Leave-One-Out Cross Validation

A special case of k-fold cross validation, when k = m.

- 1. For each training example x_i Train each model on $S \setminus \{x_i\}$, then evaluate on x_i ,
- 2. Select the model with the smallest average empirical error among all *m* trails.

Often used when training data is scarce.

Other Cross Validation Methods

- Random subsampling
- Bootstrapping: sample with replacement from training examples (used for small training set)
- Information criteria based methods: e.g. Bayesian information criterion (BIC), Akaike information criterion (AIC)
- Cross validation can also be used to evaluate a single model.

Regularization

Regularization is any modification we make to a learning algorithm to reduce its generalization error, but not the training error

Common regularization techniques:

Penalize parameter size e.g. linear regression with weight decay:

$$J(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta) + \lambda ||\theta||_2^2$$

Use prior probability: max-a-posteriori estimation

Parameter Norm Penalty

q = 0.5

Adding a regularization term to the loss (error) function:

a = 1

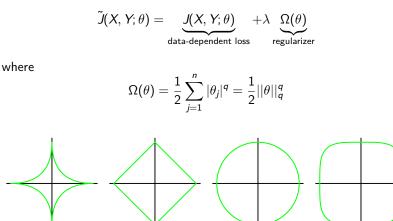


Figure: Contours of the regularizer $(||\theta||^q = 1)$ for different q

a=2

q = 4

L2 parameter penalty

When q = 2, it's also known as **Tokhonov regularization** or **ridge regression**

$$ilde{J}(X,Y; heta) = J(X,Y; heta) + rac{\lambda}{2} heta^{ op} heta$$

Gradient descent update:

$$\begin{aligned} \theta &\leftarrow \theta - \alpha \nabla_{\theta} \tilde{J}(X, Y; \theta) \\ &= \theta - \alpha (\nabla_{\theta} J(X, Y; \theta) + \lambda \theta) \\ &= (1 - \alpha \lambda) \theta - \alpha \nabla_{\theta} J(X, Y; \theta) \end{aligned}$$

L2 penalty multiplicatively shrinks parameter $\boldsymbol{\theta}$ by a constant

Example: regularized least square

When
$$J(X, Y; \theta) = \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$$
 (ordinary least squares),
 $\tilde{\theta}_{OLS} = (X^T X + \lambda I)^{-1} (X^T Y)$

L1 parameter penalty

When q = 1, $\Omega(\theta) = \frac{1}{2} \sum_{j=1}^{n} |\theta_j|$ is also known as **LASSO regression**.

- If λ is sufficiently large, some coefficients θ_j are driven to 0.
- It will lead to a sparse model

Proposition 1

Solving $\min_{\theta} \tilde{J}(X, Y; \theta) = J(X, Y; \theta) + \frac{\lambda}{2} \sum_{j=1}^{n} |\theta_j|^q$ is equivalent to

$$\min_{\theta} J(X, Y; \theta)$$

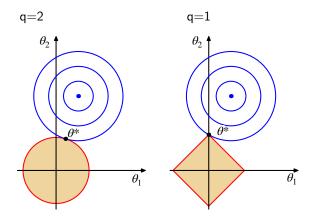
s.t. $\sum_{j=1}^{n} |\theta_j|^q \leq \eta$

for some constant $\eta > 0$ (*). Furthermore, $\eta = \sum_{j=1}^{n} |\theta_{j}^{*}(\lambda)|^{q}$ where $\theta^{*}(\lambda) = \operatorname{argmin}_{\theta} \tilde{J}(X, Y; \theta, \lambda)$

- ▶ (*) assumes constraints are satisfiable (e.g. with slater's condition)
- Choosing λ is equivalent to choosing η and vice versa
- Smaller $\lambda \rightarrow$ larger constraint region

L1 vs L2 parameter penalty

Figure: Contour plot of unregularized error $J(X, Y; \theta)$ and the constraint region $\sum_{j=1}^{n} |\theta|^q \leq \eta$



The lasso (l1 regularizer) gives a sparse solution with $\theta_1^* = 0$.

Bayesian Statistics

Maximum likelihood estimation: $\boldsymbol{\theta}$ is an unknown constant

$$\theta_{MLE} = \operatorname*{argmax}_{\theta} \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta)$$

Bayesian view: θ is a random variable

 $\theta \sim p(\theta)$

Given training set $S = \{x^{(i)}, y^{(i)}\}$, posterior distribution of θ

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)}$$

Fully Bayesian statistics

$$p(\theta|S) = \frac{p(S|\theta)p(\theta)}{p(S)} = \frac{\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}, \theta)p(\theta)}{\int_{\theta} (\prod_{i=1}^{m} p(y^{(i)}|x^{(i)}, \theta)p(\theta))d\theta}$$

To predict the label for new sample x, compute the posterior distribution over training set S:

$$p(y|x,S) = \int_{ heta} p(y|x, heta) p(heta|S) d heta$$

The label is

$$\mathbb{E}[y|x,S] = \int_{y} y \ p(y|x,S) dy$$

Fully bayesian estimate of $\boldsymbol{\theta}$ is difficult to compute, has no close-form solution.

Bayesian Statistics

Posterior distribution on class label y using $p(\theta|S)$

$$p(y|x,S) = \int_{\theta} p(y|x,\theta) p(\theta|S) d\theta$$

We can approximate $p(y|x, \theta)$ as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of θ is

$$\theta_{MAP} = \operatorname*{argmax}_{\theta} \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}, \theta) p(\theta)$$

 $p(y^{(i)}|x^{(i)},\theta)$ is not the same as $p(y^{(i)}|x^{(i)};\theta)$

MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood estimation when $p(y^{(i)}|x^{(i)}) \sim \mathcal{N}(\theta^T x^{(i)}, \sigma^2)$:

$$\theta_{MLE} = \operatorname*{argmax}_{\theta} \prod_{i=1}^{m} p(y^{i} | x^{i}; \theta)$$
$$= (X^{T}X)^{-1}X^{T}Y = \theta_{OLS}$$

The MAP estimation when $\theta \sim N(0, \tau^2 I)$ is

$$\theta_{MAP} = \operatorname{argmax}_{\theta} \left(\prod_{i=1}^{m} p(y^{i} | x^{i}; \theta) \right) p(\theta)$$
$$= \operatorname{argmin}_{\theta} \left(\frac{\sigma^{2}}{\tau^{2}} \theta^{T} \theta + (Y - X\theta)^{T} (Y - X\theta) \right)$$
$$= (X^{T} X + \frac{\sigma^{2}}{\tau} I)^{-1} X^{T} Y = \tilde{\theta}_{OLS} \text{ when } \lambda = \frac{\sigma^{2}}{\tau}$$

Discussion on MAP Estimation

General remarks on MAP:

- When θ is uniform, $\theta_{MAP} = \theta_{MLE}$
- A common choice for p(θ) is θ ~ N(0, τ²I), and θ_{MAP} corresponds to weight decay (L2-regularization)
- When θ is an isotropic Laplace distribution, θ_{MAP} corresponds to LASSO (L1-regularization).
- θ_{MAP} often have smaller norm than θ_{MLE}

Regularization for neural networks

Common regularization techniques:

- Data augmentation
- Parameter sharing
- Drop out

Data augmentation

Create fake data and add it to the training set. (Useful in certain tasks such as object classification.)

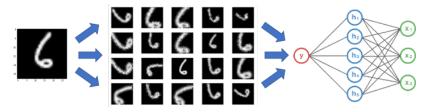


Figure: Generate fake digits via geometric transformation, e.g. scale, rotation etc

Figure: Generate images of different styles using GAN

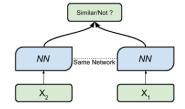
Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019

Parameter Sharing

Force sets of parameters to be equal based on prior knowledge.

Siamese Network

- Given input X, learns a discriminative feature f(X)
- ► For every pair of samples (X₁, X₂) in the same class, minimize their distance in feature space ||f(X₁) - f(X₂)||²



Convolutional Neural Network (CNN)

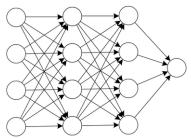
- Image features should be invariant to translation
- CNN shares parameters across multiple image locations.

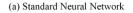
Soft parameter sharing: add a norm penalty between sets of parameters:

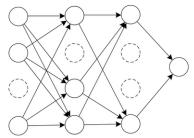
$$\Omega(\theta^A, \theta^B) = ||\theta^A - \theta^B||_2^2$$

Drop Out

- Randomly remove a non-output unit from network by multiplying its output by zero (with probability p)
- In each mini-batch, randomly sample binary masks to apply to all inputs and hidden units
- Dropout trains an ensemble of different sub-networks to prevent the "co-adaptation" of neurons







(b) Network after Dropout

Midterm Information

- Time: Next Friday, November 1, 10:00am (Arrive at 9:50am)
- ► Location: TBA
- What to bring: Pen + One A4 size notesheet (can be written on both sides)
- Covers everything up to today.
- Midterm review session this weekend (Time & Location TBA)

Stop by my office hour if you have questions!