Learning From Data
Lecture 5: Deep Neural Networks

Yang Li yangli@sz.tsinghua.edu.cn
TBSI

October 18, 2024

Today's Lecture

» Introduction to neural networks
> Biological motivations
> A case study
» Training a deep feedforward neural network

» Forward pass
» Backward propagation

Biological motivation

Schematic of biological neurons:

Dendrites

(A:cextllp) information

transfer

Nerve impulse

Each neuron takes information from other neurons, processes them, and
then produces an output.

Biological motivation

How does a neuron process its input? (a coarse model)
» Takes the weighted average of / inputs, e.g. z = Zf’:o w;(x;)
» Neuron fires if z is above some threshold

We call the threshold function activation function.

10 — 8 i 10

ul / : e

08 "/ “sf B:

o o 5 B m f

/

e op 2
sigmoid(z) = H% tanh(z) = ‘:::: RelLu(z) = max{0, z}

= 2(sigmoid(2z)) — 1
Rectifying linear unit

Biological motivation

An artificial neuron with inputs xj, x> and activation function f

I Wy
synapse
WoZo

—l-.
axon from a neuron

cell body

1 (Zwlxi i b)
Z w;T; + b '

output axon

activation
function

A single neuron is a (linear) binary classifier:
» When f is the sigmoid function, equivalent to binary softmax

» When f is the sign function, equivalent to the perceptron

Neural networks

» The goal of a neural network is to approximate some function f*
such that y = f*(x).

» The neural network defines a mapping y = f(x;6) and learns the
value of parameters 6 through training.

» Define error function that measures prediction error of f: e.g. a
common error function used in classification is the logarithmic loss
a.k.a. cross-entropy loss:

L=—(ylog(y)+ (1 —y)log(1—y))

> 9 = f(x;0) is the predicted output
> y is the true output

A single layer of neurons are unable to approximate complex functions.

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

= FO(FO(FD ()

input layer

hidden layer 1 hidden layer 2

» number of layers are called depth of the neural network

» number of units in a layer is called width of a layer

The XOR problem

XOR : the exclusive or h(x) = fo(w) f(Wix + by) + by)

31 32 | %)/: X1 @D X2 activition function: £ (z), (2)
: Wo2 Wo4 Wo,0
0 1 1 network weights: Wj = o b= [’]
03 Wo5 Wo,1
1 0 |1 Wi ’
1 110 Wy = [Wl;]ﬁz:Wl,o

input layer | hidden layer | output layer

The XOR problem

h(x; Wi, by, wa, by) = fa(wy A(Wix + by) + by)

Suppose fi(z) = Egl i 8{] ,(z) = 1{z > 0}. One solution:

input layer \ hidden layer \ output layer

output

Wo,0 + WopXi + Woax, =0

1

The XOR problem

h(x; Wi, by, wa, by) = f(wy A(Wix + by) + by)

Suppose fi(z) = Egl i 8%] ,K(z) =1{z > 0}. One solution:

input layer \ hidden layer \ output layer

Wi output

Wio

The XOR problem

h(x; Wa, by, wa, by) = fo(wy f(Wix + by) + by)

1{21 Z 0}
1{22 Z O}
input layer ‘ hidden layer \ output layer

Suppose fi(z) = {] ,(z) = 1{z > 0}. One solution:

0.1

a

/\ output

0,0)

(10)

a

Wy o+ Wy a; +wysa, =0

O =y
N
O = - Ol

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of R”, under mild assumptions on the activation
function.

> First proved by George Cybenko in 1989 for sigmoid activation
function;

» With one hidden layer, layer width of an universal approximator has
to be exponentially large <— More effective to increase the depth of
neural networks

» RelU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

Overfitting

Increase the size and number of layers in a neural network,
» the capacity , i.e. representation power of the network increases.

» but overfitting can occur: fits the noise in the data instead of the
(assumed) underlying relationship.

3 hidden neurons 6 hidden neurons 20 hidden neurons

13/17

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

Z(W; X,y) = L(w; X,y) + AQ(w)

> L2 parameter regularization: Q(w) = [|w||3 = 2w w drives the
weights closer to the origin
A =0.001 A=0.01

» L1 parameter regularization: Q(w) = ||w||; = Zle |w;| drives
solutions more sparse.

14/17

Forward pass and Backpropagation

See Powerpoint slides.

Practical issues

Which activation function to use?

» sigmoid function o(z): gradient Vf(z) saturates when z is highly
positive or highly negative. Not suitable for hidden unit activation.

» tanh(z): similar to identity function near O , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) =0, 0(0) = 1).

> Relu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W T x + b). Derivative is 1 whenever
the unit is active.

Sigmoidal activation functions are often preferred than piecewise
linear activation functions in non-feed forward networks. e.g.
probabilistic models, RNNs etc

Additional resources

Deep neural network is a relative young field with lots of empirical results.
Read more on the practical things to do for building and training neural
networks:

» Stanford Class on Convolutional Neural Networks:
http://cs231n.github.io

» lan Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016

Demos:

» http://vision.stanford.edu/teaching/cs231n-demos/
linear-classify/

» https://playground.tensorflow.org/

http://cs231n.github.io
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
https://playground.tensorflow.org/

	Introduction
	Biological motivation
	The XOR example

	Training a Deep Feedforward Network
	Forward pass and Backpropagation

