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Introduction



Today's Lecture

Supervised Learning (Part I)
» Linear Regression
» Binary Classification
» Multi-Class Classification



Review: Supervised Learning

» Input space: X', Target space: Y



Review: Supervised Learning

» Input space: X , Target space: Y

» Given training examples, we want to learn a hypothesis
function h: X — ) so that h(x) is a "good" predictor for the
corresponding .

Training
set

Learning
algorithm

X —> predicted y
(living area of (predicted price)
house.) of house)




Review: Supervised Learning

» yis discrete (categorical): classification problem

» yis continuous (real value): regression problem



Outline

Linear Regression

5/50



Linear Regression

Example: predict Portland housing price
Living area (ft?) # bedrooms Price ($1000)

X1 X2 y
2104 3 400
1600 3 330

3 369

2400

living area



Linear Approximation

A linear model
h(X) =0 + 01x1 + O

f;'s are called parameters.



Linear Approximation

A linear model
h(X) =0 + 01x1 + O

f;'s are called parameters.

Using vector notation,

bo
h(x)=0"x, wheref = |0|, x=
02

X1
X2



Alternative Notation

h(x) = wix1 + waxa + b

wy, wy are called weights, b is called the bias

h(x) = w'x+ b, where w= [Wl] , X= [Xl]

W2 X2



Apply model to new data

Suppose we have the optimal parameters 6 , e.g.

> h = LinearRegression().fit(X, y)
> theta = h.coef
array([89.60, 0.1392, -8.738])

make a prediction of new feature x:

y=ho(x) = 07x

1000 2000 3000 4000
living area



Model Estimation

How to estimate model parameters 6 (or w and b) from data?



Model Estimation

How to estimate model parameters 6 (or w and b) from data?

Least Square Estimation

h(x) —y g(l) =0y + 0124
OOO + 921’2

geometric approach



Model Estimation

How to estimate model parameters 6 (or w and b) from data?

Least Square Estimation

(z,y)

+ oo

geometric approach

Maximum Likelihood
Estimation

Probabilistic approach



Ordinary Least Square

Cost function:

h(z) —y a2) = bo + o
00, + 09



Ordinary Least Square

Cost function:

h(z) —y a2) = bo + o
00, + 09



Ordinary Least Square

Cost function:



Ordinary Least Square

Cost function:

The ordinary Least square problem is:

mein J(0)

— mein % ;(h(x(i)) — (D)2

How to minimize J(6) ?

» Numerical solution: gradient descent, Newton's method

» Analytical solution: normal equation



Gradient descent

A first-order iterative optimization algorithm for finding the
minimum of a function J(0).

Key idea
Start at an initial guess,

repeatedly change 6 to
decrease J(0):

0:=6—aVJh)

« is the learning rate



Review: Convex function

Definition (Convex set)

Let S be a vector space, any subset C C S is convex if for any
x,y € C, 0 <\ <1, affine combination® Ax+ (1-XNyecC

LAn affine combination is a linear combination where coefficients sum to 1.



Definition (Convex function)

A function f{x) is convex on a convex set C if for any xq,x € C
and 0 < A <1,

g+ (1= A)x) < M) + (1 — M)fix)

e.g. Cis an interval [a, b



Definition (Convex function)

A function f{x) is convex on a convex set C if for any xq,x € C
and 0 < A <1,

g+ (1= A)x) < M) + (1 — M)fix)

e.g. Cis an interval [a, b

Theorem
If J(0) is convex, gradient descent finds the global minimum.



For the ordinary least square problem,

A) = S (h0) YO = 1, (070 — )2

dJ(0)
961

V./(@) = , where 83(09) —
dJ(6) J

00,



For the ordinary least square problem,

A0) = 3 1 (h(xD) = y0)2 = 3577,

8J(0)
96,

VIO)=| : |, where 8;(09) = —
9J(0) J
90,

i
00;

(0Tx(i) _ y(i))2,



Gradient descent for ordinary least square

Gradient of cost function: VJ(6); =", (QTX(i) — y(i)) xj(.i)
Gradient descent update: 6 := 0 — aVJ(0)

Batch Gradient Descent

‘ Repeat until convergence{
Oj:9j+azgl(ym—hg(x(i)))><j(-') for every j
}




Gradient descent for ordinary least square

Gradient of cost function: VJ(6); =", (QTx(i) — y(i)) xj(.i)
Gradient descent update: 6 := 0 — aVJ(0)

Batch Gradient Descent

‘ Repeat until convergence{
Oj:9j+azg1(y(i)—he(x(i)))><j(-') for every j
}

0 is only updated after we have seen all m training samples.



Batch gradient descent

‘ Repeat until convergence{
=0+a >, (y(")—he(x(")))xj(.') for every j
}

Stochastic gradient descent

Repeat until convergence{
for i=1...m {
9j=9j+a()/(i)—h9()8(i)))><§i) for every j
}
}

0 is updated each time a training example is read


http://yangli-feasibility.com/home/classes/lfd2024spring/media/gd.mp4

Batch gradient descent

‘ Repeat until convergence{

=0+a >, (y(")—he(x(")))xj(.i) for every j
}

Stochastic gradient descent

Repeat until convergence{
for i=1...m {
9j=9j+a()/(i)—h@()8(i)))><§i) for every j
}
}

0 is updated each time a training example is read
>

Stochastic gradient descent gets 0 close to minimum much
faster (video link)

» Good for regression on large data


http://yangli-feasibility.com/home/classes/lfd2024spring/media/gd.mp4

Minimize J(0) Analytically

The matrix notation

— () — YU

— m_ 2)
X = ()<(2:)) A y(:

_ (X(n.v))T_ ym

X is called the design matrix.



Minimize J(0) Analytically

The matrix notation

— () — YU

— m_ 2)
X= ()<(2:)) A y(:

_ (X(n.v))T_ ym

X is called the design matrix. The least square function can be
written as

18) = 2(X0—9)T(X0 )



Compute the gradient of J(6) :

1

Vo (0) =V | (X0 = y)T(X0 —y)



Compute the gradient of J(6) :

1

Vo (0) =V | (X0 = y)T(X0 —y)



Compute the gradient of J(6) :

V() =V | 5(X0 ) T(X0 ~ )



Compute the gradient of J(6) :
1
Vo d(0) =V | 5(X0 = )" (X0 — y)
=XTX0 - X"y

Since J(0) is convex, x is a global minimum of J(6) when
VJ(6) = 0.



Compute the gradient of J(6) :

1
Vo d(0) =V | 5(X0 = )" (X0 — y)
=XTX0 - X"y

Since J(0) is convex, x is a global minimum of J(6) when
VJ(6) = 0.

The Normal equation

0= (X"X)"1XTy



Compute the gradient of J(6) :

1
Vo d(0) =V | 5(X0 = )" (X0 — y)
=XTX0 - X"y

Since J(0) is convex, x is a global minimum of J(6) when
VJ(6) = 0.

The Normal equation
0= (X"X)"1XTy

(X"X)~1XT is called the Moore-Penrose pseudoinverse of X



Which method to use?

gradient descent normal equation

iterative solution exact solution




Which method to use?

gradient descent normal equation

iterative solution exact solution

need to choose proper learning
parameter « for cost function
to converge




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when Xis
ill-conditioned. e.g. features
are highly correlated




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when Xis
ill-conditioned. e.g. features
are highly correlated

works well for large number of
samples m




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when Xis
ill-conditioned. e.g. features
are highly correlated

works well for large number of
samples m

solving equation is slow when
m is large



Minimize J(0) using Newton's Method

Numerically solve for 6 in VyJ(6) =0

Newton's method
Solves real functions f{x) = 0 by iterative approximation:
> Start an initial guess x

» Update x until convergence



Minimize J(0) using Newton's Method

Geometric intuition of Newton's method
At step n+ 1:
» Find tangent line of fat (xp, yn)

> X,4+1 < x-intercept of the tangent line

> Yni1 < f(Xn-H)



Newton's Method Demo

Funktion
Tangente

(=)be(+)

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif


https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Minimize J(0) using Newton's Method

Newton's method for optimization ming J(6)
Use newton's method to solve VyJ(6) =0 :

» 0 is one-dimensional:
J(6)

0:=0-— 7(0)




Minimize J(0) using Newton's Method

Newton's method for optimization ming J(6)
Use newton's method to solve VyJ(0) =0 :

» 0 is one-dimensional:

» 0 is multidimensional:
0=0—H?0)VJI0)
where H is the Hessian matrix of J(6).

a.k.a Newton-Raphson method



Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0 :=0— H(0)VJ0)

}




Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0 :=0— H(0)VJ0)

}

Performance of Newton's method:

» Needs fewer interations than batch gradient descent



Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0 :=0— H(0)VJ0)

}

Performance of Newton's method:
» Needs fewer interations than batch gradient descent

» Computing H™! is time consuming



Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0 :=0— H(0)VJ0)

}

Performance of Newton's method:
» Needs fewer interations than batch gradient descent
» Computing H™! is time consuming

» Faster in practice when n is small



Maximum Likelihood Estimation
Consider target y is modeled as

FUNP SO

and €() are independently and identically distributed (IID) to
Gaussian distribution A(0, 0?)

27/50



Maximum Likelihood Estimation

Consider target y is modeled as
YD =T 4 ()

and €() are independently and identically distributed (1ID) to
Gaussian distribution A/(0,02) , then

p(e) =



Maximum Likelihood Estimation

Consider target y is modeled as
YD =T 4 ()

and €() are independently and identically distributed (1ID) to
Gaussian distribution A/(0,02) , then

0 1 a
p(€ ) = \/271_7 eXp | — 20_2



Maximum Likelihood Estimation

Consider target y is modeled as
YD =T 4 ()

and €() are independently and identically distributed (1ID) to
Gaussian distribution A/(0,02) , then

0 ! 0
p(E ) = \/271_7 eXp | — 20_2
1

. , ) T /)

To?



Maximum Likelihood Estimation

The likelihood of this model with respect to 6 is

L(0) = p(¥1X; 0) = HP(V")N



Maximum Likelihood Estimation

The likelihood of this model with respect to 6 is
L(0) = p(¥1X; 0) = Hp()/(’)N

Maximum likelihood estimation of 6:

OMLE = argmax L(@)
0



Maximum Likelihood Estimation

We compute log likelihood,

log L(6) = log ] | p(X71x7;0) = > " log p(y47|x(7; 6)
i=1 i=1

m ) _ T2
:ZIog 21 > exp ((y( 252 ) >




Maximum Likelihood Estimation

We compute log likelihood,

log L(6) = log ﬁ p(D|X7;6) = i log p(y*) X7 6)
i=1 i=1
m 1 ) _ 9Tx)2
= ; log N T exp <_(y(202)>




Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log | [ p(/?|x47; 0) = " log p(y17]x(7; 0)
i=1 =1

=Y g e [ 0T
= og 5 2exp 52




Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log | [ p(/?|x47; 0) = " log p(y17]x(7; 0)
i=1 =1

m 1 ) _ 9Tx)2
"2 le e (‘“2)>

Then argmaxg log L(0) = argming 2 37, ()A) — 07x(0)2 .



Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log [ [ p(A7[x7;0) = " log p(y17 |47, 0)
i=1 =1

1 ) — 9Tx)2
= Z log 72702 exp (_(y( 552 ) )

Then argmaxg log L(0) = argming 2 37, ()A) — 07x(0)2 .

Under the assumptions on (), least-squares regression corresponds
to the maximum likelihood estimate of 6.



Linear Regression Summary

How to estimate model parameters 6 (or w and b) from data?

» Least square regression (geometry approach)

» Maximum likelihood estimation (probabilistic modeling
approach)
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How to estimate model parameters 6 (or w and b) from data?

» Least square regression (geometry approach)

» Maximum likelihood estimation (probabilistic modeling
approach)

Other estimation methods exist, e.g. Bayesian estimation



Linear Regression Summary

How to estimate model parameters 6 (or w and b) from data?

» Least square regression (geometry approach)

» Maximum likelihood estimation (probabilistic modeling
approach)

Other estimation methods exist, e.g. Bayesian estimation
How to solve for solutions ?

» normal equation (close-form solution)

P gradient descent

» newton's method



Outline

Logistic Regression




A binary classification problem

Classify binary digits

» Training data: 12600 grayscale
images of handwritten digits

o000
I .

» Each image is represent by a vector
X\ of dimension 28 x 28 = 784

> Vectors x{) are normalized to [0,1]




A binary classification problem

Classify binary digits

» Training data: 12600 grayscale
images of handwritten digits

o000
I .

» Each image is represent by a vector
X\ of dimension 28 x 28 = 784

> Vectors x{) are normalized to [0,1]

Binary classification: ) = {0, 1}
> negative class: ) =0
> positive class: ) =1



Logistic Regression Hypothesis Function

Sigmoid function

g2 =

1+ e%

» g:R—(0,1)
> g(2) =

Nos5
o

0
5 4 3 2 414 0 1 2 383 4 5

z



Logistic Regression Hypothesis Function

Sigmoid function

g2 =

1+ e%

> g:R—(0,1)
> g(2) = g(2)(1 - &(2))

Nos5
o

0
-5

4 3 2 1 0 1 2 3 4 5
z



Logistic Regression Hypothesis Function

Sigmoid function

1
&2) = l+e2 !
> g:R —(0,1) gos
> g(2) = g(2)(1 - &(2)) .
5 4 3 2 -1 0 1 2 3 4 5
; z
08 1 [—=2
% 06 =
S04 oz
0.2 =2
Hypothesis function for logistic ’s 0 5
regression: 1 i
hg = g(07x) =

1+ e 07x



Review: Bernoulli Distribution

A discrete probability distribution of a binary random variable
xe€{0,1}:

() A if x=1

X) =

P 1—X ifx=0
= (1=

.



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
> p(y=11x06) = hy(x)
> p(y=0]|x60)=1— hy(x)



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
> ply=1]x0)=hy(x)
> ply=0]x0)=1-h(x)
Py [ x8) = (ho(x))"(1 — ho(x))* ™



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
> ply=1]x0)=hy(x)
> ply=0]x0)=1-h(x)
Py [ x8) = (ho(x))"(1 — ho(x))* ™
Given m independently generated training examples, the
likelihood function is:

L(0) = p(¥|X; 0) = H p(717; 0)
[6) = log(L(0)) = iw log hg(x1) + (1 — Y1) log(1 — he(x(7))

i=1



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
> ply=1]x0)=hy(x)
> ply=0]x0)=1-h(x)
Py [ x8) = (ho(x))"(1 — ho(x))* ™
Given m independently generated training examples, the
likelihood function is:

m

L(0) = p(71X: 0) = [ [ P(A71xD; 6)

i=1

(6) = ToB(L(8)) = 3 ¥V 1og hy(x?) + (1 — Y1) log(1 — (M)

I(0) is concave! =1



Maximum likelihood estimation for logistic regression

18) =" ¥V 1og ho(xX?) + (1 — y0) log(L — hy(x?))
i=1
Solve argmaxg I(6) using gradient ascent:

aI(0)
0,




Maximum likelihood estimation for logistic regression

10) = iy(’) log hy(x?) + (1 — y) log(1 — hy(x))
i=1

Solve argmaxg I(6) using gradient ascent:

o) _ 3~ (1 — ho(x))

00; —

Stocastic Gradient Ascent

Repeat until convergence{
for i=1...m {
01-:9j+a(y(i)fhe(x(")))xj-i) for every j
}
}

» Update rule has the same form as least square regression, but
with different hypothesis function hy



Binary Digit Classification

Using the learned classifier

Given an image x, the predicted label is

. J1 g6™x)>05
0 otherwise

Binary digit classification results

‘ sample size ‘ accuracy
Training 16200 100%
Testing 1225 100%

» Testing accuracy is 100% since this problem is relatively easy.



Outline

Multi-Class Classification
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Multi-class classification

Each data sample belong to one of k > 2 different classes.

V={1,....k

MNIST Samples

NEEINS

ﬂﬂm Given. new sample x € R, predict which
class it belongs.
93959




Naive Approach: Convert to binary classification

One-Vs-Rest

Learn k classifiers hy, ..

rest of the classes.

Given a new data sample x, its predicted label ¥-

y = argmax hj(x)
i

., hg. Each h; classify one class against the

P> Class 1
Class 2 ! oo
oo o
O Class3 .| o o ooo [ oo L’
~_ O [e) 1 .
~° oooo Ca - o°o
~ L}
>~J0 o o o
SRR o) LS
> - o1 - [} o
| 7 > >
hy: hy: hys

\ 4




Multiple binary classifiers

Drawbacks of One-Vs-Rest:
» Class unbalance: more negative samples than positive samples

» Different classifiers may have different confidence scales

Multiple binary classifiers

e e
@ ] «:‘
s o o
; o N
@ | " J
g ] e & Fe——
> g
3 T .
+ ' : A A
o | +
= + + + n A A
* I
o | A
° T T T T T




Drawbacks of One-Vs-Rest:
» Class imbalance: more negative samples than positive samples

» Different classifiers may have different confidence scales

Multinomial classifier

o
@ _|
o
@ |
P o
)
* <
o
o +
S+ T+ N A A
+ A
g a &
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

(
Learn one model for all classes! X



Review: Multinomial Distribution

Models the probability of counts for each side of a
k-sided die rolled m times, each side with
independent probability ¢;

pr+-+or=1

Probability Mass




Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed, k = ||



Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed, k = ||

Hypothesis function for sample x:

ply =1|x; 6) . e x
ho(x) = : =——— | : | =softmax(8x)
Zk i T
ply = Kx. 0) =1 i

softmax(z;) =



Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed, k = ||
Hypothesis function for sample x:
ply =1|x; 6) . e x
ho(x) = : = W : = softmax(QTx)
p(y = Kix 0) j=1 eIk

softmax(z;) =
— 91T —

Parameters: 6 = :
-
A



Softmax Regression

Given (X, yA0) i=1,..., m, the log-likelihood of the Softmax
model is

= Z log p(yA)[x7; 0)

= Z |0g H p — /| 1{}’(') I}
=1



Softmax Regression

Given (X, yA0) i=1,..., m, the log-likelihood of the Softmax
model is

= log p(yA7[x7; 6)
i=1

m k

= Z |0g H ,D — /| 1{}’(') s
=1 =1

m k

=3 1) = Hlog p(y1? = 1|x7)

i=1 |=1



Softmax Regression

Given (X, yA0) i=1,..., m, the log-likelihood of the Softmax
model is

= Z log p(y17]x(7; 9)

= Z |0g H ,D — /| l{y(l) s
=1
m  k

=3 1) = Hlog p(y1? = 1|x7)

i=1 1

I_
PINTL
= H{y =} log —————
=1 I= Z GTX(

1



Softmax Regression

Derive the stochastic gradient descent update:
> Find Vg,ﬁ(e)

m

Vo) = 3" [(100 = 1 - P (40 = 1x0;6) ) x7]

i=1



Property of Softmax Regression

> Parameters 61, ... 0y are not independent:
ij(y:j|x) = Ej¢j =1

» Knowning k — 1 parameters completely determines model.

Invariant to scalar addition

p(ylx 0) = p(ylx; 0 — )
Proof.



Relationship with Logistic Regression

When K = 2,

1 eelT X
- g 4]



Relationship with Logistic Regression

When K = 2,

1 e91T X
ho(x) = ————
o) = 57 L Pl | PEx

0] . _ |02 _ |01 —02
Replace 6 = [92} with 0% = 0 [92] = [ 0 ]

1
ho() = - |
eelTx—92TX+ &0x eO X

e(eleg)Tx]

—_ 1+e(91792)7-x
1

| 14e(01-02) T

e 07> g(0 + x)

r 1
- : _ )
1- M] [1 — g(0 X)]




When to use Softmax?

» When classes are mutually exclusive: use Softmax

> Not mutually exclusive: multiple binary classifiers may be
better



Summary: Linear models

What we've learned so far:

Learning task | Model | p(ylx; 6)
regression Linear regression N(ho(x) ,02)
binary classification Logistic regression | Bernoulli( hy(x) )

multi-class classification | Softmax regression | Multinomial([hs(x)] )

Can we generalize the linear model to other distributions?



Summary: Linear models

What we've learned so far:

Learning task | Model | p(ylx; 6)
regression Linear regression N(ho(x) ,02)
binary classification Logistic regression | Bernoulli( hy(x) )

multi-class classification | Softmax regression | Multinomial([hs(x)] )

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing
linear models in which y|x; 6 is from an exponential family.
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