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Final Poster Session Information
When & Where
December 27 9:30am-12:00pm @ International Phase I Building A, 1F

What to include in the poster?
▶ Abstract: a short summary of your work (no more than 100 words)
▶ Introduction/Motivation: why is this problem important and what is

your contribution?
▶ Method: the machine learning methodology used
▶ Results: the dataset you use and the experimental results (tables

and figures)
▶ Conclusion/Discussion: conclude your technical/application

contributions
▶ Reference: include 2-3 important references (You can use smaller

fonts for this part.)

Each group needs to submit a poster in PDF format of A0-size to Web
Learning before December 25 12:00pm (noon).
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Today’s Lecture

▶ What is self-supervised representation learning?
▶ Self-supervised pre-training of foundational models

▶ BERT (text representation)
▶ MAE (image representation)
▶ CLIP (image-text)

▶ Adapting foundation models to downstream tasks
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Introduction&Motivation
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The Label Bottleneck in Supervised Learning

▶ Conventional DNNs has
been trained with
supervised learning

ImageNet(2012): 1.33Million
labeled images

Why didn’t vision benchmark data size increase for five years? 1

1Sun, Chen, et al. ”Revisiting unreasonable effectiveness of data in deep learning
era.” Proceedings of the IEEE International Conference on Computer Vision. 2017.
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The Label Bottleneck in Supervised Learning
Performance in supervised vision tasks increases logarithmically based
on the size of (labeled) training data.

Object detection (COCO minival, PASCAL VOC
2007)

Semantic segmenta-
tion (Pascal VOC
2012)

▶ Annotating data is costly, time-consuming and requires domain
expertise.

▶ Many real-world applications lack sufficient labeled data (e.g.,
medical imaging, low-resource languages).

Alleviate this bottleneck by learning from abundant unlabeled data.
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Leveraging Unlabeled Data

▶ Unlabeled data are vast and readily available in all domains:
▶ Text data (e.g., web pages, books).
▶ Image and video data (e.g., YouTube, Flickr).
▶ Audio data (e.g., speech recordings, podcasts).

▶ Self-Supervised Representation Learning (SSRL):
▶ Extracts rich features from unlabeled data using pretext tasks.
▶ Learned representations are universal and can be reused for various

downstream tasks (transfer learning).



7/32

How to Design Pre-text Task
▶ Four families of pre-text tasks: transformation prediction, masked

prediction, instance discrimination and clustering
▶ Constrastive SSL is a special case of instance discrimination
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Transfer Learning and Knowledge Reuse

▶ Many vision/NLP tasks that can benefit from pre-trained SSRL
models by knowledge transfer

▶ A pre-trained model with good representations would
▶ Give better initialization for downstream tasks with limited labels.
▶ Have faster data efficiency and faster convergence.
▶ Generalizes better to unseen tasks and domains.
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Example: Self-supervised representation learning in
BERT
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From Context-Independent to Context-Sensitive in NLP

▶ Context-Independent Representations:
▶ Models like word2vec and GloVe assign the same vector to a word

regardless of context.
▶ Limitation: Cannot capture polysemy; e.g., ”bank” in ”river bank”

vs. ”financial bank”.
▶ Context-Sensitive Representations:

▶ Models such as ELMo generate word representations that vary with
context.

▶ Achieved by processing entire sequences and capturing contextual
nuances.
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From Task-Specific to Task-Agnostic in NLP

▶ Task-Specific Architectures:
▶ ELMo integrates with models tailored for specific NLP tasks.
▶ Requires designing unique architectures for each task.

▶ Task-Agnostic Models:
▶ GPT employs a general architecture applicable across various tasks.
▶ Utilizes a Transformer decoder with unidirectional (left-to-right)

context encoding.
▶ Limitation: May not fully capture context for words influenced by

right-side context.
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BERT: Bidirectional Encoder Representations from
Transformers

Pretraining Tasks:
▶ Masked Language Model (MLM): Predict masked tokens using

bidirectional context.
▶ Next Sentence Prediction (NSP): Learn relationships between

sentences.

Devlin, Jacob. ”Bert: Pre-training of deep bidirectional transformers for language
understanding.” arXiv preprint arXiv:1810.04805 (2018).
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Masked Language Modeling (MLM) in BERT

▶ Objective:
▶ Enable bidirectional context understanding by predicting randomly

masked tokens within a sequence.
▶ Process:Model predicts the original token for each masked

position.
▶ a special “<mask>” token for 80% of the time (e.g., “this movie is

great” becomes “this movie is <mask>”);
▶ a random token for 10% of the time (e.g., “this movie is great”

becomes “this movie is drink”);
▶ the unchanged label token for 10% of the time (e.g., “this movie is

great” becomes “this movie is great”).
▶ Benefits:

▶ Allows BERT to capture context from both left and right, enhancing
understanding of word meaning based on surrounding words.
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Example: Self-supervised representation learning in
Masked Autoencoder
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MAE:Masked Autoencoders Are Scalable Vision Learners
▶ Learns to reconstruct missing (masked) portions of input images

using an encoder-decoder architecture.
▶ Architecture:

▶ Encoder: Operates on a subset of visible patches, making it
lightweight and efficient.

▶ Decoder: Reconstructs the full image from encoded representations,
including the masked patches.

▶ Training: End-to-end training with MSE loss.

He, Kaiming, et al. ”Masked autoencoders are scalable vision learners.” Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition. 2022.
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Why Use MAE?

▶ Advantages of MAE:
▶ Efficient Training: Processes only a subset of image patches,

reducing computation.
▶ Strong Representation: Learns meaningful representations from

unannotated data.
▶ Scalability: Performs well on large-scale datasets without extensive

fine-tuning.
▶ Performance: Outperforms supervised models in downstream tasks

like image classification.

Illustration of MAE results.
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Example: Self-supervised representation learning in
CLIP
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Motivation for CLIP

▶ Goal of CLIP: Learn a joint representation of images and text
using:
▶ Unlabeled image-text pairs freely available on the internet.
▶ Contrastive learning to align visual and textual features.

▶ Enables zero-shot transfer to downstream tasks without additional
training.

Radford, Alec, et al. ”Learning transferable visual models from natural language
supervision.” International conference on machine learning. PMLR, 2021.
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What is Contrastive Language-Image Pre-Training (CLIP)?
▶ Developed by OpenAI to connect visual and textual data in a shared

embedding space.
▶ How it works:

▶ Given a set of images and corresponding textual descriptions, CLIP
learns to:

▶ Align images and their correct textual descriptions (positive pairs).
▶ Discriminate between unrelated images and texts (negative pairs).
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CLIP Architecture
▶ CLIP consists of two main components:

1. Image Encoder:
▶ Typically a Vision Transformer (ViT) or ResNet.
▶ Maps an input image into a feature vector.

2. Text Encoder:
▶ A Transformer-based model similar to GPT or BERT.
▶ Converts input text into a feature vector.

▶ The image and text feature vectors are projected into a shared
embedding space.
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CLIP Pre-training Strategy

▶ CLIP is pre-trained using massive datasets of image-text pairs
scraped from the Internet.

▶ Contrastive Learning: Minimize contrastive loss:

Loss = − log exp(similarity(imagei, texti))∑
j exp(similarity(imagei, textj))

▶ Positive pairs are pulled closer.
▶ Negative pairs are pushed apart.

▶ Scalable Learning:
▶ The large scale of the data enables generalization to unseen tasks.
▶ CLIP learns the semantic relationships between vision and

language.
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Use CLIP for Zero-shot Image Classification
1. Prepare & Encode the Inputs:

▶ Pass the image through the image encoder
▶ Define a set of text prompts describing possible classes and encode

each text prompt using the text encoder to obtain feature vectors.
2. Compute Similarity: Measure the cosine similarity between the

image feature vector and each text feature vector.
3. Classify the Image: Assign the class label corresponding to the

text prompt with the highest similarity score.
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Advantages of CLIP

▶ Zero-Shot Learning:
▶ CLIP can perform tasks without additional training on labeled data.
▶ Example: Classifying objects in an image based on text prompts

(e.g., ”a dog,” ”a cat”).
▶ Task-Agnostic:

▶ CLIP’s learned representations can generalize to diverse tasks,
including:

▶ Image classification.
▶ Object detection.
▶ Image retrieval.

▶ Reduced Label Dependency:
▶ Eliminates the need for manually annotated datasets.
▶ Uses natural image-text pairs freely available online.

▶ Scalability: Performance improves as more image-text data
becomes available.
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Applications of CLIP

▶ Zero-Shot Image Classification:
▶ Example: Classify objects in an image using text prompts like ”a car”

or ”a plane.”
▶ Image Retrieval:

▶ Retrieve images that match a text query (e.g., ”a sunny beach”).
▶ Visual Question Answering (VQA):

▶ Combine images and text to answer natural language questions
about visual content.

▶ Content Moderation:
▶ Automatically detect inappropriate or harmful content in images

based on textual prompts.
▶ Multi-Modal Applications:

▶ Connect vision and language for robotics, autonomous vehicles, and
AI assistants.
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How to adapt pre-trained model?
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Supervised Finetuning

Which layer can be transferred (copied)?
▶ Speech: usually copy the last few layers
▶ Image: usually copy the first few layers
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Motivation for SFT
▶ Adapting Pre-trained Models to Specific Tasks. Pre-trained

models require supervised fine-tuning (SFT) to adapt their general
features to the specific requirements of a target task.

▶ Reducing Training Data and Resources. SFT leverages the
knowledge gained during pre-training, reducing the need for large
labeled datasets and computational resources.

▶ Improving Model Performance on Complex Tasks. As models
become larger and more complex, supervised fine-tuning allows them
to better capture and optimize task-specific features, significantly
improving performance on challenging or specialized tasks.
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SFT in chatGPT
The training consists of three steps:
▶ Supervised fine-tuning (SFT)
▶ Reward model (RM) training
▶ Reinforcement learning via proximal policy optimization (PPO)

Ouyang, Long, et al. ”Training language models to follow instructions with human
feedback.” Advances in neural information processing systems 35 (2022): 27730-27744.
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SFT in chatGPT
▶ Data Preparation

SFT requires a labeled dataset specific to the target task, such as
question-answer pairs.

▶ Fine-Tuning Process
The pre-trained model is further trained on this labeled data using
supervised learning. (e.g. GPT-3)

▶ Task-Specific Optimization
Through SFT, the model’s general knowledge is refined to handle
specialized tasks more effectively.
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Parameter-Efficient Fine-Tuning
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Parameter-Efficient Fine-Tuning
▶ PEFT adjusts only a small subset of parameters in a pre-trained

LLM, freezing the original weights and adding a few new parameters
to fine-tune on a task-specific dataset.

▶ Advantages:
• Reduces computational cost
• Quick adaptation to new tasks with limited data
• Scalable for large models and multiple tasks

He, Junxian, et al. ”Towards a unified view of parameter-efficient transfer learning.”
arXiv preprint arXiv:2110.04366 (2021).
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LoRA (Low-Rank Adaptation)
▶ Traditional Fine-Tuning: Modifies the pre-trained network’s weight

matrix as W′ = W +∆W.
▶ Intrinsic Rank Hypothesis: LoRA introduces the hypothesis that

not all weight updates are equally important, only a small subset of
∆W contributes significantly to the model’s performance for the new
task.

Hu, Edward J., et al. ”Lora: Low-rank adaptation of large language models.” arXiv
preprint arXiv:2106.09685 (2021).
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LoRA (Low-Rank Adaptation)

▶ Matrix Decomposition:By decomposing the update into two
smaller matrices, LoRA reduces the number of parameters to be
learned. The new weights can then be expressed as:

W′ = W + BA
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LoRA (Low-Rank Adaptation)

Advantages of LoRA
▶ Parameter Efficiency: Only a small number of low-rank parameters

are optimized, making LoRA much more parameter-efficient
compared to traditional fine-tuning methods.

▶ Reduced Computational Costs: With fewer parameters to update,
LoRA requires less computation.

▶ Flexibility: LoRA can be applied to various types of pre-trained
models.
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Prompt Tuning
▶ Prompt tuning is a method of fine-tuning a language model by

optimizing the input prompt (rather than adjusting the model’s
parameters). It modifies the prompt to guide the model’s output
toward the desired behavior.

▶ Learnable input or soft prompts are added to the input text.
▶ The input prompt is modified so that the model produces a desired

output.

Lester, B., Al-Rfou, R. and Constant, N., 2021. The power of scale for
parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691.
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Prompt Tuning

Applications of Prompt Tuning
▶ Text Generation: Adjusting prompts to control style, tone, or

content in tasks such as writing, story generation, or dialogue
systems.

▶ Text Classification: Using prompts for different categories,
optimizing the model for specific classification tasks.

▶ Machine Translation: Fine-tuning translation tasks by adjusting
the prompt to ensure better and contextually accurate translations.
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Additional Readings

▶ Survey on self-supervised representation learning: Ericsson,
Linus, et al. ”Self-supervised representation learning: Introduction,
Advances, and Challenges.” IEEE Signal Processing Magazine 39.3
(2022): 42-62.

▶ Natural Language Processing: Pretraining:
https://d2l.ai/chapter_
natural-language-processing-pretraining/index.html

▶ Survey on parameter efficient fine tuning: Ding, N., Qin, Y.,
Yang, G. et al. Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nat Mach Intell 5, 220–235 (2023).

https://d2l.ai/chapter_natural-language-processing-pretraining/index.html
https://d2l.ai/chapter_natural-language-processing-pretraining/index.html
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