
1/50

Learning From Data
Lecture 12: Deep Learning Architectures for

Computer Vision and Natural Language
Processing

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 13, 2024

2/50

Final Poster Session Information

Each group needs to submit a poster in PDF format of A0-size to Web
Learning before December 25 12:00pm (noon).

3/50

Today’s Lecture

▶ Convolutional Neural Networks (CNN)
▶ Residual Neural Networks (ResNet)
▶ Recursive Neural Network (RNN)
▶ Attention & Transformer

4/50

Convoluntional Neural Networks

4/50

Limitations of MLPs

1. Large Parameters: MLPs have many parameters, increasing the
risk of overfitting.

2. Not translation invariant: MLPs are sensitive to input shifts,
which can affect their performance.

3. Inefficient Computation: MLPs are less efficient with large data,
leading to longer training times.

5/50

A bit history of CNN

In the biological visual system, individual neurons are sensitive to visual
information only in a specific region of the visual field, a.k.a. the
receptive field. 1

1Hubel, D. H., & Wiesel, T. N. (1962). Receptive Fields, Binocular Interaction and
Functional Architecture in the Cat’s Visual Cortex. Journal of Physiology, 160(1),
106-154.

6/50

A bit history of CNN
▶ LeNet-5: Early CNN architecture 2

▶ AlexNet: Revolutionized computer vision by demonstrating the
power of deep learning. 3

2Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998). ”Gradient-based learning
applied to document recognition” . Proceedings of the IEEE. 86 (11)

3Krizhevsky, Alex; Sutskever, Ilya; Hinton, Geoffrey E. (2017-05-24). ”ImageNet
classification with deep convolutional neural networks” . Communications of the ACM.
60 (6).

7/50

Fast-forward: ConvNets are everywhere

8/50

Convoluntional Layer

▶ Input: RGB image (3 channels)

▶ Filter/Kernel:
Small learnable matrix W (e.g., 3×3, 5×5)
Slides over input to detect features

9/50

Convoluntional Layer

Convolve the filter with the image
slide over the image spatially, computing dot products

yi,j =
kh−1∑
m=0

kw−1∑
n=0

xi+m,j+n · wm,n + b

10/50

Convoluntional Layer

▶ Stride: Number of pixels to shift the filter Controls how filter moves
across input Affects output spatial dimensions

▶ Padding: Zero-padding around input borders Preserves spatial
dimensions

▶ Output Feature Map Size:

Hout =

⌊
Hin − K + 2P

S

⌋
+ 1

11/50

Convoluntional Layer

Receptive Field

12/50

Pooling Layer
▶ Types of Pooling:

Max Pooling: Takes maximum value in window
Average Pooling: Takes average value in window

▶ Down-sampling Operation:
Reduces spatial dimensions
Maintains important features
Makes features more robust to position changes

13/50

CNN Architectures

14/50

CNN Architectures

▶ AlexNet, VGGNet, ResNet...

ImageNet classification challenge winners from 2010 to 2017

15/50

Case Study: AlexNet

Input:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11× 11 filters at
stride 4, pad 0
[27x27x96] MAX POOL1: 3× 3 filters at
stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5× 5 filters at
stride 1, pad 2
[13x13x256] MAX POOL2: 3× 3 filters
at stride 2
[13x13x256] NORM2: Normalization

layer
[13x13x384] CONV3: 384 3× 3 filters at
stride 1, pad 1
[13x13x384] CONV4: 384 3× 3 filters at
stride 1, pad 1
[13x13x256] CONV5: 256 3× 3 filters at
stride 1, pad 1
[6x6x256] MAX POOL3: 3× 3 filters at
stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

16/50

Case Study: VGGNet

Small filters, Deeper networks

8 layers (AlexNet)
-> 16 - 19 layers (VGG16Net)

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC’13
(ZFNet)
-> 7.3% top 5 error in ILSVRC’14

17/50

CNN Architectures

▶ Deeper network? - ResNet

18/50

Residual Neural Network

18/50

Motivation for Resnet
▶ Vanishing Gradient Problem in Deep Networks. Traditional

deep neural networks struggle with the vanishing gradient problem
as layers increase, leading to degraded performance during training.

▶ This can be addressed by:
– Normalized Initialization
– Batch Normalization
– Appropriate activation function

19/50

Motivation for Resnet

▶ Performance Saturation.
As network depth increases, the performance on both training and
testing datasets tends to saturate or even degrade, highlighting the
limitations in optimization in very deep networks.

56-layer Cifar model has higher training error and test error than 20-layer
model.

20/50

Network Design
▶ Design Philosophy

Keep it simple, just deeper!
▶ Residual Connections

Allow the network to ”skip” certain layers, helping prevent the
vanishing gradient problem, and enabling the training of much
deeper networks.

The architecture of resnet50 model.

21/50

Theorem (Residual Learning)
Given a deep neural network with input x and a desired mapping H(x),
ResNet reformulates the mapping as:

H(x) = F(x) + x

where F(x) is the residual function to be learned. This structure
facilitates gradient flow during backpropagation by allowing the network
to learn residuals F(x) instead of the full mapping H(x).

22/50

Depth and Optimization
▶ Stacking more layers while maintaining residual connections ensures

that additional layers optimize at least as well as a shallower
counterpart.

▶ if F(x) = 0 for additional layers, the residual structure guarantees
that the output is unchanged, preventing performance degradation
with increasing depth.

The 50-layer, 101-layer, and 152-layer ResNets are progressively better. The
model enjoys significant accuracy gains from increased depth.

23/50

Compare with traditional Neural Network

▶ In traditional Netural Network, each layer only depends on the
previous layer.

In ResNet, data flows along many paths from input to output. Each
path is a unique configuration of which residual module to enter and
which to skip.

Feedforward in resnet.

24/50

Compare with traditional Neural Network

▶ In ordinary feed-forward networks such as VGG or AlexNet, deleting
individual layers alters the only viable path from input to output.

Deleting a layer in residual networks is equivalent to zeroing half of
the paths

25/50

Recurrent Neural Network

25/50

Motivation

Using their internal state (memory) to process sequences of inputs.

▶ Natural Language Processing (NLP). x1 can be regarded as the first
word, x2 can be regarded as the second word, and so on.

▶ Speech Processing. At this time, x1, x2, x3, ... are the sound signals
of each frame.

▶ Time Series Analysis. For example, daily stock prices, etc.

26/50

RNN Formulation4

The formula for the current state:

ht = f(ht−1, xt). (1)

And for the output:
yt = O(ht), (2)

where ht denotes the hidden state (memory), xt denotes the input and yt
denotes the output.

4Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (October 1986).
”Learning representations by back-propagating errors”. Nature. 323 (6088): 533–536.

27/50

Backpropagation Through Time (BPTT)

Overview: Backpropagation Through Time is a method used to train
Recurrent Neural Networks (RNNs) by unfolding the network across time
steps.
Mathematics:
▶ The total loss across T time steps:

L =

T∑
t=1

Lt, (3)

where Lt is the loss at time step t.
▶ Gradients are computed using the chain rule:

∂L
∂W =

T∑
t=1

∂Lt
∂ht

∂ht
∂W , (4)

where W represents the weights.

28/50

Backpropagation Through Time (BPTT)

Steps:
1. Unfold the RNN: Represent the RNN as a feedforward network

across T time steps.
2. Forward Pass: Compute the hidden states ht and outputs yt for all

time steps.
3. Backward Pass:

▶ Compute the gradients of the loss function L with respect to outputs
yt.

▶ Propagate the gradients back through time to update the weights.

29/50

Drawbacks of Traditional RNNs

Challenges:
▶ Vanishing Gradients: Gradients can shrink exponentially as they

are propagated back through many time steps, making it difficult to
learn long-term dependencies.

▶ Exploding Gradients: Conversely, gradients can grow exponentially,
causing instability during training.

▶ Short-Term Memory: Traditional RNNs struggle to retain
information over long sequences due to their design.

▶ Difficulty Handling Long Sequences: The computational cost and
inability to capture long-term dependencies limit their effectiveness.

Solution: Long Short-Term Memory (LSTM)
▶ Designed to address these issues by introducing a memory cell

structure.
▶ Enables learning of long-term dependencies effectively.

30/50

Long Short-Term Memory (LSTM)5

Motivation:
▶ Designed to overcome the limitations of traditional RNNs.
▶ Introduces mechanisms to maintain long-term dependencies

effectively.
Key Idea:
▶ Use a cell state and gates to control the flow of information.
▶ Allows the network to decide what to keep, update, and output.

5Hochreiter, Sepp; Schmidhuber, Jürgen (1997-11-01). ”Long Short-Term
Memory”. Neural Computation. 9 (8): 1735–1780

31/50

LSTM Architecture: Cell State and Gates

Components of LSTM:
▶ Cell State (Ct): The memory of the network that carries

information across time steps.
▶ Forget Gate:

ft = σ(Wf · [ht−1, xt] + bf) (5)
Determines what information to discard from the cell state.

▶ Input Gate:
it = σ(Wi · [ht−1, xt] + bi) (6)

Decides what new information to add to the cell state.

32/50

LSTM Architecture: Updates and Outputs
Further Components:
▶ Candidate Values:

C̃t = tanh(WC · [ht−1, xt] + bC) (7)

New candidate values to update the cell state.
▶ Cell State Update:

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (8)

Combines forget gate, input gate, and candidate values.
▶ Output Gate:

ot = σ(Wo · [ht−1, xt] + bo) (9)
Decides the output based on the cell state.

▶ Hidden State (ht):

ht = ot ⊙ tanh(Ct) (10)

Represents the output of the LSTM at time t.

33/50

Advantages of LSTM

Why LSTM is Powerful:
▶ Effectively handles vanishing and exploding gradients.
▶ Retains information over long sequences.
▶ Adaptable for various tasks such as:

▶ Sequence prediction (e.g., text generation).
▶ Language modeling (e.g., machine translation).
▶ Time-series analysis (e.g., stock price prediction).

▶ Flexible architecture allows stacking for more complexity.

34/50

Bidirectional RNN (BRNN)

▶ Uses two RNNs that processe the same input in opposite directions
▶ BiLSTM Revolutionize speech recognition, machine translation,

language modeling at around 2006 6

6A. Graves and J. Schmidhuber. Framewise phoneme classification with
bidirectional lstm and other neural network architectures. Neural Networks, August
2005

35/50

Sequence-to-Sequence (Seq2Seq) Models

▶ Employs two RNNs (e.g. LSTM), an “encoder” and a “decoder”, for
sequence-to-sequence prediction

▶ Current state-of-the-art model for NLP, e.g. machine translation

Sequence to sequence model for machine translation. <BOS> and <EOS>
tokens mark the beginning and end of a sentence.

36/50

Attention Mechanism & Transformers

36/50

Motivation: Limitations of Classic Encoder-Decoder
Models

▶ Long-Range Dependencies
▶ RNNs struggle with long-range dependencies due to vanishing or

exploding gradient problems, especially when capturing relationships
between distant tokens.

▶ Example: In document summarization, an RNN might lose context
over long passages.

▶ Parallelization
▶ RNNs process input sequences step-by-step (sequentially), making it

difficult to parallelize computations, leading to slower training times,
especially for long sequences.

37/50

Motivation: Encoder-Decoder Model with Attention
▶ Pay attention to the most relevant source tokens for each step of

prediction (e.g. translation)
▶ Attention vector: weighted sum of encoder states with attention

weights (distribution over source tokens)

38/50

Attention Mechanism: Queries, Keys, and Values
The attention mechanism of a query q and dataset D of key-value pairs 7,

Attention(q,D) =

m∑
i=1

α(q, ki)vi,

▶ Query q: from which the
attention is looking (e.g. target
token state)

▶ Key k1, . . . , km: vector at
which the query looks to
compute weights (e.g. encoded
input token state)

▶ Value v1, . . . , vm: information
to be weighted (e.g. encoded
input token state)

▶ α(q, ki): attention weight
assigned to each vi.

7Bahdanau, D., Cho, K., Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate.

39/50

Attention Score Function: Dot Product Attention

▶ The relevance score for Dot Product Attention:

α(q, ki) =
q⊤ki√

d
. (11)

▶ The scaling factor
√

d improving numerical stability during the
softmax computation.

40/50

Attention Score Example

Visualize the attention weights between words in the source sentence
(English) and the generated translation (French):

Each pixel shows the weight αij of the annotation of the j-th source word
for the i-th target word (Bahdanau, et.al 2014).

41/50

Attention Scoring Functions

Definition (Scaled Dot Product Attention)
Given a set of queries Q ∈ Rnq×d, keys K ∈ Rnk×d, and values
V ∈ Rnk×dv , the scaled dot product attention is computed as:

Attention(Q,K,V) = softmax
(

QK⊤
√

d

)
V. (12)

The output is a matrix of aggregated weighted values with size Rnq×dv ,
where each query attends to all keys.

42/50

Multi-Head Attention Mechanism

Definition (Multi-Head Attention)
Multi-head attention focuses on different positions within the input
sequence by computing attention multiple times with separate sets of
learned projections, known as ”heads.” Each head captures distinct
aspects of the input data.

43/50

Multi-Head Attention Mechanism

Definition (Multi-Head Attention)
Given a query q ∈ Rdq , a key k ∈ Rdk , and a value v ∈ Rdv , each
attention head hi (i = 1, . . . , h) is computed as:

hi = f
(

W(q)
i q,W(k)

i k,W(v)
i v

)
∈ Rpv , (13)

where:
▶ W(q)

i ∈ Rpq×dq : Query projection matrix for the i-th head.
▶ W(k)

i ∈ Rpk×dk : Key projection matrix for the i-th head.
▶ W(v)

i ∈ Rpv×dv : Value projection matrix for the i-th head.
▶ f: Attention pooling function, such as scaled dot product attention.

44/50

Multi-Head Attention Mechanism

The output of multi-head attention is obtained by concatenating the
outputs of all h heads and applying a linear transformation with learnable
parameters Wo ∈ Rpo×hpv :

Multi-Head Attention = Wo

h1

...
hh

 ∈ Rpo . (14)

45/50

Self-Attention: Mathematical Definition

Definition (Self-Attention)
Given a sequence of input tokens x1, . . . , xn, where any xi ∈ Rd

(1 ≤ i ≤ n), the self-attention mechanism outputs a sequence of the
same length y1, . . . , yn, where:

yi = f
(
xi, (x1, x1), . . . , (xn, xn)

)
∈ Rd. (15)

Here:
▶ f: Attention pooling function as defined in earlier sections.
▶ Each yi is computed as a weighted combination of the entire input

sequence {x1, . . . , xn}.
Using multi-head attention, this mechanism computes the self-attention
of a tensor with the shape:

(batch size, sequence length, token dimension d).

The output tensor retains the same shape as the input.

46/50

Comparing CNNs, RNNs, and Self-Attention

The illustration of the three methods by neurons and connections.

47/50

Comparing CNNs, RNNs, and Self-Attention

Aspect CNNs RNNs Self-Attention
Complexity O(k · n · d2) O(n · d2) O(n2 · d)
Seq. Operations O(1) O(n) O(1)

Path Length O
(n

k
)

O(n) O(1)

Focus Local Sequential Global

Summary:
▶ CNNs and Self-Attention support parallelism; CNNs focus on local

interactions.
▶ RNNs handle sequential data but are less efficient.
▶ Self-Attention excels at long-range dependencies but has high

complexity for long sequences.

48/50

Positional Encoding

Motivation: Self-attention mechanisms process tokens in parallel and
lack inherent sequence order information. To address this, positional
encoding is added to input embeddings, providing positional context.

Fixed Positional Encoding:
▶ Uses sine and cosine functions to encode positions.
▶ For position i and embedding dimension j:

pi,2j = sin
(

i
100002j/d

)
, (16)

pi,2j+1 = cos
(

i
100002j/d

)
. (17)

49/50

Components of the Transformer Architecture

Encoder Components:
▶ Multi-Head Self-Attention
▶ Positionwise Feed-Forward

Networks
▶ Residual and Layer Norm

Decoder Components:
▶ Masked Multi-Head Self-Attention
▶ Encoder-Decoder Attention
▶ Positionwise Feed-Forward

Networks
▶ Residual and Layer Norm

Positional Encoding

Transformer Architecture

50/50

Backbone Models Based on Transformers

▶ BERT and GPT Families.
▶ Vision Transformer (ViT).
▶ Extensions to Multimodal Tasks. Such as CLIP, BLIP, and Llava...

	Introduction
	Convoluntional Neural Networks
	Residual Neural Network
	Recurrent Neural Network
	Attention Mechanism & Transformers

