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2.1. SVM and logistic regression (4 points)

Support Vector Machine (SVM) is a powerful and effective supervised machine learn-
ing algorithm. Given m samples

(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
,x(i) ∈ Rn, y(i) ∈ R, i =

1, . . . ,m, we have learnt that the optimal parameters (w ∈ Rn and b ∈ R) can be
derived by solving the optimization problem:

min
w,b

1

2
||w||2

s.t. y(i)(w⊤x(i) + b) ≥ 1, i = 1, . . . ,m (1)

The constraints in (1) indicates a hard punishment of incorrect classification. As an
alternative form, the optimization problem above can be re-written into the mini-
mization of the following function

m∑
i=1

E∞(y(i)(w⊤x(i) + b)) + λ||w||2.

(a) (0.5 + 0.5 points) Give the definition of function E∞(·) and the constraint for
the regularization parameter λ.

(b) (1 point) Consider the logistic regression model with a target variable y ∈
{−1, 1}, and we have p(y = 1|x) = σ(w⊤x + b), where σ(·) is the Sigmoid
function. Show that the negative log-likelihood, with the addition of a quadratic
regularizer, take the form

m∑
i=1

ELR(y
(i)(w⊤x(i) + b)) + λ||w||2,

and give the definition of function ELR(·).
(c) (Bonus 1 points) In real-world applications, there might exist overlap between

the class-conditional distributions, making an exact separation of training data
unfeasible and inadequate. To avoid such limitation, SVM is modified to allow
for some training points to be misclassified. Specifically, we introduce slack
variables ξ(i) ≥ 0, such that the constraints in (1) are replaced with

y(i)(w⊤x(i) + b) ≥ 1− ξ(i), i = 1, . . . ,m,

and we therefore minimize

C
m∑
i=1

ξ(i) +
1

2
||w||2, (2)
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where the parameter C > 0. Show that (2) can also be written in the form

m∑
i=1

ESV (y
(i)(w⊤x(i) + b)) + λ||w||2,

and give the definition of function ESV (·) and regularization parameter λ.
Hint: you may need to discuss the relationship of y(i)(w⊤x(i) + b) and ξ(i). A
possible way is to write down the Lagrangian for soft SVM and use its KKT
conditions.

(d) (Bonus 1 points) Plot the error functions E∞(·), ELR(·) and ESV (·) in one graph
1. Conclude your findings and discuss what may happen if we replace the error
function with other functions.

2.2. Naive Bayes Parameter Learning (3 points)

Suppose we are given dataset {(x(i), y(i)), i = 1, 2, . . . ,m} consisting of m independent
examples, where x(i) ∈ Rn are n-dimension vector with entry xj ∈ {0, 1}, and y(i) ∈
{0, 1}. We will model the joint distribution of (x, y) according to:

y(i) ∼ Bernoulli(ϕy)

x
(i)
j |y(i) = b ∼ Bernoulli(ϕj|y=b), b = 0, 1

where the parameters ϕy
def
= p(y = 1) and ϕj|y=b

def
= p(xj = 1|y(i) = b). Under

Naive Bayes (NB) assumption, the probability of observing xj|y = b, j = 1, . . . , n are
independent which means p(x1, · · · , xn|y) = Πn

j=1p(xj|y). Calculate the maximum
likelihood estimation of those parameters.

2.3. Comparison of Generative and Discriminative Models

In a binary classification problem, we can use a generative model such as Gaussian
Discriminant Analysis (GDA) and a discriminative model such as Logistic Regres-
sion for classification. Assume we have a binary classification problem with samples
{(x(1), y(1)), (x(2), y(2)), . . . , (x(n), y(n))}, where x(i) ∈ Rd is a d-dimensional feature
vector, and y(i) ∈ {0, 1} is the class label.

(a) (2 points) Parameter Estimation. Derive the parameter estimation for GDA
with a shared covariance matrix, also known as LDA. Assume that the feature
x given the class y follows a Gaussian distribution:

y ∼ Bernoulli(ϕ)
x | y = 0 ∼ N(µ0,Σ)

x | y = 1 ∼ N(µ1,Σ)

(b) (1 point) Given the following dataset, compute the parameters for a given dataset.

x(1) =

(
1
2

)
, y(1) = 0

1Function input as x-axis and output as y-axis. You may use different colors or line styles to represent
different functions.
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x(2) =

(
2
3

)
, y(2) = 0

x(3) =

(
3
4

)
, y(3) = 1

x(4) =

(
4
5

)
, y(4) = 1

Calculate the values of µ0, µ1, Σ, and ϕ.

(c) (1 point) Decision Boundary for LDA. Derive the equation for the decision
boundary for LDA. Assume the decision rule is:

ŷ = argmax
y

P (y | x)

Show how the decision boundary can be derived from the class-conditional Gaus-
sian distributions and the prior probabilities.

(d) (1 point) Compare the decision boundaries of LDA and logistic regression. As-
suming that the covariance matrix Σ is the identity matrix in LDA, discuss
whether the decision boundary of logistic regression is linear or nonlinear and
explain why.

(e) (1 point) Suppose you have a very small dataset. Discuss how LDA and logistic
regression might perform differently in this case. Given the properties of gener-
ative and discriminative models, explain why a generative model might perform
better on small datasets.


