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COMMENTS

• Mention collaborators in your assignments. See the policies for details.

• Provide sufficient arguments in your proof.

1.1. (Logistic Regression) Given random vectors x ∈ Rn, logistic regression models the
conditional distribution of class y given x with a Bernoulli distribution parameterized
by the Sigmoid function of θ⊤x, i.e.

P (y|x;θ) = (σ(θ⊤x))y(1− σ(θ⊤x))1−y,

where θ ∈ R is the weighting parameter for x and σ(·) denotes the Sigmoid function.

(a) (0.5 points) Show that the sigmoid function

σ(z) =
1

1 + exp(−z)

satisfies the property
dσ(z)

dz
= σ(z)(1− σ(z)).

(b) (1 point) Suppose we have m independently generated training examples(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
,x(i) ∈ Rn, y(i) ∈ R, i = 1, . . . ,m, the log-likelihood

function can be written as:

l(θ) =
m∑
i=1

y(i) log σ(θ⊤x(i)) + (1− y(i)) log
(
1− σ(θ⊤x(i))

)
.

Prove that for θj,∀j ∈ {1, . . . , n},

∂l(θ)

∂θj

=
m∑
i=1

(
y(i) − σ(θ⊤x(i))

)
x
(i)
j .

1
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Solution:
(a)(0.5 point)

dσ(x)

dx
=

exp(−x)

(1 + exp(−x))2

=
1 + exp(−x)− 1

(1 + exp(−x))2

=
1

1 + exp(−x)

(
1− 1

1 + exp(−x)

)
= σ(x)(1− σ(x))

(b)(1 point)

∂I(θ)

∂θj

=
∂

∂θj

m∑
i=1

y(i) log σ(θ⊤x(i)) + (1− y(i)) log
(
1− σ(θ⊤x(i))

)
=

m∑
i=1

y(i) · 1

σ(θ⊤x(i))
· σ(θ⊤x(i))(1− σ(θ⊤x(i))) · x(i)

j

+
m∑
i=1

(1− y(i)) · −1

1− σ(θ⊤x(i))
· σ(θ⊤x(i))(1− σ(θ⊤x(i))) · x(i)

j

=
m∑
i=1

(
y(i) − σ(θ⊤x(i))

)
x
(i)
j

1.2. (Ridge Regression) Ridge regression was developed as a possible solution to the
imprecision of least square estimators when linear regression models have some mul-
ticollinear (highly correlated) independent variables.

We can formulate the ridge regression loss function as the following

J(θ)
def
= ||y −Xθ||2 + λ||θ||2,

where X is the design matrix, y is the corresponding label vector, and θ is the weight
vector. For an appropriate λ,

(a) (1 point) calculate ∇θJ(θ),

(b) (1 point) give the gradient descend iteration equation with learning rate α,

(c) (1 point) derive the optimal parameter θ∗ for the normal equation method.

Solution:
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Figure 1: Poisson distribution

(a)(1 point)

∇θJ(θ) = ∇θ(y −Xθ)⊤(y −Xθ) + γ∇θ(θ
⊤θ)

= ∇θ

(
y⊤y − θ⊤X⊤y − y⊤Xθ + θ⊤X⊤Xθ

)
+ 2γθ

= −2X⊤y + 2X⊤Xθ + 2γθ

= 2(X⊤X + γI)θ − 2X⊤y.

(b)(1 point) In i-th iteration,

θi = θi−1 − 2α(X⊤X + γI)θi−1 + 2αX⊤y

(c)(1 point) For an appropriate γ, let ∇θJ(θ) = 0, we have the optimal parameter

θ∗ = (X⊤X + γI)−1X⊤y.

1.3. (Poisson Distribution and Generalized Linear Model)(2 points)

As shown in Figure. 1, the Poisson distribution is used to model count data, where
the probability of observing y ∈ Z≥0 given a rate parameter λ > 0 is:

p(y | λ) = λye−λ

y!
.

In this problem, you will express the Poisson distribution as a member of the expo-
nential family and identify the relevant components.

Exponential Family: A probability distribution is said to belong to the exponential
family if it can be written in the following canonical form:

p(y | η) = b(y) exp
(
ηTT (y)− a(η)

)
,
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where:

• y: the observed random variable (in this case, the count data).
• η: the natural (canonical) parameter, which is a function of the distribu-

tion’s parameters. It serves as the primary variable that links the data to the
distribution.

• T (y): the sufficient statistic of the distribution. This is a function of y that
summarizes all the information needed from the data.

• b(y): a function of the data y that typically ensures normalization and varies
depending on the distribution.

• a(η): the log partition function (or cumulant function), which ensures the
distribution sums (or integrates) to one and plays a key role in controlling the
variability of the distribution.

For the Poisson distribution, derive the following components within the exponential
family framework:
(a) (1.5 points) Derive the exponential form of Poisson distribution.
(b) (2 points) Now we derive the GLM for Poisson distribution, also known as Pois-

son regression. Write the hypothesis function hθ(x). What is the canonical link
function in this case? (Hint: the canonical link function g−1 maps distribution
parameter λ to the natural parameter η)

Solution:

(a)(1.5 points)

P (y|λ) = λy · e−λ

y!
=

1

y!
· ey lnλ−λ

• b(y) = 1
y!
, T (y) = y, η = lnλ, a(η) = eη

(b)(2 points)

• The hypothesis function is:

hθ(x) = E[T (y)|x; θ] = E[y|x; θ] = eη = eθ
T x

• The canonical response function is:

η = g−1(E[T (y)|x; θ]) = g−1(E[y|x; θ])

g(η) = E[y|x; θ] = λ = eη

• The canonical link function is:

η = g−1(λ) = lnλ
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1.4. (Softmax Regression)(2 points) In multivariate classification problems, we use soft-
max function to derive the likelihood of each possible label y and predict the most
probable one for data x ∈ Rn. To train parameter matrix Θ ∈ Rn×k from the given
samples

(
x(i), y(i)

)
, i = 1, . . . ,m, we need to calculate the derivative of the softmax

model’s log-likelihood function

ℓ(Θ)
def
=

m∑
i=1

log p(y(i)|x(i);Θ) =
m∑
i=1

k∑
l=1

1
{
y(i) = l

}
log

eθ
⊤
l x(i)∑k

j=1 e
θ⊤
j x(i)

.

Calculate ∇θ1ℓ(Θ).

Solution:

∇θtℓ(Θ) = ∇θt

m∑
i=1

k∑
l=1

1
{
y(i) = l

}
log

eθ
⊤
l x(i)∑k

j=1 e
θ⊤
j x(i)

=
m∑
i=1

∇θt

k∑
l=1

1
{
y(i) = l

}(
θ⊤
l x

(i) − log
k∑

j=1

eθ
⊤
j x(i)

)

=
m∑
i=1

∇θt

(
k∑

l=1

1
{
y(i) = l

}
θ⊤
l x

(i) −
k∑

l=1

1
{
y(i) = l

}
log

k∑
j=1

eθ
⊤
j x(i)

)

=
m∑
i=1

∇θt

[
k∑

l=1

1
{
y(i) = l

}
θ⊤
l x

(i) −

(
k∑

l=1

1
{
y(i) = l

})
log

k∑
j=1

eθ
⊤
j x(i)

]

=
m∑
i=1

∇θt

(
1
{
y(i) = 1

}
θ⊤
1 x

(i) + ...+ 1
{
y(i) = k

}
θ⊤
k x

(i) − log
k∑

j=1

eθ
⊤
j x(i)

)

=
m∑
i=1

(
1
{
y(i) = t

}
x(i) −

∇θt

∑k
j=1 e

θ⊤
j x(i)∑k

j=1 e
θ⊤
j x(i)

)

=
m∑
i=1

(
1
{
y(i) = t

}
x(i) − ∇θte

θ⊤
t x(i)∑k

j=1 e
θ⊤
j x(i)

)

=
m∑
i=1

(
1
{
y(i) = t

}
x(i) − eθ

⊤
t x(i)

x(i)∑k
j=1 e

θ⊤
j x(i)

)

=
m∑
i=1

[
1
{
y(i) = t

}
− p(y(i) = t|x(i))

]
x(i)

Thus,

∇θ1ℓ(Θ) =
m∑
i=1

[
1
{
y(i) = 1

}
− p(y(i) = 1|x(i))

]
x(i).

1.5. (Maximum Likelihood Estimation) [Bonus Question] In class, we have learnt maxi-
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Figure 2: Linear Regression with Least
Absolute Deviation

Figure 3: Error with Laplace Distribution

mum likelihood estimation for linear model assuming the error follows the Gaussian
distribution. The maximization process results in an equivalent formulation as an
ordinary least square problem. However, the maximum likelihood estimation is not
always directed into the ℓ2-norm measurement. It depends on the error distribution
assumption.

As shown in Figure. 2 and Figure. 3, let’s consider the linear regression problem with
an error following Laplace distribution, also known as the least absolute deviation1:
for the given m samples

(
x(1), y(1)

)
, . . . ,

(
x(m), y(m)

)
,x(i) ∈ Rn, y(i) ∈ R, i = 1, . . . ,m,

we need to determine the parameters θ ∈ Rn for the linear model:

y(i) = θ⊤x(i) + ϵ(i),

ϵ(i) ∈ R are i.i.d. Laplacian random variables with density function:

P (z) =
1

2τ
exp(

−|z|
τ

)

where τ > 0.

(a) (0.5 points) Write down the expression of conditional distribution PY |X(y|x;θ).
(b) (0.5 points) Write down the log-likelihood function of this problem.

(c) (1 point) The ordinary least square uses ℓ2-norm to measure the distances and
wants to minimize the overall distances of data points to a linear model. Try to
give a geometric interpretation of the least absolute deviation.

Solution:

(a)(1 point) The expression of conditional distribution is as the following.

PY |X(y|x;θ) =
1

2τ
exp(

−|y − θ⊤x− µ|
τ

)

1See https://en.wikipedia.org/wiki/Least_absolute_deviations#Contrasting_ordinary_
least_squares_with_least_absolute_deviations for reference on least absolute deviation.

https://en.wikipedia.org/wiki/Least_absolute_deviations##Contrasting_ordinary_least_squares_with_least_absolute_deviations
https://en.wikipedia.org/wiki/Least_absolute_deviations##Contrasting_ordinary_least_squares_with_least_absolute_deviations
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(b)(1 point) The log-likelihood function of this problem is as the following.

logL(θ) = log
m∏
i=1

PY |X(y
(i)|x(i))

= log
m∏
i=1

1

2τ
exp(

−|y(i) − θ⊤x(i) − µ|
τ

)

= −m log(2τ)− 1

τ

m∑
i=1

|y(i) − θ⊤x(i) − µ|

(c)(1 point) Ordinary Least Squares (OLS) uses the ℓ2 norm to measure the
distance from data points to the linear model, aiming to minimize the sum of the
squares of these distances. In contrast, Least Absolute Deviations (LAD) uses
the ℓ1 norm, that is, the absolute value, to measure distances.

Geometric interpretation:

• OLS: By minimizing the sum of squared errors, OLS is more sensitive to
outliers because squaring amplifies larger errors. Geometrically, this means
we are looking for a line such that the sum of the squared vertical distances
from all points to this line is minimized.

• LAD: By minimizing the sum of absolute errors, LAD is more robust to
outliers. Geometrically, this means we are looking for a line such that
the sum of the absolute vertical distances from all points to this line is
minimized.


