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Previously on Learning from Data

Algorithms we learned so far are mostly probabilistic linear models:

Type Examples
Discrimative probablistic model linear regression, logistic regres-

sion, softmax
Generative probablistic model GDA, naive Bayes

▶ Choice of model affects model performance; may easily lead to
model mismatch

▶ Data are often sampled non-uniformly, forming a sparse distribution
in high dimensional input space. leading to ill-posed problems

Possible solutions: regularization (more in later lectures), sparse kernel
methods (today’s lecture)
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Today’s Lecture

Supervised Learning (Part IV)

▶ Review: Perceptron Algorithm

▶ Support Vector Machines (SVM) ← another discriminative
algorithm for learning linear classifiers

▶ Kernel SVM ← non-linear extension of SVM
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Perceptron Learning Algorithm
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The perceptron learning algorithm

▶ Invented in 1956 by Rosenblatt (Cornell University)

▶ One of the earliest learning algorithm, the first artificial neural
network

Hardware implementation: Mark I Perceptron
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The perceptron learning algorithm

Given x , predict y ∈ {0, 1}

hw ,b(x) =

{
1 if wT x + b ≥ 0

0 otherwise
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The perceptron learning algorithm

Perceptron hypothesis function:

hθ(x) =

{
1 if θT x ≥ 0

0 otherwise

Parameter update rule:

θj = θj + α
(
y (i) − hθ(x

(i))
)
x
(i)
j for all j = 0, . . . , n

▶ When prediction is correct: θj = θj
▶ When prediction is incorrect:

▶ predicted ”1”: θj = θj − αxj
▶ predicted ”0”: θj = θj + αxj
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Issues with linear hyperplane perceptron:

▶ Infinitely many solutions if data are
separable

▶ Can not express “confidence” of the
prediction
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Support Vector Machines
Optimal margin classifier
Lagrange Duality
Soft margin SVM
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Support Vector Machines in History

▶ Theoretical algorithm: developed from
Statistical Learning Theory ( Vapnik &
Chervonenkis) since 60s

▶ Modern SVM was introduced in COLT
92 by Boser, Guyon & Vapnik
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Support Vector Machines in History

▶ 1995 paper by Corte & Vapnik titled “Support-Vector Networks”

▶ Gained popularity in 90s for giving accuracy comparable to neural
networks with elaborated features in a handwriting task

Machine Leaming, 20, 273-297 (1995) 
~) 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. 

Support-Vector Networks 

CORINNA CORTES 
VLADIMIR VAPNIK 
AT&T Bell Labs., Hohndel, NJ 07733, USA 

corinna@ neurai.att.com 
vlad@neurai.att.com 

Editor: Lorenza Saitta 

Abstract .  The support-vector network is a new leaming machine for two-group classification problems. The 
machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high- 
dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the 
decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector 
network was previously implemented for the restricted case where the training data can be separated without 
errors. We here extend this result to non-separable training data. 

High generalization ability of support-vector networks utilizing polynomial input transformations is demon- 
strated. We also compare the performance of the support-vector network to various classical learning algorithms 
that all took part in a benchmark study of Optical Character Recognition. 

Keywords: pattern recognition, efficient learning algorithms, neural networks, radial basis function classifiers, 
polynomial classifiers. 

1. Introduction 

More than 60 years ago R.A. Fisher (Fisher, 1936) suggested the first algorithm for pattern 
recognition. He considered a model of two normal distributed populations, N ( m t ,  ~1)  
and N(m2,  ~2)  o f n  dimensional vectors x with mean vectors ml and m2 and co-variance 
matrices E t  and E2, and showed that the optimal (Bayesian) solution is a quadratic decision 
function: 

[ ~  1 IE2I] (1) Fsq(X) = sign (x - ml)7"E~-~(x - ma) - ~ (x  - m 2 ) : r E f l ( x  - m2) + In 1-~11_] " 

In the case where E1 = Ez = ~ the quadratic decision function (1) degenerates to a linear 
function: 

Flin(X) = s i g n [ ( m t -  m 2 ) T ~ i - l x -  l ( m l r ~ - l m l 2  -- m T ~ - l m 2 ) ]  . (2) 

To estimate the quadratic decision function one has to determine ~ free parameters. To 
estimate the linear function only n free parameters have to be determined. In the case where 
the number of  observations is small (say less than 10 n 2) estimating o(n z) parameters is not 
reliable. Fisher therefore recommended, even in the case of ~1 ~ ~32, to use the linear 
discriminator function (2) with ~ of the form: 

Y]~ = "gY]l -~- (1 - -  "Y)~-]2, (3)  

where r is some constant 1. Fisher also recommended a linear decision function for the 
case where the two distributions are not normal. Algorithms for pattern recognition 
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Figure 3. Classification by a support-vector network of an unknown pattern is conceptually done by first trans- 
forming the pattem into some high-dimensional feature space. An optimal hyperplane constructed in this feature 
space determines the output. The similarity to a two-layer perceptron can be seen by comparison to Fig. 1. 

2. Opümal Hyperplanes 

In this section we review the method of optimal hyperplanes (Vapnik, 1982) for separation 
of t ra ining data without  errors. In the next  section we introduce a not ion of soff margins,  
that will  al low for an analytic t reatment  of learning with errors on the training set. 

2.1. The Optimal Hyperplane Algorithm 

The set of  labeled t ra ining patterns 

(Yl, Xl) . . . . .  (Ye, x~), Yi ~ { - 1 ,  1} (8) 

is said to be l inearly separable if  there exists a vector w and a scalar b such that the inequali t ies 

w .  xi + b > 1 if Yi = 1,  

w . x i + b  < - 1  if Yi = - 1 ,  (9) 
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Support Vector Machine: Overview

Margin: smallest distance between
the decision boundary to any
samples (Margin also represents
classification confidence)

Linear SVM
Choose a linear classifier that maximizes
the margin.

To be discussed:

▶ How to measure the margin?
(functionally vs geometrically)

▶ How to find the decision boundary
with optimal margin?
+ a detour on Lagrange Duality
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Functional margins

Class labels: y ∈ {−1, 1}

hw ,b(x) =

{
1 if wT x + b ≥ 0

−1 otherwise

Functional Margin

Given training sample (x (i), y (i))

γ̂(i) = y (i)
(
wT x (i) + b

)
sign(γ̂(i)): whether the hypothesis is correct

▶ γ̂(i) >> 0 : prediction is correct with high confidence

▶ γ̂(i) << 0 : prediction is incorrect with high confidence
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Function Margins

Functional margin of (w , b) with respect to training data S :

γ̂ = min
i=1,..,m

γ̂(i) = min
i=1,..,m

y (i)
(
wT x (i) + b

)

Issue: γ̂ depends on ||w || and b

e.g. Let w ′ = 2w , b′ = 2b. The decision boundary parameterized by
(w ′, b′) and (w , b) are the same. However,

γ̂′(i) = y (i)
(
2wT x (i) + 2b

)
= 2y (i)(wT x (i) + b) = 2γ̂(i)

Can we express the margin so that it is invariant to ||w || and b?
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Geometric Margins

The geometric margin γ(i) of a training example (x (i), y (i)) is the
distance from the hyperplane:

γ(i) = y (i)

(
w

||w ||
T
x (i) +

b

||w ||

)

▶ w is normal to hyperplane
wT x + b = 0

▶ We want γ(i) > 0 when
prediction is correct
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Geometric Margins

The geometric margin of (w , b) with respect to training data S is the
minimum distance from any point to the hyperplane:

γ = min
i=1,..,m

γ(i) = min
i=1,..,m

y (i)

(
w

||w ||
T
x (i) +

b

||w ||

)

=
1

||w ||
min

i=1,..,m
y (i)

(
wT x (i) + b

)
=

1

||w ||
γ̂

▶ γ̂ = γ when ||w || = 1

▶ Geometric margins are invariant to parameter scaling
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Optimal Margin Classifier

Assume data is linearly separable

Find (w , b) that maximize geometric margin γ =
γ̂

||w ||
of the training

data

max
γ,w ,b

γ̂

||w ||
s.t. y (i)(wT x (i) + b) ≥ γ̂, i = 1, . . . ,m

There exists some δ ∈ R such that the functional margin of (δw , δb) is
γ̂ = 1

max
γ,w ,b

1

||w ||
s.t. y (i)(wT x (i) + b) ≥ 1 i = 1, . . . ,m

⇐⇒ min
γ,w ,b

1

2
||w ||2

s.t. y (i)(wT x (i) + b) ≥ 1 i = 1, . . . ,m

can be solved using QP software
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Review: Lagrange Duality

The primal optimization problem:
min
w

f (w)

s.t. gi (w) ≤ 0, i , . . . , k

hi (w) = 0, i = 1, . . . , l

Define the generalized Lagrange function :

L(w , α, β) = f (w) +
k∑

i=1

αigi (w) +
l∑

i=1

βihi (w)

αi and βi are called the Lagrange multipliers
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For a given w ,

θP(w) = max
α,β:αi≥0

L(w , α, β)

= max
α,β:αi≥0

f (w) +
k∑

i=1

αigi (w) +
l∑

i=1

βihi (w)

Recall the primal constraints: gi (w) ≤ 0 and hi (w) = 0 :

▶ θP(w) = f (w) if w satisfies primal constraints

▶ θP(w) =∞ otherwise

The primal problem (alternative form)

min
w

θP(w) = min
w

max
α,β:αi≥0

L(w , α, β)
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The primal problem (P)
p∗ = min

w
θP(w) = min

w
max

α,β:αi≥0
L(w , α, β)

The dual problem (D)

d∗ = max
α,β:αi≥0

θD(α, β) = max
α,β:αi≥0

min
w

L(w , α, β)

In general, d∗ ≤ p∗ (max-min inequality)

Theorem (Lagrange Duality)

Suppose f and all gi ’s are convex, all hi ’s are affine, and there exists
some w such that gi (w) < 0 for all i (strictly feasible) .
There must exists w∗, α∗, β∗ so that w∗ is the solution to P and
α∗,β∗ are the solution to D, and

p∗ = d∗ = L(w∗, α∗, β∗)
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Karush-Kuhn-Tucker (KKT) conditions

Under previous conditions, w∗, α∗, β∗ are solutions of P and D if and
only if they statisty the following conditions:

δ

δwi
L(w∗, α∗, β∗) = 0, i = 1, . . . n (1)

δ

δβi
L(w∗, α∗, β∗) = 0, i = 1, . . . l (2)

α∗
i gi (w

∗) = 0, i = 1, . . . , k (3)

gi (w
∗) ≤ 0, i = 1, . . . , k (4)

α∗ ≥ 0, i = 1, . . . , k (5)

Equation 3 is called the complementary slackness condition.
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Optimal Margin Classifier

Optimal margin classifier

min
γ,w ,b

1

2
||w ||2

s.t. y (i)(wT x (i) + b) ≥ 1 i = 1, . . . ,m

▶ f (w) = 1
2 ||w ||

2

▶ gi (w) = −
(
y (i)(wT x (i) + b)− 1

)
Generalized Lagrangian function:

L(w , b, α) =
1

2
||w ||2 −

m∑
i

αi

[
y (i)(wT x (i) + b)− 1

]
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By the complementary slackness condition in KKT:

α∗
i gi (w

∗) = 0, i = 1, . . . , k

α∗
i > 0 ⇐⇒ gi (w

∗) = −y (i)(w∗T x (i) + b) + 1 = 0

Training examples (x (i), y (i)) such that y (i)(w∗T x (i) + b) = 1 are called
support vectors

Support vectors lie on
hyperplane w∗T x + b = 1 when
y (i) = 1, or w∗T x + b = −1
when y (i) = −1
Constraints gi (w) ≤ 0 is only
active on support vectors
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Dual optimization problem:(Check derivation)

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y (i)y (j)αiαj⟨x (i), x (j)⟩

s.t. αi ≥ 0, i = 1, . . . ,m
m∑
i=1

αiy
(i) = 0

Given optimal solutions of α1, . . . , αb, how to find w∗ and b∗?
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Solution to the primal problem:

w∗ =
m∑
i=1

α∗
i y

(i)x (i)

b∗ = −1

2

(
max

i :y (i)=−1
w∗T x (i) + min

i :y (i)=1
w∗T x (i)

)
For a new sample z , the SVM prediction is sign

[
w∗T z + b

]
wT z + b =

∑m
i=1 αiy

(i)⟨x (i), z⟩+ b
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Linear SVM Summary

▶ Input:: m training samples (x (i), y (i)), y i ∈ {−1, 1}
▶ Output: optimal parameters w∗, b∗

▶ Step 1: solve the dual optimization problem

α∗ =max
α

W (α)

s.t. αi ≥ 0,
m∑
i=1

αiy
(i) = 0, i = 1, . . . ,m

▶ Step 2: compute the optimal parameters w∗, b∗

w∗ =
m∑
i=1

α∗
i y

(i)x (i)

b∗ = −1

2

(
max

i :y (i)=−1
w∗T x (i) + min

i :y (i)=1
w∗T x (i)

)
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Limitations of the basic SVM

Outliers Non-linearly separable cases
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Soft Margin SVM

Functional margin 1− ξi ≤ 1 :

min
w ,b,ξ

1

2
||w ||2 + C

m∑
i=1

ξi

s.t. y (i)(wT x (i) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m

▶ C : relative weight on the
regularizer

▶ L1 regularization let most
ξi = 0 , such that their
functional margins 1− ξi = 1
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Soft Margin SVM

The generalized Lagrangian function:

L(w , b, ξ, α, r) =
1

2
||w ||2+C

m∑
i=1

ξi −
m∑
i

αi

[
y (i)(wT x (i) + b)− 1+ξi

]
−

m∑
i=1

riξi

Dual problem:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y (i)y (j)αiαj⟨x (i), x (j)⟩

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑
i=1

αiy
(i) = 0

w∗ is the same as the non-regularizing case, but b∗ has changed.
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Soft Margin SVM

Dual problem:

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y (i)y (j)αiαj⟨x (i), x (j)⟩

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑
i=1

αiy
(i) = 0

By the KKT dual-complentary conditions, for all i , α∗
i gi (w

∗) = 0

αi = 0 ⇐⇒

y (i)(wT x (i) + b) ≥ 1 correct side of margin

αi = C ⇐⇒

y (i)(wT x (i) + b) ≤ 1 wrong side of margin

0 < αi < C ⇐⇒

y (i)(wT x (i) + b) = 1 at margin
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Kernel SVM
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Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension ϕ(x) ∈ RD , such that the data becomes
separable.

▶ ϕ is called a feature mapping.

▶ The classification function wT x + b becomes nonlinear:wTϕ(x) + b



29/35

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension ϕ(x) ∈ RD , such that the data becomes
separable.

▶ ϕ is called a feature mapping.

▶ The classification function wT x + b becomes nonlinear:wTϕ(x) + b



29/35

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension ϕ(x) ∈ RD , such that the data becomes
separable.

▶ ϕ is called a feature mapping.

▶ The classification function wT x + b becomes nonlinear:wTϕ(x) + b



30/35

Kernel Function

Given a feature mapping ϕ, we define the kernel function to be

K (x , z) = ϕ(x)Tϕ(z)

Some kernel functions are easier to compute than ϕ(x), e.g.

K (x , z) = (xT z)2

=

(
n∑

i=1

xizi

) n∑
j=1

xjzj

 =
n∑

i=1

n∑
j=1

xixjzizj

= ϕ(x)Tϕ(z)

where ϕ(x) =


x1x1
x1x2
...

xnxn−1

xnxn

 takes O(n2) operations to compute, while

(xT z)2 only takes O(n)
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Kernel SVM
In the dual problem, replace ⟨xi , yj⟩ with ⟨ϕ(xi ), ϕ(yi )⟩ = K (xi , xj)

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y (i)y (j)αiαjK (xi , xj)

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑
i=1

αiy
(i) = 0

No need to compute w∗ =
∑m

i=1 α
∗
i y

(i)ϕ(x (i)) explicitly since

f (x) = wTϕ(x) + b =

(
m∑
i=1

αiy
(i)ϕ(x (i))

)T

ϕ(x) + b

=
m∑
i=1

αiy
(i)⟨ϕ(x (i)), ϕ(x)⟩+ b

=
m∑
i=1

αiy
(i)K (x (i), x) + b
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Kernel Matrix
kernel functions measure the similarity between samples x , z , e.g.

▶ Linear kernel: K (x , z) = (xT z)

▶ Polynomial kernel: K (x , z) = (xT z + 1)p

▶ Gaussian / radial basis function (RBF) kernel:

K (x , z) = exp
(
− ||x−z||2

2σ2

)

Can any function
K (x , y) be a kernel
function?
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Kernel Matrix

Represent kernel function as a matrix K ∈ Rm×m where
Ki,j = K (xi , xj) = ϕ(xi )

Tϕ(xj).

Theorem (Mercer)

Let K : Rn × Rn → R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x (i), . . . , x (m)}, K is symmetric positive
semi-definite.

i.e. Ki,j = Kj,i and xTKx ≥ 0 for all x ∈ Rn
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Kernel SVM Summary

▶ Input: m training samples (x (i), y (i)), y i ∈ {−1, 1}, kernel function
K : X × X → R, constant C > 0

▶ Output: non-linear decision function f (x)

▶ Step 1: solve the dual optimization problem for α∗

max
α

W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

y (i)y (j)αiαjK(x (i), x (j))

s.t. 0 ≤ αi ≤ C ,

m∑
i=1

αiy
(i) = 0, i = 1, . . . ,m

▶ Step 2: compute the optimal decision function

b∗ = y (j) −
m∑
i=1

α∗
i y

(i)K(x (i), x (j)) for some 0 < αj < C

f (x) =
m∑
i=1

αiy
(i)K(x (i), x) + b∗

In practice, it’s more efficient to compute kernel matrix K in advance.
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SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

▶ Break a large SVM problem into smaller chunks, update two αi ’s at
a time

▶ Implemented by most SVM libraries.

Other related algorithms

▶ Support Vector Regression (SVR)

▶ Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)
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