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Previously on Learning from Data

Algorithms we learned so far are mostly probabilistic linear models:

Type ‘ Examples

Discrimative probablistic model | linear regression, logistic regres-
sion, softmax

Generative probablistic model GDA, naive Bayes

» Choice of model affects model performance; may easily lead to
model mismatch

» Data are often sampled non-uniformly, forming a sparse distribution
in high dimensional input space. leading to ill-posed problems

Possible solutions: regularization (more in later lectures), sparse kernel
methods (today'’s lecture)



Today's Lecture

Supervised Learning (Part 1V)
» Review: Perceptron Algorithm

» Support Vector Machines (SVM) <« another discriminative
algorithm for learning linear classifiers

» Kernel SVM <« non-linear extension of SVM



Perceptron Learning Algorithm




The perceptron learning algorithm

» Invented in 1956 by Rosenblatt (Cornell University)

» One of the earliest learning algorithm, the first artificial neural
network

Hardware implementation: Mark | Perceptron



The perceptron learning algorithm
Given x, predict y € {0,1}

B () 1 ifwlx+b>0
w,b(X) = .
b 0 otherwise

* wix+b <0

wix+b>0

x -0.5




The perceptron learning algorithm

Perceptron hypothesis function:

ho(x) 1 ife"x>0
X) =
¢ 0 otherwise

Parameter update rule:

0 =06+« (y(i) — ha(X(i))> ><j(") forall j=0,...

» When prediction is correct: §; = §;
» When prediction is incorrect:
» predicted "1": 0; = 0; — ax;
> predicted "0": 0; = 0; + ax;



Issues with linear hyperplane perceptron:

» Infinitely many solutions if data are
separable

» Can not express “confidence” of the
prediction




Support Vector Machines




Support Vector Machines in History

» Theoretical algorithm: developed from
Statistical Learning Theory ( Vapnik &
Chervonenkis) since 60s

» Modern SVM was introduced in COLT
92 by Boser, Guyon & Vapnik




Support Vector Machines in History

» 1995 paper by Corte & Vapnik titled “Support-Vector Networks"
» Gained popularity in 90s for giving accuracy comparable to neural
networks with elaborated features in a handwriting task

Machine Learning, 20, 273-297 (1995)
© 1995 Kluwer Academic ishers, Boston. in The 3

Support-Vector Networks
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Abstract. The support-vector network is a new learning machine for two-group classification problems. The
machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high- input vector in feature space
dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the
decision surface ensures high generalization ubility of the leaming machine. The idea behind the support-vector
network was previously implemented for the restricted case where the training data can be separated without
errors. We here extend this result to non-separable training data.

High generalization ability of support-vector networks utilizing polynomial input transformations is demon-
strated. We also compare the performance of the support-vector network to various classical learning algorithms
that all took part in a benchmark study of Optical Character Recognition.

non-linear transformation

input vector, x

Keywords: pattern recognition, efficient learning algorithms, neural networks, radial basis function classifiers,
polynomial classifiers.



Support Vector Machine: Overview
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Support Vector Machine: Overview
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Margin: smallest distance between
the decision boundary to any
samples (Margin also represents
classification confidence)

Linear SVM
Choose a linear classifier that maximizes
the margin.

To be discussed:
» How to measure the margin?
(functionally vs geometrically)
» How to find the decision boundary
with optimal margin?
+ a detour on Lagrange Duality



Functional margins

Class labels: y € {-1,1}

hor () 1 ifwix+b>0
w,b\X) = .
b —1  otherwise



Functional margins

Class labels: y € {—1,1}

B 5(x) 1 if wix+b>0
w,b\X) = .
b —1 otherwise

Functional Margin

Given training sample (x(), y(1)
A0) = (@) (Wrx(f) + b)

sign(5()): whether the hypothesis is correct



Functional margins

Class labels: y € {—1,1}

B 5(x) 1 if wix+b>0
w,b\X) = .
b —1 otherwise

Functional Margin
Given training sample (x(), y(1)
A0) = (@) (Wrx(f) + b)

sign(5()): whether the hypothesis is correct
» 4() >> 0 : prediction is correct with high confidence



Functional margins

Class labels: y € {—1,1}

B 5(x) 1 if wix+b>0
w,b\X) = .
b —1 otherwise

Functional Margin

Given training sample (x(), y(1)
A00) = (0 (Wrx(f) + b)

sign(5()): whether the hypothesis is correct
» 4() >> 0 : prediction is correct with high confidence
> 4() << 0 : prediction is incorrect with high confidence



Function Margins

Functional margin of (w, b) with respect to training data S:

¥ = _7r11in ;) = _7r111in y(® (WTX(i) + b)

) IRRS]



Function Margins

Functional margin of (w, b) with respect to training data S:

¥ = _7r11in ;) = _7r111in y(® (wa(i) + b)

) IRRS]

Issue: 4 depends on ||w|| and b

e.g. Let w =2w, b’ = 2b. The decision boundary parameterized by
(w', b’) and (w, b) are the same. However,

3/) = () <2WTX(/') n 2,,) = 2y D (wTx() + p) = 250

Can we express the margin so that it is invariant to ||w]|| and b?



Geometric Margins

The geometric margin 7)) of a training example (x(), y()) is the
distance from the hyperplane:

) — ) (WTX(i) + b)
[lwll [lwll

o x®

» w is normal to hyperplane

wix+b=0
w > We want v() > 0 when
prediction is correct
Y
S wx+b=0
x N
N . X1




Geometric Margins

The geometric margin of (w, b) with respect to training data S is the
minimum distance from any point to the hyperplane:

. . T ,. b
— min A0 = min v® ( W) >
Y= min ¥/ = min y x4V +
i=1,...m i=1,..,m HWH HWH



Geometric Margins

The geometric margin of (w, b) with respect to training data S is the
minimum distance from any point to the hyperplane:

— min A = min O (YT B
[ S (|w| T
1 ) .
i O (T b
T (w0 +b)
1



Geometric Margins

The geometric margin of (w, b) with respect to training data S is the
minimum distance from any point to the hyperplane:

o i i (T ) b>
= n = min X\ +
L R Qw| [Twll
= min g0 (wTx 4 b)
Twll =20
1,
=%
[[wl]

> 4 = when [|w|| = 1



Geometric Margins

The geometric margin of (w, b) with respect to training data S is the
minimum distance from any point to the hyperplane:

o i i (T ) b>
= n = min X\ +
T AT i=Lom” <|W| [|w||
~ 1 0 (WTX('>+b)
Twll =20
1,
=—5
[wl|

> 4 = when [|w|| = 1

» Geometric margins are invariant to parameter scaling



Optimal Margin Classifier

Assume data is linearly separable

Find (w, b) that maximize geometric margin v = HWH of the training
w
data A
max
yw.b [|wl|

w
st yO(wTxD by >4, i=1,....m



Optimal Margin Classifier

Assume data is linearly separable

Find (w, b) that maximize geometric margin v = H’YH of the training
w
data A
max
yw.b [|wl|

w
st yO(wTxD by >4, i=1,....m

There exists some § € R such that the functional margin of (dw,db) is

o

b 1
max _—
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st yOw xD +p)y>1i=1,....m



Optimal Margin Classifier

Assume data is linearly separable

Find (w, b) that maximize geometric margin v = H’YH of the training
w
data A
max
yowb ||wl|

w
st yO(wTxD by >4, i=1,....m

There exists some § € R such that the functional margin of (dw,db) is
=1

1
maXx -
owb [lwl|
st yOw xD +p)y>1i=1,....m
. 1, 0
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min, SlIwll

st yOwxD 4 p)y>1i=1,....m



Optimal Margin Classifier

Assume data is linearly separable

Find (w, b) that maximize geometric margin v = H’YH of the training
w
data A
max
yw.b [|wl|

w
st yO(wTxD by >4, i=1,....m

There exists some § € R such that the functional margin of (dw,db) is
=1

1
maXx -
owb [lwl|
st yOw xD +p)y>1i=1,....m
. 1, 0
= =
min, SlIwll

can be solved using QP software



Review: Lagrange Duality

The primal optimization problem:
min  f(w)
s.t. g,(W)SO,I,,k
hi(w)=0,i=1,...,1



Review: Lagrange Duality

The primal optimization problem:
min  f(w)
w

s.t. g,(W)SO,I,,k
0

Define the generalized Lagrange function :

i
L(w,a, B) = f(w +Za,g, )+ Bihi(w
i=1

«; and f; are called the Lagrange multipliers



For a given w,

Op(w) = max L(w,a, B)

a,B:ai>0

k /
= max f(w)+ Zaig;(W) + Zﬁihi(w)
i=1 i=1



For a given w,

Op(w) = . 212x>0 L(w,a, B)

a,B:a; >0

k /
= max f(w)+ Zaig;(W) + Zﬁihi(w)
i=1 i=1

Recall the primal constraints: g;(w) < 0 and h;(w) =0 :

» Op(w) = f(w) if w satisfies primal constraints



For a given w,

Op(w) = o max L(w,a, B)

:agngxwf —|—Zozg,(w —|—Zﬂ, ;

Recall the primal constraints: g;(w) < 0 and h;(w) =0 :
» Op(w) = f(w) if w satisfies primal constraints

» Op(w) = oo otherwise

The primal problem (alternative form)

m|n Op(w) = min max L(w,a,B)



The primal problem (P)
p* = minfp(w) = min max 0L(W,oz,ﬁ)

The dual problem (D)

e POl P =  piomin i o)



The primal problem (P)

p* = min Op(w) = min max L(w,a, B)

The dual problem (D)

d*= max Op(a,f)= max minl(w,q,p)

a,B:a; >0 a,fiai >0 w

In general, d* < p* (max-min inequality)



The primal problem (P)
p* = minfp(w) = min max L(w,a, B)

The dual problem (D)

e POl P =  piomin i o)

In general, d* < p* (max-min inequality)

Theorem (Lagrange Duality)

Suppose f and all g;’s are convex, all h;’s are affine, and there exists
some w such that gi(w) < 0 for all i (strictly feasible) .

There must exists w*, o™, 8* so that w* is the solution to P and
o*,p* are the solution to D, and

p* — d* — L(W*,a*7ﬂ*)



Karush-Kuhn-Tucker (KKT) conditions

Under previous conditions, w*, a*, 3* are solutions of P and D if and
only if they statisty the following conditions:

6iv,-L(W*’a*’6*):O’ i=1,...n
5L(W* a*,8*)=0,i=1,...1
5P m =
ajgi(w*)=0,i=1,...,k
g(w) <0, i=1,... k
a*>0,i=1,... k

Equation 3 is called the complementary slackness condition.



Optimal Margin Classifier

Optimal margin classifier

> f(w) = 3llwl]?
> gi(w)=— (yD(w™xD 4+ p)—1)
Generalized Lagrangian function:

1 = . .
L(w, b,a) = [l =" a; [yD(w <) + b) =1

i



By the complementary slackness condition in KKT:

ajgi(w*)=0,i=1,....k
af >0 = g(w)=—yDw xD1p)+1=0



By the complementary slackness condition in KKT:
ajgi(w*)=0,i=1,....k
af >0 = g(w)=—yDw xD1p)+1=0

Training examples (x(), y()) such that y)(w* "x() + b) = 1 are called
support vectors

A
x x % Support vectors lie on
ey x hyperplane w* Tx + b =1 when
L ox X yO =1 0orw*"x4+b=-1
Teo% when y() = -1
%
o u. .
o
) o o
o] O
0]




By the complementary slackness condition in KKT:
ajgi(w*)=0,i=1,....k
af >0 = g(w)=—yDw xD1p)+1=0

Training examples (x(), y()) such that y)(w* "x() + b) = 1 are called
support vectors

A
x x X Support vectors lie on
ey x hyperplane w* Tx+ b =1 when
. x X yD =1 orw*'x+b=-1
L% when y() = —1
o e e N Constraints g;(w) < 0 is only
o active on support vectors
O O O‘s‘ S
o] O
0]




Dual optimization problem:(Check derivation)

max W(« Za, - = Zy( Ny W (x, xU))
ij=1
st.a;>0,i=1,....m

z’": a,-y(") =0
i=1



Dual optimization problem:(Check derivation)

max W(« Za, - = Z yDyWDaga; (x1) x0)y
ij=1
st.a;>0,i=1,....m

Zm: a;y(i) =0
i=1

Given optimal solutions of o, ..., ayp, how to find w* and b*?



Solution to the primal problem:

wh =3 aryOx0
i=1



Solution to the primal problem:
m
w* = Za?‘y(i)x(i)
i=1

1 . .
b* = —= ( max w* x() + min w* Tx(’))
2 iry(l=—1 iy(h=1

For a new sample z, the SVM prediction is sign |:W* Tz+ b]
wiz+b=3", aiyD(xD 2} + b



Linear SVM Summary

> Input:: m training samples (x(), y()) y' € {—1,1}
» Qutput: optimal parameters w*, b*
» Step 1: solve the dual optimization problem

o =max W(a)

m
s.t. a;EO,Za;y(i):O,izl,...,m

i=1

» Step 2: compute the optimal parameters w*, b*

w =3 aryix
i=1



Limitations of the basic SVM

x x =
X
hs ®
o o)
o B X
o X
o
o] o o
o o)

Outliers Non-linearly separable cases



Soft Margin SVM

Functional margin 1 — ¢ <1:
I "
LT
st yD(wTx 4 p)>1—¢
&E>0,i=1,...,m

» C: relative weight on the
regularizer

» L; regularization let most
& =0, such that their
functional margins 1 — & =1




Soft Margin SVM

The generalized Lagrangian function:

m

1 m . )
L(w,b,&, 1) = §||W||2+CZEI‘ - a; [y(')(WTX(') +b) — 1+§i]
i—1

i

m
IS
i-1



Soft Margin SVM

The generalized Lagrangian function:

1 m m . .
L(w,b,&, 1) = §||W||2+CZ§:‘ - a; [y(')(WTX(') +b) — 1+€i]
i—1

i

m
IS
i-1

Dual problem:



Soft Margin SVM

The generalized Lagrangian function:

1 m m .
Lw, b, &) = SlIwlP+C Y6 =Y ar [yO(w”
i=1

i

m
IS
i-1

Dual problem:

x4 p) — 1+fi]

maxW Za,—ny()y(faa x| x()y

ij=1
st.0<; <C,i=1,....,m

2’": aiy® =0
i=1

*

w* is the same as the non-regularizing case, but b* has changed.



Soft Margin SVM

Dual problem:

maxW Za, Zy() (’ozozj (),XU)>

ij=1
st.0<q; <C,i=1,....m

m
Z aiy) =0
i=1

By the KKT dual-complentary conditions, for all i, afgi(w*) =0

a; =0 =
aj=C =
O0<a<(C <—



Soft Margin SVM

Dual problem:

maxW Za, Zy() (’ozozj X x()y

ij=1
st.0<q; <C,i=1,....m

m
i=1

By the KKT dual-complentary conditions, for all i, afgi(w*) =0

aj=0 —  yO(wTxD £ b)>1 correct side of margin
aj=C —  yO(wTx() £ p) <1 wrong side of margin

0<a;<C <<= yO(w'x)+b)=1 at margin






Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € RY to a higher dimension ¢(x) € RP , such that the data becomes
separable.

Input space Feature space

o o
® e
|:|..|:|




Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € RY to a higher dimension ¢(x) € RP , such that the data becomes

separable.

Input space

o o
® e
Dego O

Feature space

> ¢ is called a feature mapping.



Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € RY to a higher dimension ¢(x) € RP , such that the data becomes

separable.

Input space

o o
® e
Dego O

Feature space D D

> ¢ is called a feature mapping.

» The classification function w'x + b becomes nonlinear:w " ¢(x) + b



Kernel Function

Given a feature mapping ¢, we define the kernel function to be

K(x.2) = ¢(x)"(2)



Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,z) = ¢(x)"¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.

K(x,z) = (x"z)?



Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,z) = ¢(x)"¢(2)
Some kernel functions are easier to compute than ¢(x), e.g.

K(x,z) = (x"z)? = (2,7: X,'Z,') zn:ijj = z": zn:x,-sz,-zj
i=1 j=1

i=1 j=1

= 0(x)" ¢(2)



Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,z) = ¢(x)"¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.

K(x,z) = (x"z)? = (2,7: X,'Z,') zn:ijj = z": zn:x,-sz,-zj
i=1 j=1

=1 j=1
= 0(x)" ¢(2)
X1X1
X1X2
where ¢(x) = 5 takes O(n?) operations to compute, while
XnXn—1
XnXn

(x"2)? only takes O(n)



Kernel SVM
In the dual problem, replace (x;, y;) with (¢(x;), o(yi)) = K(xi, x;)

maxW Za,—ny)Uaaj (xi, %)

ij=1
st.0<q; <C,i=1,...,m

i aiy =0
i—1



Kernel SVM
In the dual problem, replace (x;, y;) with (¢(x;), o(yi)) = K(xi, x;)

maxW Za,—ny)Uan (xi, %)

ij=1
st.0<q; <C,i=1,...,m

i aiy =0
i—1

No need to compute w* = 37 afyDp(x() explicitly since

f(x) = WquS(x) +b= (Z a;y(i)gb(x(i))> o(x)+ b

i=1

=3 aiyD(e(x), 6(x)) + b
=1

iay()K ,X)+b



Kernel Matrix
kernel functions measure the similarity between samples x, z, e.g.
> Linear kernel: K(x,z) = (x"2z)
» Polynomial kernel: K(x,z) = (xTz+ 1)P

> Gaussian / radial basis function (RBF) kernel:
K(x,z) = exp (*L{Z”Z)

o2

Linear 2nd polynomial  3rd polynomial

variable 2
eeQ
variable 2
variable 2

variable 2

variable 1 variable 1



Kernel Matrix
kernel functions measure the similarity between samples x, z, e.g.
> Linear kernel: K(x,z) = (x"2z)
» Polynomial kernel: K(x,z) = (xTz+ 1)P
> Gaussian / radial basis function (RBF) kernel:
K(x,z) = exp <7HX2772”2)

02
Linear 2nd polynomial  3rd polynomial
) ® 9
WPNe %06 o
ol & A o
3 oane  ® s
ORI
0% &N\
e o~ S Can any function
variable 1 variable 1
K(x,y) be a kernel
function?
o~ o~
@ o
o Qo
s K|
T &
> >

variable 1 variable 1



Kernel Matrix

Represent kernel function as a matrix K € R™*™ where
Kij = K(xi.x) = ¢(xi) T d(x;).



Kernel Matrix

Represent kernel function as a matrix K € R™*™ where
Kij = K(xi,x) = ¢(x) T o(x)-
Theorem (Mercer)

Let K :R" x R" — R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x() ... x(M} K is symmetric positive
semi-definite.

i.e. Kij = Kj;and xTKx >0 for all x e R"



Kernel SVM Summary

» Input: m training samples (X(i),y(i)),yi € {—1,1}, kernel function
K:X x X — R, constant C > 0

» Output: non-linear decision function f(x)

» Step 1: solve the dual optimization problem for o™

maxW Za,—*zy }’ aaj (()vX(J))

ij=1

sit. 0< o < C,Za;y(i):o,izl,...,m

i=1

» Step 2: compute the optimal decision function

m
b* = yW — Za;—ky(i)K(X(i)./X(j)) for some 0 < a; < C

f(X) — Zaiy(i)K(x('), X) + b*

L, i=1 . . .
In practice, it's more &fficient to compute kernel matrix K in advance.



SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

» Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.



SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

» Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.

Other related algorithms
» Support Vector Regression (SVR)

» Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)
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