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Today's Lecture

Practical tools to improve machine learning performance:
» Bias and variance trade off

» Model selection and feature selection

» Regularization

» Generic techniques
» Neural network regularization tricks

» Midterm information



Empirical error & Generalization error

Consider a learning task, the empirical (training) error of hypothesis@
is the expected loss over m training samples
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The generalization (testing) error of h is the expected error on
examples not necessarily in the training set.
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The generalization (testing) error of h is the expected error on

examples not necessarily in the training set. F ) heed-y )}f
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Goal of machine learning T eboret P

> make training error small (optimization)
» make the gap between empirical and generalization error small
P—




Overfit & Underfit

Underfit Both training error and testing error are large
Both trair

Overfit Training error is small, testing error is large
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Overfit & Underfit

Underfit Both training error and testing error are large

Overfit Training error is small, testing error is large
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Model capacity: the ability to fit a wide variety of functions



Model Capacity

Changing a model’'s capacity controls whether it is more likely to overfit
or underfit

» Choose a model’s hypothesis space: e.g. increase # of features
(adding parameters)

» Find the best among a family of hypothesis functions
T



Model Capacity

Changing a model’s capacity controls whether it is more likely to overfit
or underfit

» Choose a model’s hypothesis space: e.g. increase # of features
(adding parameters)

» Find the best among a family of hypothesis functions

— - Training error
Underfitting zone| Overfitting zone

——  (Feneralization error

Error

0 Optimal Capacity —>
Capacity

How to formalize this idea?



Bias & Variance

Suppose data is generated by the following model:
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y =h(x)+¢
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with E[e] = 0, Var(e) 172 J! H

h(x): true hypothesis function — fixed value
D: training data {(x(l),y(l}, o, (Xt y MY sampled from
Pxy

h(x): estimated hypothesis function based on[D|— random
~ variable L1 o P59 it



Bias & Variance

Bias of a model: The expected estimation error of h over all choices of

{ data D led from P
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When we make wrong assumptions about the model, h will have large

bias (underfit) Mx) o _

Variance of a model: How much ﬁ move around its mean
Var(h h) = Ep[(h(x) — Ep(h(x))?]
= Ep[h(x)*] — Ep[h(x)]?

When the model overfits “spurious” patterns, it has large variance
(overfit).




Bias - Variance Tradeoff Jo((£)=5°

If we measure generalization error by MSE

MSE = Ep[(h(x) — y)?] = Bias(h)? + Var(h) + o2,
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2 represents irreducible error Elyl=heo,
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> in practice, increasing capacity tends to increase variance and V)
creasin
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Bias - Variance Tradeoff

If we measure generalization error by MSE
MSE = Ep[(h(x) — y)?] = Bias(h)? + Var(h) + o2,

2

» o° represents irreducible error

> in practice, increasing capacity tends to increase variance and
decrease bias.
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Cross validation



Model Selection

For a given task, how do we select which model to use?
/ ~—  ——

» Different learning models
» e.g. SVM vs. logistic regression for binary classification

» Same learning models with different hyperparameters

> e.g. # of clusters in k-means clustering



Model Selection

For a given task, how do we select which model to use?
» Different learning models

» e.g. SVM vs. logistic regression for binary classification

» Same learning models with different hyperparameters
> e.g. # of clusters in k-means clustering

Cross validation is a class of methods for selecting models using a
validation set.




Hold-out cross validation v
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Given training set S and candidate models M;,..., M,,:
1. Randomly split S into S¢ain and So (e.g. 70% Strain)
2. Training each M; on S;.in,

3. Select the model with smallest empirical error on S,

k
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Hold-out cross validation

Given training set S and candidate models M;,..., M,,:
1. Randomly split S into Siain and S, (e.g. 70% Stirain)
2. Training each M; on S;.in,

3. Select the model with smallest empirical error on S,

Disavantages of hold-out cross validation
» "wastes’ about 30% data

» chances of an unfortunate split



K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k =5)

—_— —



K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k =5)

2. For_j;l...k:
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L~ Ok 2 2

Q"‘"’l P"‘”)‘ oo P]t‘
o
M £, &2 -0 %k ﬂ_un2 - .
Training

My £, "‘”cgun 5 - fold

Validating




K-Fold Cross Validation

Goal: ensure each sample is equally likely to be selected for validation.

1. Randomly split S into k disjoint subsets Sy, ..., Sk of m/k training
examples (e.g. k =5)

2. Forj=1...k:
Train each model on 5\S;, then validate on S;,

=
=

Training
Run 3 1 folg

Validating

3. Select the model with the smallest average empirical error among
all k trails.



Leave-One-Out Cross Validation

A special case of k-fold cross validation, when kK = m.
Sev -

1. For each training examplejx,- v
Train each model on S\{x;}, then evaluate on x;,

S’\‘Y o

2. Select the model with the smallest average empirical error among all
m trails.

Often used when training data is scarce.

——




Other Cross Validation Methods
e
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» Random subsampling

-

» Bootstrapping: sample with replacement from training examples
(used for small training set)

> Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

—_—




Other Cross Validation Methods

» Random subsampling

» Bootstrapping: sample with replacement from training examples
(used for small training set)

» Information criteria based methods: e.g. Bayesian information
criterion (BIC), Akaike information criterion (AIC)

Cross validation can also be used to evaluate a single model.




Regularization



Regularization

Regularization is any modification we make to a learning algorithm to

reduce its generalization error, but not the training error
b—__’_/_/_-_—‘



Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with weight decay:

-

J(0) = "log p(y|x1D; 6) + A[|6] 13
i=1



Regularization

Regularization is any modification we make to a learning algorithm to
reduce its generalization error, but not the training error

Common regularization techniques:

» Penalize parameter size
e.g. linear regression with weight decay:

J(0) = "log p(y|x1D; 6) + A[|6] 13
i=1

» Use prior probability: max-a-posteriori estimation



Parameter Norm Penalty

Adding a regularization term to the loss (error) function:

~

JX,Y:0) = JX,Y:0) +x Q)
—— N~~~

data-dependent loss regularizer

where
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Parameter Norm Penalty

Adding a regularization term to the loss (error) function:

~

JX,Y:0)= JX,Y:0) +Xx Q)
S—— —~—

data-dependent loss regularizer
where
1 ¢ q 1 q
Q(6) = 5 > 16517 = 51101
Jj=1
% % Q1. ' '
©,

| | |

Q@
Contours of the regularizer (||0||7 = 1) for different q




L2 parameter penalty

When g = 2, it's also known as Tokhonov regularization or ridge
regression

- A

J(X,Y:0)=J(X,Y;0)+ EeTe



L2 parameter penalty

When g = 2, it's also known as Tokhonov regularization or ridge

regression

JX,Y;:0)=J(X,Y;0)+ %eTe
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Gradient descent update:
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D> 0- = (1—a))f —aVeJ(X,Y;0)

L2 penalty multiplicatively shrinks parameter 6 by a constant



L2 parameter penalty

When g = 2, it's also known as Tokhonov regularization or ridge

regression

JX,Y;:0)=J(X,Y;0)+ %eTe

Gradient descent update:

§ 60— aVed(X,Y;0)
=0 — a(VeJ(X,Y;0)+ \0)
= (1 —a))f —aVeJ(X,Y;0)

L2 penalty multiplicatively shrinks parameter 6 by a constant

Example: regularized least square

When J(X,Y;0) =237 (y() — 07x(D)? (ordinary least squares),
éOLS = (XTX —|—_’)\_D_1(XTY)




L1 parameter penalty

When g =1, Q(#) = 5 37 |0j] is also known as LASSO regression.

> If X is sufficiently large, some coefficients 0; are driven to 0.

—_——

» It will lead to a sparse model



L1 parameter penalty

When g =1, Q(#) = 5 37, |0j] is also known as LASSO regression.
> If X is sufficiently large, some coefficients 0; are driven to 0.

» It will lead to a sparse model

Proposition 1 U 0)

Solving ming J(X,Y;6) = J(X, Y;6) +C%‘)Z}':1 6|9 is equivalent to
A
N

3 ming J(X,Y;6)

MU

for some constant 1) > 0 (% ). Furthermore, n = ZJ’?Zl 07(N)|7 where
6*(\) = argmin, J(X, Y;0,)) - S L
“g &r'vév‘ )\;g 9* RN _golu,cflo.v\ ‘/’0 ) <—_—:5 3 1 3t 8* s the solefron 1 (2)

> () assumes constraints are satisfiable (e.g. with slater’s condition)

» Choosing A is equivalent to choosing 7 and vice versa

—_—

» Smaller A\ — larger constraint region

I



L1 vs L2 parameter penalty
wie T1500) pmic Q)
0 J > it Z 18] "< 1
Contour plot of unregularized error J(X, Y 0) and the constraint region
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The lasso (I1 regularizer) gives a sparse solution Wth 07 = 0.



Bayesian Statistics

Maximum likelihood estimation:@is an unknown constant

OmLE —argmapr ()|x() 6) g *
i=1

Bayesian view: 6 is a random variable

mg(\m AN J¢

— )

Given training set S = {x{ posterlor distribution of 6

o(516)p(6)
PO =706




Fully Bayesian statistics

g e

/ . .
p(8]S) = p(S|0) 49) H:nle(y(’)‘x(/),g)p(g)
p(S) LTI PyDIxD, 0)p(0))d0

—

To predict the label for new sample x, compute the posterior distribution
over training set S: "

plylx5] = [ plybe.0)p(015)ds

The label is
Ely|x, S] = / v p(ylx, S)dy
y

Fully bayesian estimate of 6 is difficult to compute, has no close-form
solution.



Bayesian Statistics

Posterior distribution on class label y using p(6|S5)

p(ylx, ) = /9 p(y|x, 6)p(6]S)d6



Bayesian Statistics

Posterior distribution on class label y using p(6|S5)

p(ylx, ) = /9 p(y|x, 6)p(6]S)d6

We can approximate p(y|x, 6) as follows:

MAP approximation F(V Jx‘ ém

The MAP (maximum a posteriori) estimate of 6 is

0 = argmax (1) x("),‘e_% 0
Umap ;g_f HP(Y | JP()

i=1




Bayesian Statistics

Posterior distribution on class label y using p(6|S5)

p(ylx, ) = /9 p(y|x, 6)p(6]S)d6

We can approximate p(y|x, 6) as follows:

MAP approximation

The MAP (maximum a posteriori) estimate of 6 is

Omap = argr;waXH p(yx1, 6)p(6)
i=1

p(y1x() 9) is not the same as p(y{)|x()); 9)



MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y()|x()) ~ N(67 x() 52):

m
OmLE = arggnaxH p(yi\xi; 6)
i=1

= (XTX)'XTY = bos



MAP estimation and regularized least square

Recall ordinary least square is equivalent to maximum likelihood
estimation when p(y()[x()) ~ N(67 x() 52):

m
OmLE = arg;naxH p(y'|x"; 0)
i=1

= (XTX)'XTY = bos

The MAP estimation when QNLV(/O@ is

Omap = argmax (H p(y'1x'; 9)) p(0)

i=1

3

N

— argmin (U—zeTe F(Y = XO)T(Y - xe))
0 T
0'2 ~ 0'2
= (XTX +[—ID)7XTY = fors when A = —
T T

) [

(=



Discussion on MAP Estimation

_['2
General remarks on MAP: I T° L)

» When 6 is uniform, QMA,D = HMLE

» A common choice for p(#) is & ~ N(0,721), and Opap corresponds
to weight decay (L2-regularization) — —

» When 6 is an isotropic Laplace distribution, 6yap corresponds to

—_—

LASSO ( L1-regularization).

» Opap often have smaller norm than Oy e

-




Regularization for neural networks

Common regularization techniques:

> Data augmentation

» Parameter sharing

» Drop out

I



Data augmentation

Create fake data and add it to the training set. (Useful in certain tasks
such as object classification.)

,[‘!({!H
( ERAey e
o, = 4 18 4
FENEE

Generate fake digits via geometric transformation, e.g. scale, rotation etc

Photograph

Generate images of different styles using GAN

Shorten et. al. A survey on Image Data Augmentation for Deep Learning, 2019



Parameter Sharing

Force sets of parameters to be equal based on prior knowledge.
,‘/\C/‘C "’DIOW\_OUF\ 5)"0\/""

Siamese Network  /retvic /e&m'%‘

» Given input X, learns a discriminative

Similar/Not ?

il D |
feature f(X)
> For every pair of samples (X1, Xo) in | NNV Jsamenetwork )

the same class, minimize their distance

in feature space |EIX1) —(A(X2)||? L X [ X%

— —

Convolutional Neural Network (CNN)

» Image features should be invariant to translation

» CNN shares parameters across multiple image locations.

Soft parameter sharing: add a norm penalty between sets of

parameters:
Q6% 0%) = |04 ~ %18 | T )
: 2 T\AB < >)_7’_\E@

X X,



Drop Out

» Randomly remove a non-output unit from network by multiplying its
output by zero (with probability p)

» In each mini-batch, randomly sample binary masks to apply to all
inputs and hidden units

» Dropout trains an ensemble of different sub-networks to prevent the

f“ o-adaptation™of neurons

@W—Of k (b) Network after Dropout



Midterm Information

Time: Next Friday, November 11, 10:00am (Arrive at 9:50am)
Location: C1-402
What to bring: A double-sided A4 notesheet

vV v . v v

Covers everything up to today (neural networks and model selection
will only be short questions.)

» Apply for online exam before by Wednesday.
> Midterm review session: =Faeseay-evening  \Wednesday Nov 9, 7-9pm

Additional TA session available on Friday 7-9pm.

=


Yang Li

Yang Li
Wednesday Nov 9, 7-9pm


Next lecture: learning theory
How to quantify generalization error?
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Prof. Vladimir Vapnik in front of his famous theorem



