

Lecture 6: Backpropagation and Neural Networks

Yang Li Slides by Lichen Wang

10/28/2022

Power of single neural

Power of single neural

Two hidden units

Power of single neural

Many hidden units

Could have L hidden layers

■ layer input activation for k > 0, $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$ $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$

Could have L hidden layers

- Iayer input activation for k > 0, $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$ $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$
 - hidden layer activation for $1 \le k \le L$ $\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$ e.g $\mathbf{h}^{(1)} \circ \mathbf{r} = \mathbf{h}^{(2)}$

Could have L hidden layers

- layer input activation for k > 0, $\mathbf{h}^{(0)}(\mathbf{x}) = \mathbf{x}$ $\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$
 - hidden layer activation for $1 \le k \le L$ $\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$
- output layer activation for k = L + 1 $\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$ output

Empirical risk

Softmax example:

 $\operatorname{argmin}_{W} \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; W), y^{(i)}) + \underline{\lambda \Omega(W)}$ Unnormalized class probability of |Y| classes $L(f(\mathbf{x}^{(i)}; W), y^{(i)}) \text{ is the loss function for sample } (\mathbf{x}^{(i)}, y^{(i)})$ $\lambda \Omega(W) \text{ is the regularizer } e^{(y-i|x)} e^{\theta_{x}^{T}x} Class \\ = \sum e^{\theta_{y}^{T}x} vect$ Class f(x)score vector e.g. When L is the softmax loss $\mathbf{W}^{(3)}$ $L(f(\mathbf{x}^{(i)}; W), \underline{y}^{(i)}) = -\log\left(\frac{e^{f_{y^{(i)}}}}{\sum_{j=1}^{|Y|} e^{f_{j}}}\right)$ $h^{(2)}(x)$ (2)

 f_j is the jth element of class score vector $f(\mathbf{x}^{(i)}; W)$

Optimization

■ Find the optimal parameter

 $\operatorname{argmin}_{W} \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; W), y^{(i)}) + \lambda \Omega(W)$

Optimization

Find the optimal parameter

 $\operatorname{argmin}_{W} \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; W), y^{(i)}) + \lambda \Omega(W)$ 1.

Stochastic Gradient Descent (SGD)

Algorithm

Initialize W

repeat: for each training example $(\mathbf{x}^{(t)}, \mathbf{y}^{(t)})$

To apply this algorithm, we need:

- A procedure to compute the parameter gradient
- 2. The regularizer (and its gradient)
- 3. Updating rule
- Initialization method 4.

Animation:

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

How many parameter do we have?

How many parameter do we have?

VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

How many parameter do we have?

VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

How many parameter do we have?

VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function:

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Current W:

Gradient dW:

Current W: [0.25, -1.56, 0.55, 3.8, 0.98, 0.77, -0.11, -2.9,...]

Loss 1.25742

W + h (third dim): [0.25 + 0.0001]-1.56, 0.55, 3.8, 0.98, 0.77, -0.11, -2.9,...]

Loss 1.25763

Gradient dW: [?, ?, ?, ?, ?, ?, ?, ?,...]

Current W:

[0.25, -1.56, 0.55, 3.8, 0.98, 0.77, -0.11, -2.9,...]

Loss 1.25742

W + h (third dim): \bigcup_{0} [0.25 + 0.0001, -1.56, 0.55, 3.8, 0.98, 0.77, -0.11, -2.9,...]

Loss 1.25763

Gradient dW: [2.1, $\lim_{h \to 0} \frac{f(x+h) - f(x)}{r}$?, ?, (1.25763 - 1.25742)?, 0.0001 ?, ?, ?, ?,...]

How many parameter do we have?

VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function:

df(x)	– lim -	f(x+h) - f	(x)
$\frac{dx}{dx}$	$- \lim_{h \to 0} -$	h	

How many parameter do we have?

VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function:

 $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Numerical gradient: approximate, slow, easy to write

How many parameter do we have?

VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function:

 $\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$

Numerical gradient: approximate, slow, easy to write

Calculus!

$$\operatorname{argmin}_{W} \frac{1}{m} \sum_{i=1}^{m} L(f(\mathbf{x}^{(i)}; W), y^{(i)}) + \lambda \Omega(W)$$
$$\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$$
$$\mathbf{h}^{(k)}(\mathbf{x}) = \mathbf{g}(\mathbf{a}^{(k)}(\mathbf{x}))$$
$$\mathbf{a}^{(k)}(\mathbf{x}) = \mathbf{b}^{(k)} + \mathbf{W}^{(k)}\mathbf{h}^{(k-1)}(\mathbf{x})$$

Analytic gradient: exact, fast, error-prone

Vectorized example

Vectorized example

Vectorized example

Vectorized example

Vectorized example

Vectorized example

