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Learning From Data

Power of single neural

Two hidden units

Many hidden units
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Multilayer Neural Network 
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Multilayer Neural Network 

Could have L hidden layers 

n layer input activation for         ,
( ) ( ) ( ) ( 1)( ) ( )k k k k-= +a x b W h x

0k > (0) ( )=h x x
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Multilayer Neural Network 

Could have L hidden layers 

n layer input activation for         ,

n hidden layer activation for

( ) ( ) ( ) ( 1)( ) ( )k k k k-= +a x b W h x
0k > (0) ( )=h x x

1 k L£ £
( ) ( )( )= ( ( ))k kh x g a x
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Multilayer Neural Network 

Could have L hidden layers 

n layer input activation for         ,

n hidden layer activation for

n output layer activation for

( ) ( ) ( ) ( 1)( ) ( )k k k k-= +a x b W h x
0k > (0) ( )=h x x

1 k L£ £
( ) ( )( )= ( ( ))k kh x g a x

( 1) ( 1)( )= ( ( )) ( )L L+ + =h x g a x f x
1k L= +
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Empirical risk minimization 

Empirical risk 

n ! " # $ ;& , ( $ is the loss function for sample (# $ , ( $ )

n +Ω(&) is the regularizer

argmin3 4
5∑$74

5 ! " # $ ;& , ( $ + +Ω(&)

e. g. When L is the softmax loss

! " # $ ;& , ( $ = −log =>?(@)
∑A74
|C| =>D

"A is the jth element of class score vector " # $ ;&

Class
score
vector

Softmax example:

Unnormalized class probability of |Y| classes
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Optimization 

argmin' (
)∑+,(

) - . / + ;1 , 3 + + 5Ω(1)

n Find the optimal parameter 



Optimization 

n Stochastic Gradient Descent (SGD) 

Algorithm

1. Initialize W

repeat: for each training example (x(t), y(t))

2a. 

2b. 

( )( )( ) ( ); , ( )t tL f y lD = -Ñ - Ñ WW Wx W W

+a¬ DW W

Training epoch
=

Iterating over all examples

To apply this algorithm, we need:
1. A procedure to compute the parameter gradient

2. The regularizer (and its gradient)

3. Updating rule

4. Initialization method

argmin' (
)∑+,(

) - . / + ;1 , 3 + + 5Ω(1)

n Find the optimal parameter 

Animation:

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/

http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
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How many parameter do we have?
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Follow the slope

How many parameter do we have?
VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function: 

0

( ) ( ) ( )lim
h

df x f x h f x
dx h®

+ -
=
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Follow the slope

How many parameter do we have?
VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function: 

0

( ) ( ) ( )lim
h

df x f x h f x
dx h®

+ -
=



Current W: Gradient dW: 

Numerical Gradient



Current W: Gradient dW: 

Numerical Gradient

[0.25,
-1.56,
0.55,
3.8,
0.98,
0.77,
-0.11,
-2.9,…]

Loss 1.25742

[2.1,
?,
?,
?,
?,
?,
?,
?,…]

?
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Current W: W + h (third dim): Gradient dW: 

Numerical Gradient

[0.25,
-1.56,
0.55,
3.8,
0.98,
0.77,
-0.11,
-2.9,…]

Loss 1.25742

[0.25 + 0.0001,
-1.56,
0.55,
3.8,
0.98,
0.77,
-0.11,
-2.9,…]

Loss 1.25763

[2.1,
?,
?,
?,
?,
?,
?,
?,…]

?
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Current W: W + h (third dim): Gradient dW: 

Numerical Gradient

[0.25,
-1.56,
0.55,
3.8,
0.98,
0.77,
-0.11,
-2.9,…]

Loss 1.25742

[0.25 + 0.0001,
-1.56,
0.55,
3.8,
0.98,
0.77,
-0.11,
-2.9,…]

Loss 1.25763

[2.1,
?,
?,
?,
?,
?,
?,
?,…]

0

( ) ( )lim
h

f x h f x
h®

+ -

= (1.25763 − 1.25742)
0.0001
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Follow the slope

How many parameter do we have?
VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function: 
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Follow the slope

How many parameter do we have?
VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function: 
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( ) ( ) ( )lim
h

df x f x h f x
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Numerical gradient: approximate, slow, easy to write 



Follow the slope

How many parameter do we have?
VGGNet [Simonyan and Zisserman, 2014] used 138M parameters

In 1-dimension, the derivative of a function: 

0

( ) ( ) ( )lim
h

df x f x h f x
dx h®

+ -
=

Numerical gradient: approximate, slow, easy to write 

Calculus!

( 1) ( 1)( )= ( ( )) ( )L L+ + =h x g a x f x
( ) ( )( )= ( ( ))k kh x g a x
( ) ( ) ( ) ( 1)( ) ( )k k k k-= +a x b W h x

Analytic gradient: exact, fast, error-prone 

argmin' (
)∑+,(

) - . / + ;1 , 3 + + 5Ω(1)
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Backpropagation

+

×

#

$

%

( , , ) ( )f x y z x y z= +

&

'

We want , ,df df df
dx dy dz

&

#

$

%
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e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0%$

×

#& -3.0

-2.0%&

#' -3.0

+ exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 0%

. % = 0%

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

./ % = 1 + %

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

./ % = 1 + %



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 0%



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 01



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

./ % = 1 + %



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 1
%



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 1
%

0.
0% = −1/%'

Mobile User

Mobile User



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

./ % = 1 + %

2.1
2% = 1



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 01

2.
2% = 01



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+

. % = 0%

1.
1% = 2



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0
0.2

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0
0.2

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0
0.2

+ 1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0
0.2

0.2
%$

×

#& -3.0

-2.0

6.0
0.2

%&

#' -3.0
0.2

+ 1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0
0.2

0.2

0.4

-0.2

%$

×

#& -3.0

-2.0

6.0
0.2

-0.4

%&

#' -3.0
0.2

+

-0.6

1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

exp 1/%+1×−1

( )0 0 1 1 2

1( , )
1 w x w x wf x w
e- + +

=
+



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0
0.2

0.2

0.4

-0.2

%$

×

#& -3.0

-2.0

6.0
-0.2

-0.4

%&

#' -3.0
0.2

+

-0.6

1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

exp 1/%+1×−1

max gate

0(%, 3,4) = max(− #$%$ + #& %&+ #' , 3)

3



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0
0.2

0.2

0.4

-0.2

%$

×

#& -3.0

-2.0

6.0
-0.2

-0.4

%&

#' -3.0
0.2

+

-0.6

1.0
0.2

-1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

-1.0

exp 1/%+1×−1

max gate
0

1(%, 0,4) = max(− #$%$ + #& %&+ #' , 0)



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

-1.0

exp 1/%+1×−1

max gate
0

1(%, 0,4) = max(− #$%$ + #& %&+ #' , 0)



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

-1.0
1.0

exp 1/%+1×−1

max gate
0

1(%, 0,4) = max(− #$%$ + #& %&+ #' , 0)



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

-1.0
1.0

exp

0

1.0

1/%+1×−1

max gate
0

1(%, 0,4) = max(− #$%$ + #& %&+ #' , 0)



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

-1.0
1.0

exp

0

1.0

1/%+1×−1

max gate

branches

0

1(%, 0,4) = max(− #$%$ + #& %&+ #' , 0)



Backpropagation

×

+

#$ 2.0

-1.0

-2.0

4.0

%$

×

#& -3.0

-2.0

6.0

%&

#' -3.0

+ 1.0 -1.0 0.37 1.37 0.729
-0.2 -0.53 -0.53 1.0

max

-1.0

-3.0

-1.0
1.0

exp

0

1.0

1/%+1×−1

max gate

branches

-0.8

0

1(%, 0,4) = max(− #$%$ + #& %&+ #' , 0)



Backpropagation

Vectorized example 

( )22

1
( , ) n

ii
f

=
= × = ×åx W W x W x

m

d

d

×

"

#

L2
m

-0.27 0.28 0.15
1.22 0.62 1.9
é ù
ê ú
ë û

1
2
3

é ù
ê ú
ê ú
ê úë û

g f



Backpropagation

Vectorized example 

( )22

1
( , ) n

ii
f

=
= × = ×åx W W x W x

m

d

d

×

"

#

L2
m

-0.27 0.28 0.15
1.22 0.62 1.9
é ù
ê ú
ë û

1
2
3

é ù
ê ú
ê ú
ê úë û

0.74
8.16
é ù
ê ú
ë û



Backpropagation

Vectorized example 

( )22

1
( , ) n

ii
f

=
= × = ×åx W W x W x

m

d

d

×

"

#

L2
m

-0.27 0.28 0.15
1.22 0.62 1.9
é ù
ê ú
ë û

1
2
3

é ù
ê ú
ê ú
ê úë û

0.74
8.16
é ù
ê ú
ë û 67.13



Backpropagation

Vectorized example 

( )22

1
( , ) n

ii
f

=
= × = ×åx W W x W x

m

d

d

×

"

#

L2
m

-0.27 0.28 0.15
1.22 0.62 1.9
é ù
ê ú
ë û

1
2
3

é ù
ê ú
ê ú
ê úë û

0.74
8.16
é ù
ê ú
ë û 67.13

1



Backpropagation

Vectorized example 

( )22

1
( , ) n

ii
f

=
= × = ×åx W W x W x

m

d

d

×

"

#

L2
m

-0.27 0.28 0.15
1.22 0.62 1.9
é ù
ê ú
ë û

1
2
3

é ù
ê ú
ê ú
ê úë û

0.74
8.16
é ù
ê ú
ë û 67.13

1.48
16.32
é ù
ê ú
ë û

1



Backpropagation

Vectorized example 

( )22

1
( , ) n

ii
f

=
= × = ×åx W W x W x

m

d

d

×

"

#

L2
m

-0.27 0.28 0.15
1.22 0.62 1.9
é ù
ê ú
ë û

1
2
3

é ù
ê ú
ê ú
ê úë û

0.74
8.16
é ù
ê ú
ë û 67.13

[ ]1.48 1.48 2.96 4.44
1 2 3 =

16.32 16.32 32.64 48.96
é ù é ù

´ê ú ê ú
ë û ë û

1.48
16.32
é ù
ê ú
ë û

1


