
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1/17

Learning From Data
Lecture 6: Deep Neural Networks

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

October 27, 2022

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2/17

Today’s Lecture

! Introduction to neural networks
! Biological motivations
! A case study

! Training a deep feedforward neural network
! Forward pass
! Backward propagation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3/17

Introduction
Biological motivation
The XOR example

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

3/17

Biological motivation

Schematic of a single neuron:

Each neuron takes information from other neurons, processes them, and
then produces an output.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4/17

Biological motivation

How does a neuron process its input? (a coarse model)

! Takes the weighted average of l inputs, e.g. z =
∑l

i=0 wi (xi)

! Neuron fires if z is above some threshold

We call the threshold function activation function.

sigmoid(z) = 1
1+e−z tanh(z) = ez−e−z

ez+e−z ReLu(z) = max{0, z}
= 2(sigmoid(2z))− 1

Rectifying linear unit

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

4/17

Biological motivation

How does a neuron process its input? (a coarse model)

! Takes the weighted average of l inputs, e.g. z =
∑l

i=0 wi (xi)

! Neuron fires if z is above some threshold

We call the threshold function activation function.

sigmoid(z) = 1
1+e−z tanh(z) = ez−e−z

ez+e−z ReLu(z) = max{0, z}
= 2(sigmoid(2z))− 1

Rectifying linear unit

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5/17

Biological motivation

An artificial neuron with inputs x1, x2 and activation function f

A single neuron is a (linear) binary classifier:

! When f is the sigmoid function, equivalent to binary softmax

! When f is the sign function, equivalent to the perceptron

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5/17

Biological motivation

An artificial neuron with inputs x1, x2 and activation function f

A single neuron is a (linear) binary classifier:

! When f is the sigmoid function, equivalent to binary softmax

! When f is the sign function, equivalent to the perceptron

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6/17

Neural networks

! The goal of a neural network is to approximate some function f ∗

such that y = f ∗(x).

! The neural network defines a mapping y = f (x ; θ) and learns the
value of parameters θ through training.

! Define error function that measures prediction error of f : e.g. a
common error function used in classification is the logarithmic loss
a.k.a. cross-entropy loss:

L = y log(ŷ) + (1− y) log(1− ŷ)

! ŷ = f (x ; θ) is the predicted output
! y is the true output

A single layer of neurons are unable to approximate complex functions.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

6/17

Neural networks

! The goal of a neural network is to approximate some function f ∗

such that y = f ∗(x).

! The neural network defines a mapping y = f (x ; θ) and learns the
value of parameters θ through training.

! Define error function that measures prediction error of f : e.g. a
common error function used in classification is the logarithmic loss
a.k.a. cross-entropy loss:

L = y log(ŷ) + (1− y) log(1− ŷ)

! ŷ = f (x ; θ) is the predicted output
! y is the true output

A single layer of neurons are unable to approximate complex functions.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7/17

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

f = f (3)(f (2)(f (1)(x)))

! number of layers are called depth of the neural network

! number of units in a layer is called width of a layer

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7/17

A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

f = f (3)(f (2)(f (1)(x)))

! number of layers are called depth of the neural network

! number of units in a layer is called width of a layer

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

8/17

The XOR problem

XOR : the exclusive or
x1 x2 y = x1 ⊕ x2
0 0 0
0 1 1
1 0 1
1 1 0

h(x) = f2(wT
2 f1(W1x + b1) + b2)

activition function: f1(z), f2(z)

network weights: W1 =

[
w0,2 w0,4

w0,3 w0,5

]
, b1 =

[
w0,0

w0,1

]
,

w2 =

[
w1,2

w1,1

]
, b2 = w1,0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

9/17

The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =

[
1{z1 ≥ 0}
1{z2 ≥ 0}

]
, f2(z) = 1{z ≥ 0}. One solution:

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1 x2 a1
0 0 0
0 1 1
1 0 1
1 1 1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

10/17

The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =

[
1{z1 ≥ 0}
1{z2 ≥ 0}

]
, f2(z) = 1{z ≥ 0}. One solution:x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,0 + w0,2x1 + w0,4x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1

x2

(0,0)

(0,1) (1,1)

(1,0)

w0,1 + w0,3x1 + w0,5x2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1
w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

x1 x2 a1 a2
0 0 0 1
0 1 1 1
1 0 1 1
1 1 1 0

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

11/17

The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =

[
1{z1 ≥ 0}
1{z2 ≥ 0}

]
, f2(z) = 1{z ≥ 0}. One solution:

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1

w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

a1

a2

(0,0)

(0,1) (1,1)

(1,0)

w1,0 + w1,1a1 + w1,2a2 = 0

x1

x2

1 1

a2

a1
output

input layer hidden layer output layer

w0,0

w0,1

w0,2

w0,3

w0,5
w0,4

w1,0

w1,2

w1,1

a1

a2

(0,0)

(0,1) (1,1)

(1,0)

w1,0 + w1,1a1 + w1,2a2 = 0
x1 x2 a1 a2 y
0 0 0 1 0
0 1 1 1 1
1 0 1 1 1
1 1 1 0 0

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

12/17

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

! First proved by George Cybenko in 1989 for sigmoid activation
function;

! With one hidden layer, layer width of an universal approximator has
to be exponentially large ← More effective to increase the depth of
neural networks

! ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

12/17

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

! First proved by George Cybenko in 1989 for sigmoid activation
function;

! With one hidden layer, layer width of an universal approximator has
to be exponentially large ← More effective to increase the depth of
neural networks

! ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

12/17

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

! First proved by George Cybenko in 1989 for sigmoid activation
function;

! With one hidden layer, layer width of an universal approximator has
to be exponentially large ← More effective to increase the depth of
neural networks

! ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

12/17

Universal approximation theorem

Universal approximation theorem (Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

! First proved by George Cybenko in 1989 for sigmoid activation
function;

! With one hidden layer, layer width of an universal approximator has
to be exponentially large ← More effective to increase the depth of
neural networks

! ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

13/17

Overfitting

Increase the size and number of layers in a neural network,

! the capacity , i.e. representation power of the network increases.

! but overfitting can occur: fits the noise in the data instead of the
(assumed) underlying relationship.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

14/17

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + λΩ(w)

! L2 parameter regularization: Ω(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

! L1 parameter regularization: Ω(w) = ||w ||1 =
∑k

i=1 |wi | drives
solutions more sparse.

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

14/17

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + λΩ(w)

! L2 parameter regularization: Ω(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

! L1 parameter regularization: Ω(w) = ||w ||1 =
∑k

i=1 |wi | drives
solutions more sparse.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

14/17

Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + λΩ(w)

! L2 parameter regularization: Ω(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

! L1 parameter regularization: Ω(w) = ||w ||1 =
∑k

i=1 |wi | drives
solutions more sparse.

Mobile User

Mobile User

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15/17

Training a Deep Feedforward Network
Forward pass and Backpropagation

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

15/17

Forward pass and Backpropagation

See Powerpoint slides.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

16/17

Practical issues

Which activation function to use?
! sigmoid function σ(z): gradient ∇f (z) saturates when z is highly

positive or highly negative. Not suitable for hidden unit activation.

! tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, σ(0) = 1

2).

! ReLu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W T x + b). Derivative is 1 whenever
the unit is active.

Sigmoidal activation functions are often preferred than piecewise
linear activation functions in non-feed forward networks. e.g.
probabilistic models, RNNs etc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

16/17

Practical issues

Which activation function to use?
! sigmoid function σ(z): gradient ∇f (z) saturates when z is highly

positive or highly negative. Not suitable for hidden unit activation.

! tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, σ(0) = 1

2).

! ReLu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W T x + b). Derivative is 1 whenever
the unit is active.

Sigmoidal activation functions are often preferred than piecewise
linear activation functions in non-feed forward networks. e.g.
probabilistic models, RNNs etc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

16/17

Practical issues

Which activation function to use?
! sigmoid function σ(z): gradient ∇f (z) saturates when z is highly

positive or highly negative. Not suitable for hidden unit activation.

! tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, σ(0) = 1

2).

! ReLu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W T x + b). Derivative is 1 whenever
the unit is active.

Sigmoidal activation functions are often preferred than piecewise
linear activation functions in non-feed forward networks. e.g.
probabilistic models, RNNs etc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

17/17

Additional resources

Deep neural network is a relative young field with lots of empirical results.
Read more on the practical things to do for building and training neural
networks:

! Stanford Class on Convolutional Neural Networks:
http://cs231n.github.io

! Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016

Demos:

! http://vision.stanford.edu/teaching/cs231n-demos/
linear-classify/

! https://playground.tensorflow.org/

http://cs231n.github.io
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
https://playground.tensorflow.org/

	Introduction
	Biological motivation
	The XOR example

	Training a Deep Feedforward Network
	Forward pass and Backpropagation

