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Learning From Data
Lecture 6: Deep Neural Networks
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Today’s Lecture

! Introduction to neural networks
! Biological motivations
! A case study

! Training a deep feedforward neural network
! Forward pass
! Backward propagation
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Introduction
Biological motivation
The XOR example
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Biological motivation

Schematic of a single neuron:

Each neuron takes information from other neurons, processes them, and
then produces an output.
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Biological motivation

How does a neuron process its input? (a coarse model)

! Takes the weighted average of l inputs, e.g. z =
∑l

i=0 wi (xi )

! Neuron fires if z is above some threshold

We call the threshold function activation function.

sigmoid(z) = 1
1+e−z tanh(z) = ez−e−z

ez+e−z ReLu(z) = max{0, z}
= 2(sigmoid(2z))− 1

Rectifying linear unit
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Biological motivation

An artificial neuron with inputs x1, x2 and activation function f

A single neuron is a (linear) binary classifier:

! When f is the sigmoid function, equivalent to binary softmax

! When f is the sign function, equivalent to the perceptron
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Neural networks

! The goal of a neural network is to approximate some function f ∗

such that y = f ∗(x).

! The neural network defines a mapping y = f (x ; θ) and learns the
value of parameters θ through training.

! Define error function that measures prediction error of f : e.g. a
common error function used in classification is the logarithmic loss
a.k.a. cross-entropy loss:

L = y log(ŷ) + (1− y) log(1− ŷ)

! ŷ = f (x ; θ) is the predicted output
! y is the true output

A single layer of neurons are unable to approximate complex functions.
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A feed forward neural network

In a feed-forward neural network (a.k.a. multi-layer perceptron), all
units of one layer is connected to all of the next layer.

f = f (3)(f (2)(f (1)(x)))

! number of layers are called depth of the neural network

! number of units in a layer is called width of a layer
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The XOR problem

XOR : the exclusive or
x1 x2 y = x1 ⊕ x2
0 0 0
0 1 1
1 0 1
1 1 0

h(x) = f2(wT
2 f1(W1x + b1) + b2)

activition function: f1(z), f2(z)

network weights: W1 =

[
w0,2 w0,4

w0,3 w0,5

]
, b1 =

[
w0,0

w0,1

]
,

w2 =

[
w1,2

w1,1

]
, b2 = w1,0
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x2

1 1
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a1
output

input layer hidden layer output layer
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w0,2

w0,3

w0,5
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The XOR problem

h(x ;W1, b1,w2, b2) = f2(w
T
2 f1(W1x + b1) + b2)

Suppose f1(z) =

[
1{z1 ≥ 0}
1{z2 ≥ 0}

]
, f2(z) = 1{z ≥ 0}. One solution:
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

! First proved by George Cybenko in 1989 for sigmoid activation
function;

! With one hidden layer, layer width of an universal approximator has
to be exponentially large ← More effective to increase the depth of
neural networks

! ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)
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Universal approximation theorem

Universal approximation theorem ( Cybenko,1989; Hornik et al.,
1991) A feed-forward network with a single hidden layer containing a
finite number of neurons can approximate any continuous functions on
compact subsets of Rn, under mild assumptions on the activation
function.

! First proved by George Cybenko in 1989 for sigmoid activation
function;

! With one hidden layer, layer width of an universal approximator has
to be exponentially large ← More effective to increase the depth of
neural networks

! ReLU networks with width n+1 is sufficient to approximate any
continuous function of n-dimensional input variables if depth is
allowed to grow. (Lu et. al, 2017; Hanin 2018)
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Overfitting

Increase the size and number of layers in a neural network,

! the capacity , i.e. representation power of the network increases.

! but overfitting can occur: fits the noise in the data instead of the
(assumed) underlying relationship.
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Regularization

One way to control overfitting in training neural networks
A common regularization approach is parameter norm penalties

L̃(w ;X , y) = L(w ;X , y) + λΩ(w)

! L2 parameter regularization: Ω(w) = 1
2 ||w ||22 = 1

2w
Tw drives the

weights closer to the origin

! L1 parameter regularization: Ω(w) = ||w ||1 =
∑k

i=1 |wi | drives
solutions more sparse.
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Training a Deep Feedforward Network
Forward pass and Backpropagation
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Forward pass and Backpropagation

See Powerpoint slides.
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Practical issues

Which activation function to use?
! sigmoid function σ(z): gradient ∇f (z) saturates when z is highly

positive or highly negative. Not suitable for hidden unit activation.

! tanh(z): similar to identity function near 0 , resembles a linear
model when activation is small, performs better than sigmoid.
(tanh(0) = 0, σ(0) = 1

2 ).

! ReLu(z): easy to optimize (6 times faster than sigmoid), often used
with affine transformation g(W T x + b). Derivative is 1 whenever
the unit is active.

Sigmoidal activation functions are often preferred than piecewise
linear activation functions in non-feed forward networks. e.g.
probabilistic models, RNNs etc
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Additional resources

Deep neural network is a relative young field with lots of empirical results.
Read more on the practical things to do for building and training neural
networks:

! Stanford Class on Convolutional Neural Networks:
http://cs231n.github.io

! Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning,
MIT Press, 2016

Demos:

! http://vision.stanford.edu/teaching/cs231n-demos/
linear-classify/

! https://playground.tensorflow.org/

http://cs231n.github.io
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
http://vision.stanford.edu/teaching/cs231n-demos/linear-classify/
https://playground.tensorflow.org/
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