Soft Margin SVM

Functional margin 1 —¢; <1 :
N "
i i+ €36
st yD(w x4 by >1-¢
&E>0,i=1,...,m

» C: relative weight on the
regularizer

» L regularization let most
& =0, such that their
functional margins 1 — &, =1
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Soft Margin SVM

The generalized Lagrangian function:

m
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Soft Margin SVM

The generalized Lagrangian function:

1 m m ) ]
Lw, b.&ar) = SlIwlP+C Y& = Y ai [y (w x4 b) = 1]
i=1

i

m
IS
i-1

Dual problem:
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Soft Margin SVM a4~ (w2 £-E
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The generalized Lagrangian funct|on Jut margin ulmisl&

wnJ Na'

1 m m qres«mrq-&'
L(w, b, & a,r) = S|[wIP+C Y &= ai [y<'>(wa<'> +b) — 1+£,-]
= i=1 i

m
IS
i-1

Dual problem:
max W(«a Za,—ny()y(fan (i),x(j)>

ij=1
st.0<; <C,i=1,....,m

Zm: aiy® =0
i=1

w* is the same as the non-regularizing case, but b* has changed.
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Soft Margin SVM

Dual problem:

max W(« Za, - = Zy Dajo (xD, xU))

ij=1
st.0<q; <C,i=1,...,m

z’": ajy® =0
i—1

By the KKT dual-complentary conditions, for all i, afgi(w*) =0

a; =0 =
aj=C —
O0<a<(C <=



Soft Margin SVM

Dual problem:

max W(« Za, - = Zy Da; i {x (x( X\

ij=1
st.0<q; <C,i=1,...,m

i=1
By the KKT dual-complentary conditions, for all i, afgi(w*) =0

a; =0 —  yO(w"x) 4 b)>1 correct side of margin
aj=C —  yO(w™x) 4 p) <1 wrong side of margin

0<a;<C <<= yO(w'x) 4 p)=1 at margin
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Kernel SVM



Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € R? to a higher dimension ¢(x) € RP , such that the data becomes
separable.

\ Input space \ Feature space

o
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Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € R? to a higher dimension ¢(x) € RP , such that the data becomes

separable.

\ Input space

o o
L)
Deo D

\ Feature space

> ¢ is called a feature mapping.



Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € R? to a higher dimension ¢(x) € RP , such that the data becomes

separable.

\ Input space

o
o

\ Feature space

> ¢ is called a feature mapping.

» The classification function w'x + b becomes nonlinear:w " ¢(x) + b
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Kernel Function

Given a feature mapping ¢, we define the kernel function to be

K(x,2) = ¢(x)"é(2)

-
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Kernel Function

Given a feature mapping ¢, we define the kernel function to be

K(x,2) = 9(x)"9(2)
Some kernel functions are easier to compute than ¢(x), e.g.
R R .
K(x,z)=(x"z)? = GZ']T[ZD - [)(,%,-f)‘}_%L)(Xzz‘f)(z%z)
N N > 1

. = (@) x20n) (62D
¢, 2 €M .. « +( a2
= (20 (RN@RD, X (2D

X1Xy 2 >
= Z I XXl ) 22
Xy 22

/541’1): o = P, 25

X

X‘z
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Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,2) = ¢(x)"¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.
vrelR"

@ n n n
K(x2) = (x"2)* = (Z sz;> D%z | =) X%z
i=1 j=1

i=1 j=1

R

= 0(x)" ¢(2)
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Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,2) = ¢(x)"¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.
v \C‘Q (r\d CMM?{L : n n n n
K(x,z) = (x"z)? = (Z X,'Z,') ijzj = Z ZX,'XJ'Z,'ZJ'
- i—1 j=1 i—1 j=1
= 0(x)" ¢(2)
X1 X2

where ¢(x) = | X%~ | takes O(n?) operations to compute, while

—_—

XnXn—1
XnXn

(x"2)? only takes O(n)
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Kernel SVM
In the dual problem, replace (x;, x;) with (¢(x;), o(yi)) = K(xi, x;)
KX K]S DD, B D
maxW Za,—ny)Uan X,XJ) T
ij=1
st.0<q; <C,i=1,...,m

i aiy =0
i—1
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Kernel SVM
In the dual problem, replace (x;, y;) with (¢(x;), o(yi)) = K(xi, x;)

maxW Za,—ny)Uan (xi, %)

ij=1
st.0<q; <C,i=1,...,m
;a;y(’) =0 e
N
No need to compute w* = 37 afyDp(x() explicitly since
A’lwzm wnee §c>"‘”(’Lp ’Q/— m —\L T
ﬁaﬁ (Z ,-ij(x(’))) ~p() +b
i=1
=Y aiyD(o(x),¢(x)) + b
%’Vw ir:nl e
o i #O

Q; (I)K(X(’)v)f) +b

Il
-
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Kernel Matrix
kernel functions measure the similarity between samples x, z, e.g.
> Linear kernel: K(x,z) = (_)iz)
» Polynomial kernel: K(x,z) = (x"z+ 1@

» Gaussian / radial basis function (RBF) kernel:
K(x,z) = exp (*L{Z”Z)

02
Linear 2nd polynomial  3rd polynomial
/—/.p, P B
N
" ®
hN\e 00 o Py °
Qo NN ", Qo Qo
3| TaNe  ° s 3
MO
0® &N\
(¢} \ A

variable 1 variable 1

Radial basis

/

variable 2
variable 2

variable 1
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Kernel Matrix K%, x2) Y ovae R

kernel functions measure the similarity between samples x, z, e.g.
> Linear kernel: K(x,z) = (x"z)
» Polynomial kern,elJ:T((x,z) =(xTz+1)
» Gaussian / radial basis function (RBF) kernel:
K(x,z) = exp <7HX2772”2)

02
Linear 2nd polynomial  3rd polynomial
N
; “ e 00 o ;
gl oe e K
BN
0® &N\
v:r'a:le\l\ : variable 1 Can any function
|
_ ) K(x,y) be a kernel
Radial basis function?
2 L2 Cheer, fegr> Fo
] ]
> >

thVUL}Z{Q

variable 1
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oK,

Kernel Matrix
/ Xe
2 °

G‘(‘:"’“ w {‘rot’m‘wg !Ow’\l?{@ (é:l/kjﬂ— )/ S C?i’_f/)/”“ ) 71‘\ L%,

"x

Represent kernel function as a matrix K € R™*™ where 3

Kij = K(xi %) = 6(x) " o). Elx 1, %m)

\?\ > / ;6(51\)1750:3
1 Box Y Eay
| PaTE )

; ALy, yh )
(
E(x.\)
B 06 é;”

m| BocBx) - .

1
1= G4 )
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Kernel Matrix |
c_LI£4 (co rral 7

= s &Y
l’(ou« fo rwue jb‘ﬂd—hm
Kix,2) = CEN ,9(95@) Brand
e.9).
L) a r‘p\/w_\g meveas
o[ m
Represent kernel function as a matrix K € R™*™ where (,+ a eR”
Kij = K(xi, %) = ¢(x) T (). Show  oTKe 2o
[%;TX) +enf = ¢ voled lcne)
Theorem (Mercer) =l e e
Let K : R™x R™— R Then K is a valid (Mercer) kernel(if and only if for
any finite training set {x\) ... x(™}, K is symmetric positive
semi-definite. - -
semi-gefini

ie. Kij=K;;and xT Kx > 0 for all x € R™
K=KT '
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Kernel SVM Summary

» Input: m training samples (X(i),y(i)),yi € {—1,1}, kernel function
K:X x X — R, constant C >0

» Output: non-linear decision function f(x)
> Step 1: solve the dual optimization problem for a*

max W(a) = Za,— -5 Z yOyD 0K (x, xW))

o —_—

— i=1 ij=1

s.t.Oga,-gC,Za;y(i):o,izl,...,m gf
N

i=1

> Step 2: compute the optimal decision function _
A

m
b” :@_ Z‘}?y(i)K(ﬁ(i)-,@ for some 0 < aj < C
L = -

0= 3o K () ¢ b

In practice, it's more &fficient to compute kernel matrix K in advance. (v D)
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SVM in Practice

l nfok\.wﬂx{ﬂ wam'b D{I’Dl)'
(smo)—>, “—

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

> Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.
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SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

> Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.
re SV
Other related algorithms \gm)+ sq-

» Support Vector Regression (SVR)

> Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)
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SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

> Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.

Other related algorithms
» Support Vector Regression (SVR)

» Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)



	Kernel SVM

