Soft Margin SVM

Functional margin 1 —¢; <1 :
N "
i i+ €36
st yD(w x4 by >1-¢
&E>0,i=1,...,m

» C: relative weight on the
regularizer

» L regularization let most
& =0, such that their
functional margins 1 — &, =1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Soft Margin SVM

The generalized Lagrangian function:

m

1 m .)
Lw, b.&ar) = SlIwlP+C Y& = Y ai [y (w x4 b) = 1]
i=1

i

m
IS
i-1

Soft Margin SVM

The generalized Lagrangian function:

1 m m)]
Lw, b.&ar) = SlIwlP+C Y& = Y ai [y (w x4 b) = 1]
i=1

i

m
IS
i-1

Dual problem:

}'_ﬂ_A’Y!_a_réfﬂJ : Stffr’\b\c

Soft Margin SVM a4~ (w2 £-E
W! A\ ' —
= [’Ul)(f'lr.fi -

The generalized Lagrangian funct|on Jut margin ulmisl&

wnJ Na'

1 m m qres«mrq-&'
L(w, b, & a,r) = S|[wIP+C Y &= ai [y<'>(wa<'> +b) — 1+£,-]
= i=1 i

m
IS
i-1

Dual problem:
max W(«a Za,—ny()y(fan (i),x(j)>

ij=1
st.0<; <C,i=1,....,m

Zm: aiy® =0
i=1

w* is the same as the non-regularizing case, but b* has changed.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Soft Margin SVM

Dual problem:

max W(« Za, - = Zy Dajo (xD, xU))

ij=1
st.0<q; <C,i=1,...,m

z’": ajy® =0
i—1

By the KKT dual-complentary conditions, for all i, afgi(w*) =0

a; =0 =
aj=C —
O0<a<(C <=

Soft Margin SVM

Dual problem:

max W(« Za, - = Zy Da; i {x (x(X\

ij=1
st.0<q; <C,i=1,...,m

i=1
By the KKT dual-complentary conditions, for all i, afgi(w*) =0

a; =0 — yO(w"x) 4 b)>1 correct side of margin
aj=C — yO(w™x) 4 p) <1 wrong side of margin

0<a;<C <<= yO(w'x) 4 p)=1 at margin

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel SVM

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € R? to a higher dimension ¢(x) € RP , such that the data becomes
separable.

\ Input space \ Feature space

o

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € R? to a higher dimension ¢(x) € RP , such that the data becomes

separable.

\ Input space

o o
L)
Deo D

\ Feature space

> ¢ is called a feature mapping.

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x € R? to a higher dimension ¢(x) € RP , such that the data becomes

separable.

\ Input space

o
o

\ Feature space

> ¢ is called a feature mapping.

» The classification function w'x + b becomes nonlinear:w " ¢(x) + b

Mobile User

Mobile User

Mobile User

Kernel Function

Given a feature mapping ¢, we define the kernel function to be

K(x,2) = ¢(x)"é(2)

-

Mobile User

Mobile User

Mobile User

Mobile User

Kernel Function

Given a feature mapping ¢, we define the kernel function to be

K(x,2) = 9(x)"9(2)
Some kernel functions are easier to compute than ¢(x), e.g.
R R .
K(x,z)=(x"z)? = GZ']T[ZD - [)(,%,-f)‘}_%L)(Xzz‘f)(z%z)
N N > 1

. = (@) x20n) (62D
¢, 2 €M .. « +(a2
= (20 (RN@RD, X (2D

X1Xy 2 >
= Z I XXl) 22
Xy 22

/541’1): o = P, 25

X

X‘z

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,2) = ¢(x)"¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.
vrelR"

@ n n n
K(x2) = (x"2)* = (Z sz;> D%z | =) X%z
i=1 j=1

i=1 j=1

R

= 0(x)" ¢(2)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel Function

Given a feature mapping ¢, we define the kernel function to be
K(x,2) = ¢(x)"¢(2)

Some kernel functions are easier to compute than ¢(x), e.g.
v \C‘Q (r\d CMM?{L : n n n n
K(x,z) = (x"z)? = (Z X,'Z,') ijzj = Z ZX,'XJ'Z,'ZJ'
- i—1 j=1 i—1 j=1
= 0(x)" ¢(2)
X1 X2

where ¢(x) = | X%~ | takes O(n?) operations to compute, while

—_—

XnXn—1
XnXn

(x"2)? only takes O(n)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel SVM
In the dual problem, replace (x;, x;) with (¢(x;), o(yi)) = K(xi, x;)
KX K]S DD, B D
maxW Za,—ny)Uan X,XJ) T
ij=1
st.0<q; <C,i=1,...,m

i aiy =0
i—1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel SVM
In the dual problem, replace (x;, y;) with (¢(x;), o(yi)) = K(xi, x;)

maxW Za,—ny)Uan (xi, %)

ij=1
st.0<q; <C,i=1,...,m
;a;y(’) =0 e
N
No need to compute w* = 37 afyDp(x() explicitly since
A’lwzm wnee §c>"‘”(’Lp ’Q/— m —\L T
ﬁaﬁ (Z ,-ij(x(’))) ~p() +b
i=1
=Y aiyD(o(x),¢(x)) + b
%’Vw ir:nl e
o i #O

Q; (I)K(X(’)v)f) +b

Il
-

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel Matrix
kernel functions measure the similarity between samples x, z, e.g.
> Linear kernel: K(x,z) = (_)iz)
» Polynomial kernel: K(x,z) = (x"z+ 1@

» Gaussian / radial basis function (RBF) kernel:
K(x,z) = exp (*L{Z”Z)

02
Linear 2nd polynomial 3rd polynomial
/—/.p, P B
N
" ®
hN\e 00 o Py °
Qo NN ", Qo Qo
3| TaNe ° s 3
MO
0® &N\
(¢} \ A

variable 1 variable 1

Radial basis

/

variable 2
variable 2

variable 1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel Matrix K%, x2) Y ovae R

kernel functions measure the similarity between samples x, z, e.g.
> Linear kernel: K(x,z) = (x"z)
» Polynomial kern,elJ:T((x,z) =(xTz+1)
» Gaussian / radial basis function (RBF) kernel:
K(x,z) = exp <7HX2772”2)

02
Linear 2nd polynomial 3rd polynomial
N
; “ e 00 o ;
gl oe e K
BN
0® &N\
v:r'a:le\l\ : variable 1 Can any function
|
_) K(x,y) be a kernel
Radial basis function?
2 L2 Cheer, fegr> Fo
]]
> >

thVUL}Z{Q

variable 1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

oK,

Kernel Matrix
/ Xe
2 °

G‘(‘:"’“ w {‘rot’m‘wg !Ow’\l?{@ (é:l/kjﬂ—)/ S C?i’_f/)/”“) 71‘\ L%,

"x

Represent kernel function as a matrix K € R™*™ where 3

Kij = K(xi %) = 6(x) " o). Elx 1, %m)

\?\ > / ;6(51\)1750:3
1 Box Y Eay
| PaTE)

; ALy, yh)
(
E(x.\)
B 06 é;”

m| BocBx) - .

1
1= G4)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel Matrix |
c_LI£4 (co rral 7

= s &Y
l’(ou« fo rwue jb‘ﬂd—hm
Kix,2) = CEN ,9(95@) Brand
e.9).
L) a r‘p\/w_\g meveas
o[m
Represent kernel function as a matrix K € R™*™ where (,+ a eR”
Kij = K(xi, %) = ¢(x) T (). Show oTKe 2o
[%;TX) +enf = ¢ voled lcne)
Theorem (Mercer) =l e e
Let K : R™x R™— R Then K is a valid (Mercer) kernel(if and only if for
any finite training set {x\) ... x(™}, K is symmetric positive
semi-definite. - -
semi-gefini

ie. Kij=K;;and xT Kx > 0 for all x € R™
K=KT '

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Kernel SVM Summary

» Input: m training samples (X(i),y(i)),yi € {—1,1}, kernel function
K:X x X — R, constant C >0

» Output: non-linear decision function f(x)
> Step 1: solve the dual optimization problem for a*

max W(a) = Za,— -5 Z yOyD 0K (x, xW))

o —_—

— i=1 ij=1

s.t.Oga,-gC,Za;y(i):o,izl,...,m gf
N

i=1

> Step 2: compute the optimal decision function _
A

m
b” :@_ Z‘}?y(i)K(ﬁ(i)-,@ for some 0 < aj < C
L = -

0= 3o K () ¢ b

In practice, it's more &fficient to compute kernel matrix K in advance. (v D)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

SVM in Practice

l nfok\.wﬂx{ﬂ wam'b D{I’Dl)'
(smo)—>, “—

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

> Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

> Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.
re SV
Other related algorithms \gm)+ sq-

» Support Vector Regression (SVR)

> Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

> Break a large SVM problem into smaller chunks, update two «;'s at
a time

» Implemented by most SVM libraries.

Other related algorithms
» Support Vector Regression (SVR)

» Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)

	Kernel SVM

