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Soft Margin SVM

Functional margin 1− ξi ≤ 1 :

min
w ,b,ξ

1

2
||w ||2 + C

m∑

i=1

ξi

s.t. y (i)(wT x (i) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m

! C : relative weight on the
regularizer

! L1 regularization let most
ξi = 0 , such that their
functional margins 1− ξi = 1
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Soft Margin SVM

The generalized Lagrangian function:

L(w , b, ξ,α, r) =
1

2
||w ||2+C

m∑

i=1

ξi −
m∑

i

αi

[
y (i)(wT x (i) + b)− 1+ξi

]

−
m∑

i=1

riξi

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

w∗ is the same as the non-regularizing case, but b∗ has changed.
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Soft Margin SVM

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

By the KKT dual-complentary conditions, for all i , α∗
i gi (w

∗) = 0

αi = 0 ⇐⇒

y (i)(wT x (i) + b) ≥ 1 correct side of margin

αi = C ⇐⇒

y (i)(wT x (i) + b) ≤ 1 wrong side of margin

0 < αi < C ⇐⇒

y (i)(wT x (i) + b) = 1 at margin
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Dual problem:
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Kernel SVM
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Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension φ(x) ∈ RD , such that the data becomes
separable.

! φ is called a feature mapping.

! The classification function wT x + b becomes nonlinear:wTφ(x) + b
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Kernel Function

Given a feature mapping φ, we define the kernel function to be

K (x , z) = φ(x)Tφ(z)

Some kernel functions are easier to compute than φ(x), e.g.

K (x , z) = (xT z)2

=

(
n∑

i=1

xizi

)


n∑

j=1

xjzj



 =
n∑

i=1

n∑

j=1

xixjzizj

= φ(x)Tφ(z)

where φ(x) =





x1x1
x1x2
...

xnxn−1

xnxn




takes O(n2) operations to compute, while

(xT z)2 only takes O(n)
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Kernel Function
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Kernel SVM
In the dual problem, replace 〈xi , yj〉 with 〈φ(xi ),φ(yi )〉 = K (xi , xj)

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαjK (xi , xj)

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

No need to compute w∗ =
∑m

i=1 α
∗
i y

(i)φ(x (i)) explicitly since

f (x) = wTφ(x) + b =

(
m∑

i=1

αiy
(i)φ(x (i))

)T

φ(x) + b

=
m∑

i=1

αiy
(i)〈φ(x (i)),φ(x)〉+ b

=
m∑

i=1

αiy
(i)K (x (i), x) + b
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Kernel Matrix
kernel functions measure the similarity between samples x , z , e.g.

! Linear kernel: K (x , z) = (xT z)

! Polynomial kernel: K (x , z) = (xT z + 1)p

! Gaussian / radial basis function (RBF) kernel:

K (x , z) = exp
(
− ||x−z||2

2σ2

)

Can any function
K (x , y) be a kernel
function?
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Kernel Matrix

Represent kernel function as a matrix K ∈ Rm×m where
Ki,j = K (xi , xj) = φ(xi )Tφ(xj).

Theorem (Mercer)

Let K : Rn × Rn → R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x (i), . . . , x (m)}, K is symmetric positive
semi-definite.

i.e. Ki,j = Kj,i and xTKx ≥ 0 for all x ∈ Rn
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Kernel Matrix

Represent kernel function as a matrix K ∈ Rm×m where
Ki,j = K (xi , xj) = φ(xi )Tφ(xj).

Theorem (Mercer)

Let K : Rn × Rn → R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x (i), . . . , x (m)}, K is symmetric positive
semi-definite.

i.e. Ki,j = Kj,i and xTKx ≥ 0 for all x ∈ Rn
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Kernel SVM Summary

! Input: m training samples (x (i), y (i)), y i ∈ {−1, 1}, kernel function
K : X × X → R, constant C > 0

! Output: non-linear decision function f (x)

! Step 1: solve the dual optimization problem for α∗

max
α

W (α) =
m∑

i=1

αi −
1
2

m∑

i,j=1

y (i)y (j)αiαjK(x (i), x (j))

s.t. 0 ≤ αi ≤ C ,
m∑

i=1

αiy
(i) = 0, i = 1, . . . ,m

! Step 2: compute the optimal decision function

b∗ = y (j) −
m∑

i=1

α∗
i y

(i)K(x (i), x (j)) for some 0 < αj < C

f (x) =
m∑

i=1

αiy
(i)K (x (i), x) + b∗

In practice, it’s more efficient to compute kernel matrix K in advance.
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SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

! Break a large SVM problem into smaller chunks, update two αi ’s at
a time

! Implemented by most SVM libraries.

Other related algorithms

! Support Vector Regression (SVR)

! Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)
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