
27/36

Soft Margin SVM

Functional margin 1− ξi ≤ 1 :

min
w ,b,ξ

1

2
||w ||2 + C

m∑

i=1

ξi

s.t. y (i)(wT x (i) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m

! C : relative weight on the
regularizer

! L1 regularization let most
ξi = 0 , such that their
functional margins 1− ξi = 1

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

28/36

Soft Margin SVM

The generalized Lagrangian function:

L(w , b, ξ,α, r) =
1

2
||w ||2+C

m∑

i=1

ξi −
m∑

i

αi

[
y (i)(wT x (i) + b)− 1+ξi

]

−
m∑

i=1

riξi

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

w∗ is the same as the non-regularizing case, but b∗ has changed.

28/36

Soft Margin SVM

The generalized Lagrangian function:

L(w , b, ξ,α, r) =
1

2
||w ||2+C

m∑

i=1

ξi −
m∑

i

αi

[
y (i)(wT x (i) + b)− 1+ξi

]

−
m∑

i=1

riξi

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

w∗ is the same as the non-regularizing case, but b∗ has changed.

28/36

Soft Margin SVM

The generalized Lagrangian function:

L(w , b, ξ,α, r) =
1

2
||w ||2+C

m∑

i=1

ξi −
m∑

i

αi

[
y (i)(wT x (i) + b)− 1+ξi

]

−
m∑

i=1

riξi

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

w∗ is the same as the non-regularizing case, but b∗ has changed.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

29/36

Soft Margin SVM

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

By the KKT dual-complentary conditions, for all i , α∗
i gi (w

∗) = 0

αi = 0 ⇐⇒

y (i)(wT x (i) + b) ≥ 1 correct side of margin

αi = C ⇐⇒

y (i)(wT x (i) + b) ≤ 1 wrong side of margin

0 < αi < C ⇐⇒

y (i)(wT x (i) + b) = 1 at margin

29/36

Soft Margin SVM

Dual problem:

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαj〈x (i), x (j)〉

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

By the KKT dual-complentary conditions, for all i , α∗
i gi (w

∗) = 0

αi = 0 ⇐⇒ y (i)(wT x (i) + b) ≥ 1 correct side of margin
αi = C ⇐⇒ y (i)(wT x (i) + b) ≤ 1 wrong side of margin
0 < αi < C ⇐⇒ y (i)(wT x (i) + b) = 1 at margin

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

30/36

Kernel SVM

30/36

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension φ(x) ∈ RD , such that the data becomes
separable.

! φ is called a feature mapping.

! The classification function wT x + b becomes nonlinear:wTφ(x) + b

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

30/36

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension φ(x) ∈ RD , such that the data becomes
separable.

! φ is called a feature mapping.

! The classification function wT x + b becomes nonlinear:wTφ(x) + b

30/36

Non-linear SVM

For non-separable data, we can use the kernel trick: Map input values
x ∈ Rd to a higher dimension φ(x) ∈ RD , such that the data becomes
separable.

! φ is called a feature mapping.

! The classification function wT x + b becomes nonlinear:wTφ(x) + b

Mobile User

Mobile User

Mobile User

31/36

Kernel Function

Given a feature mapping φ, we define the kernel function to be

K (x , z) = φ(x)Tφ(z)

Some kernel functions are easier to compute than φ(x), e.g.

K (x , z) = (xT z)2

=

(
n∑

i=1

xizi

)

n∑

j=1

xjzj

 =
n∑

i=1

n∑

j=1

xixjzizj

= φ(x)Tφ(z)

where φ(x) =

x1x1
x1x2
...

xnxn−1

xnxn

takes O(n2) operations to compute, while

(xT z)2 only takes O(n)

Mobile User

Mobile User

Mobile User

Mobile User

31/36

Kernel Function

Given a feature mapping φ, we define the kernel function to be

K (x , z) = φ(x)Tφ(z)

Some kernel functions are easier to compute than φ(x), e.g.

K (x , z) = (xT z)2

=

(
n∑

i=1

xizi

)

n∑

j=1

xjzj

 =
n∑

i=1

n∑

j=1

xixjzizj

= φ(x)Tφ(z)

where φ(x) =

x1x1
x1x2
...

xnxn−1

xnxn

takes O(n2) operations to compute, while

(xT z)2 only takes O(n)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

31/36

Kernel Function

Given a feature mapping φ, we define the kernel function to be

K (x , z) = φ(x)Tφ(z)

Some kernel functions are easier to compute than φ(x), e.g.

K (x , z) = (xT z)2 =

(
n∑

i=1

xizi

)

n∑

j=1

xjzj

 =
n∑

i=1

n∑

j=1

xixjzizj

= φ(x)Tφ(z)

where φ(x) =

x1x1
x1x2
...

xnxn−1

xnxn

takes O(n2) operations to compute, while

(xT z)2 only takes O(n)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

31/36

Kernel Function

Given a feature mapping φ, we define the kernel function to be

K (x , z) = φ(x)Tφ(z)

Some kernel functions are easier to compute than φ(x), e.g.

K (x , z) = (xT z)2 =

(
n∑

i=1

xizi

)

n∑

j=1

xjzj

 =
n∑

i=1

n∑

j=1

xixjzizj

= φ(x)Tφ(z)

where φ(x) =

x1x1
x1x2
...

xnxn−1

xnxn

takes O(n2) operations to compute, while

(xT z)2 only takes O(n)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

32/36

Kernel SVM
In the dual problem, replace 〈xi , yj〉 with 〈φ(xi),φ(yi)〉 = K (xi , xj)

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαjK (xi , xj)

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

No need to compute w∗ =
∑m

i=1 α
∗
i y

(i)φ(x (i)) explicitly since

f (x) = wTφ(x) + b =

(
m∑

i=1

αiy
(i)φ(x (i))

)T

φ(x) + b

=
m∑

i=1

αiy
(i)〈φ(x (i)),φ(x)〉+ b

=
m∑

i=1

αiy
(i)K (x (i), x) + b

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

32/36

Kernel SVM
In the dual problem, replace 〈xi , yj〉 with 〈φ(xi),φ(yi)〉 = K (xi , xj)

max
α

W (α) =
m∑

i=1

αi −
1

2

m∑

i,j=1

y (i)y (j)αiαjK (xi , xj)

s.t. 0 ≤ αi ≤ C , i = 1, . . . ,m
m∑

i=1

αiy
(i) = 0

No need to compute w∗ =
∑m

i=1 α
∗
i y

(i)φ(x (i)) explicitly since

f (x) = wTφ(x) + b =

(
m∑

i=1

αiy
(i)φ(x (i))

)T

φ(x) + b

=
m∑

i=1

αiy
(i)〈φ(x (i)),φ(x)〉+ b

=
m∑

i=1

αiy
(i)K (x (i), x) + b

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

33/36

Kernel Matrix
kernel functions measure the similarity between samples x , z , e.g.

! Linear kernel: K (x , z) = (xT z)

! Polynomial kernel: K (x , z) = (xT z + 1)p

! Gaussian / radial basis function (RBF) kernel:

K (x , z) = exp
(
− ||x−z||2

2σ2

)

Can any function
K (x , y) be a kernel
function?

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

33/36

Kernel Matrix
kernel functions measure the similarity between samples x , z , e.g.

! Linear kernel: K (x , z) = (xT z)

! Polynomial kernel: K (x , z) = (xT z + 1)p

! Gaussian / radial basis function (RBF) kernel:

K (x , z) = exp
(
− ||x−z||2

2σ2

)

Can any function
K (x , y) be a kernel
function?

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

34/36

Kernel Matrix

Represent kernel function as a matrix K ∈ Rm×m where
Ki,j = K (xi , xj) = φ(xi)Tφ(xj).

Theorem (Mercer)

Let K : Rn × Rn → R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x (i), . . . , x (m)}, K is symmetric positive
semi-definite.

i.e. Ki,j = Kj,i and xTKx ≥ 0 for all x ∈ Rn

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

34/36

Kernel Matrix

Represent kernel function as a matrix K ∈ Rm×m where
Ki,j = K (xi , xj) = φ(xi)Tφ(xj).

Theorem (Mercer)

Let K : Rn × Rn → R Then K is a valid (Mercer) kernel if and only if for
any finite training set {x (i), . . . , x (m)}, K is symmetric positive
semi-definite.

i.e. Ki,j = Kj,i and xTKx ≥ 0 for all x ∈ Rn

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

35/36

Kernel SVM Summary

! Input: m training samples (x (i), y (i)), y i ∈ {−1, 1}, kernel function
K : X × X → R, constant C > 0

! Output: non-linear decision function f (x)

! Step 1: solve the dual optimization problem for α∗

max
α

W (α) =
m∑

i=1

αi −
1
2

m∑

i,j=1

y (i)y (j)αiαjK(x (i), x (j))

s.t. 0 ≤ αi ≤ C ,
m∑

i=1

αiy
(i) = 0, i = 1, . . . ,m

! Step 2: compute the optimal decision function

b∗ = y (j) −
m∑

i=1

α∗
i y

(i)K(x (i), x (j)) for some 0 < αj < C

f (x) =
m∑

i=1

αiy
(i)K (x (i), x) + b∗

In practice, it’s more efficient to compute kernel matrix K in advance.

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

36/36

SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

! Break a large SVM problem into smaller chunks, update two αi ’s at
a time

! Implemented by most SVM libraries.

Other related algorithms

! Support Vector Regression (SVR)

! Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

36/36

SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

! Break a large SVM problem into smaller chunks, update two αi ’s at
a time

! Implemented by most SVM libraries.

Other related algorithms

! Support Vector Regression (SVR)

! Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

36/36

SVM in Practice

Sequential Minimal Optimization: a fast algorithm for training soft
margin kernel SVM

! Break a large SVM problem into smaller chunks, update two αi ’s at
a time

! Implemented by most SVM libraries.

Other related algorithms

! Support Vector Regression (SVR)

! Multi-class SVM (Koby Crammer and Yoram Singer. 2002. On the
algorithmic implementation of multiclass kernel-based vector
machines. J. Mach. Learn. Res. 2 (March 2002), 265-292.)

	Kernel SVM

