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Today’s Lecture

Supervised Learning (Part II)

I Discriminative & Generative Models

I Gaussian Discriminant Analysis

I Näıve Bayes
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Ask me a question

Q1

Balance between knowing clearly about the mechanism behind one
algorithm package and using a certain combination of multiple
algorithms?

Q2

Will it be beneficial to use residual connection for shallow CNNs?
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Two Learning Approaches

Classify input data x into two classes y ∈ {0, 1}

Discriminate between
classes of data points

Model the underlying distri-
bution of the data
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Discriminative Learning Algorithms

A class of learning algorithms that try to learn the
conditional probability p(y |x) directly or learn
mappings directly from X to Y.

I e.g. linear regression, logistic regression, k-Nearest Neighbors
...
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Generative Learning Algorithms

A class of learning algorithms that model the
joint probability p(x , y).

I Equivalently, generative algorithms model p(x |y) and p(y)

I p(y) is called the class prior

I Learned models are transformed to p(y |x) later to classify
data using Bayes’ rule

Bayes Rule

The posterior distribution on y given x :

p(y |x) =
p(x |y)p(y)

p(x)
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Bayes Rule

The posterior distribution on y given x :

p(y |x) =
p(x |y)p(y)

p(x)

Make predictions in a generative model:

argmax
y

p(y |x) = argmax
y

p(x |y)p(y)

p(x)

= argmax
y

p(x |y)p(y)

No need to calculate p(x).
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Generative Models

Generative classification algorithms:

I Continuous input: Gaussian Discriminant Analysis

I Discrete input: Näıve Bayes
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Gaussian Discriminant Analysis: Overview

Goal

Binary classification with input in X = Rn and label in Y = {0, 1}

Main steps

1. Select a data generating distribution .

y ∼ Bernoulli(φ)

x |y = 0 ∼ N(µ0,Σ), x |y = 1 ∼ N(µ1,Σ)

2. Estimate model parameters φ, µ0 ,µ1 and Σ from training
data.

3. For any new sample x ′, predict its label by computing
p(y |x = x ′;φ, µ0, µ1,Σ)
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Multivariate Normal Distribution

Multivariate normal (or multivariate Gaussian) distribution
N(µ,Σ)

I µ ∈ Rn is the mean vector,

I Σ ∈ Rn×n is the covariance matrix. Σ is symmetric and SPD.

Density function:

p(x ;µ,Σ) =
1

(2π)n/2 |Σ|1/2
e(− 1

2
(x−µ)T Σ−1(x−µ))

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[
1 0
0 1

]
; Σ =

[
1 0.5

0.5 1

]
; .Σ =

[
1 0.8

0.8 1

]
.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:
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Multivariate Normal Distribution

Let X ∈ Rn be a random vector. If X ∼ N(µ,Σ),

E[X ] =

∫

x
p(x ;µ,Σ)dx = µ

Cov(X ) = E
[
(X − E[X ])(X − E[X ])T

]
= Σ
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Gaussian Discriminative Analysis

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[
1 0
0 1

]
; Σ =

[
1 0.5

0.5 1

]
; .Σ =

[
1 0.8

0.8 1

]
.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Σ =

[
1 0
0 1

]
Σ =

[
0.6 0
0 0.6

]
Σ =

[
2 0
0 2

]

Diagonal entries of Σ controls the “spread” of the distribution
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Gaussian Discriminative Analysis

3

real-valued random variable. The covariance can also be defined as Cov(Z) =
E[ZZT ]− (E[Z])(E[Z])T . (You should be able to prove to yourself that these
two definitions are equivalent.) If X ∼ N (µ, Σ), then

Cov(X) = Σ.

Here’re some examples of what the density of a Gaussian distribution
look like:
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The left-most figure shows a Gaussian with mean zero (that is, the 2x1
zero-vector) and covariance matrix Σ = I (the 2x2 identity matrix). A Gaus-
sian with zero mean and identity covariance is also called the standard nor-
mal distribution. The middle figure shows the density of a Gaussian with
zero mean and Σ = 0.6I; and in the rightmost figure shows one with , Σ = 2I.
We see that as Σ becomes larger, the Gaussian becomes more “spread-out,”
and as it becomes smaller, the distribution becomes more “compressed.”

Lets look at some more examples.
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The figures above show Gaussians with mean 0, and with covariance
matrices respectively

Σ =

[
1 0
0 1

]
; Σ =

[
1 0.5

0.5 1

]
; .Σ =

[
1 0.8

0.8 1

]
.

The leftmost figure shows the familiar standard normal distribution, and we
see that as we increase the off-diagonal entry in Σ, the density becomes more
“compressed” towards the 45◦ line (given by x1 = x2). We can see this more
clearly when we look at the contours of the same three densities:

Σ =

[
1 0
0 1

]
Σ =

[
1 0.5

0.5 1

]
Σ =

[
1 0.8

0.8 1

]

The distribution is no longer oriented along the axes when
off-diagonal entries of Σ are non-zero.
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Gaussian Discriminant Analysis (GDA) Model

Given parameters φ, µ0, µ1,Σ,

y ∼ Bernoulli(φ)

x |y = 0 ∼ N (µ0,Σ)

x |y = 1 ∼ N (µ1,Σ)

Probability density functions:

p(y) = φy (1− φ)1−y

p(x |y = 0) =
1

(2π)n/2 |Σ|1/2
e(− 1

2
(x−µ0)T Σ−1(x−µ0))

p(x |y = 1) =
1

(2π)n/2 |Σ|1/2
e(− 1

2
(x−µ1)T Σ−1(x−µ1))
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Log likelihood of the data:

l(φ, µ0, µ1,Σ) = log
m∏

i=1

p(x (i), y (i);φ, µ0, µ1,Σ)

= log
m∏

i=1

p(x (i)|y (i);µ0, µ1,Σ)p(y (i);φ)

Maximum likelihood estimate of the parameters:

φ =
1

m

m∑

i=1

1{y (i) = 1}

µb =

∑m
i=1 1{y (i) = b}x (i)

∑m
i=1 1{y (i) = b} for b = 0, 1

Σ =
1

m

m∑

i=1

(x (i) − µy (i))(x (i) − µy (i))T
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Maximum likelihood estimation of GDA
GDA finds a linear decision boundary at which
p(y = 1|x) = p(y = 0|x) = 0.5
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GDA and Logistic Regression

p(y = 1|x ;φ, µ0, µ1,Σ) can be written in the form:

p(y = 1|x ;φ,Σ, µ0, µ1) =
1

1 + e−θT x

θ =

[
θ1

θ2

]
=

[
Σ−1(µ1 − µ0)

1
2 (µT0 Σ−1µ0 − µT1 Σ−1µ1)− log 1−φ

φ

]
, x =




x1
...
xn
1




Similarly,

p(y = 0|x ;φ,Σ, µ0, µ1) =
1

1 + eθT x

If p(x |y) ∼ N (µ,Σ), p(y |x) is a logistic function.
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GDA and Logistic Regression

GDA

I Maximizes the joint likelihood
∏m

i=1 p(x (i), y (i))

I Modeling assumptions: x |y=b ∼ N (µb,Σ), y ∼ Bernoulli(φ)

I When modeling assumptions are correct, GDA is
asymptotically efficient and data efficient

Logistic Regression

I Maximizes the conditional likelihood
∏m

i=1 p(y (i)|x (i))

I Modeling assumptions: p(y |x) is a logistic function; no
restriction on p(x)

I More robust and less sensitive to incorrect modeling
assumptions.
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Näıve Bayes: Motivationg Example

A simple generative learning algorithm for discrete input variables

Example: Spam filter (document classification)

Classify email messages x to spam (y = 1) and non-spam (y = 0)
classes.

A sample spam email



20/31

Example: Spam Filter

Binary text features

Given a dictionary of size n, represent a
message composed of dictionary words
as x ∈ {0, 1}n:

xi =

{
1 i-th dictionary word is in message

0 otherwise

x =




0
0
...
1
...
1
...
0




a
aardvark
...
casino
...
payout
...
zyzzyva
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Näıve Bayes Model

Probability of observing email x1, . . . , xn given spam class y :

p(x1, . . . , xn|y) = p(x1|y)p(x2|y , x1), . . . , p(xn|y , x1, . . . , xn−1)

Näıve Bayes (NB) assumption

xi ’s are conditionally independent given y :

p(xi |y , x1, . . . , xi−1) = p(xi |y)

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y) =
n∏

i=1

p(xi |y)
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Näıve Bayes Parameters

Multi-variate Bernoulli event model

x |y generated from n independent Bernoulli trials

p(x , y) = p(y)p(x |y) = p(y)
n∏

i=1

p(xi |y)

I y ∼ Bernoulli(φy ) : assume email class (spam vs no-spam) is
randomly generated with prior p(y) = φyy (1− φy )1−y

I xi |y = b ∼ Bernoulli(φi |y=b), b = 1, 2 : given y = b, each
word xi is included in the message independently with
p(xi = 1|y = b) = φi |y=b. i.e.

p(xi |y = b) = φxii |y=b(1− φi |y=b)1−xi

Model parameters:

I φy

I φi |y=1, φi |y=0 for i = 1, . . . , n
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Näıve Bayes Parameter Learning

Likelihood of i.i.d. training data (x (1), y (1)), . . . , (x (m), y (m)):

L(φy , φj |y=0, φj |y=1) =
m∏

i=1

p(x (i), y (i))

Maximum likelihood estimation of parameters:

φy =
1

m

m∑

i=1

1{y (i) = 1} % of spam emails

φj |y=b =

∑m
i=1 1{x (i)

j = 1, y (i) = b}
∑m

i=1 1{y (i) = b} for b = 1, 0

% of spam(non-spam) emails containing jth dictionary word
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Näıve Bayes Prediction

Given new example with feature x , compute the posterior
probability

p(y = 1|x) =
p(x |y = 1)p(y = 1)

p(x)

=
p(x |y = 1)p(y = 1)

p(x |y = 1)p(y = 1) + p(x |y = 0)p(y = 0)

=

∏n
i=1 p(xi |y = 1)p(y = 1)∏n

i=1 p(xi |y = 1)p(y = 1) +
∏n

i=1 p(xi |y = 0)p(y = 0)

Choose label y = 1 (spam) if p(y = 1|x) > T where T ∈ [0, 1] is a
threshold .. e.g. T = 0.5
T tradeoff between wrongly blocked non-spam (FPs) vs. wrongly
blocked spams (FNs).
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Laplace smoothing

Issue with Näıve Bayes prediction:

I Suppose word xj hasn’t been seen in the training data,
φj |y=1 = φj |y=0 = 0

I Can not compute class posterior p(y = 1|x) = 0
0 .

Laplace smoothing

Let z ∈ {1, . . . , k} be a multinomial random variable. Given m
independent observations z(1) . . . z(m), maximum likelihood
estimation of φj = p(z = j) with Laplace smoothing is

φj =

∑m
i=1 1{z(i) = j}+ 1

m + k

I φj 6= 0 for all j

I
∑k

j=1 φj = 1
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Näıve Bayes with Laplace smoothing

Apply Laplace smoothing to φj |y=b for b ∈ {0, 1}

φj |y=b =

∑m
i=1 1{x (i)

j = 1, y (i) = b}+ 1
∑m

i=1 1{y i = b}+ 2

In practice we don’t apply Laplace smoothing to φy = p(y = 1),
which is greater than 0.
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Näıve Bayes Summary

Näıve Bayes (NB) assumption

xi ’s are conditionally independent given y :

p(x1, . . . , xn|y) = p(x1|y)p(x2|y) . . . p(xn|y) =
n∏

i=1

p(xi |y)

Different event models:

I Multi-variate Bernoulli model: represent a document of
dictionary size n as n independent Bernoulli trails.

I Multinomial event model: represent document of n words
as x = {x1, . . . , xn} where xi = {1, . . . ,K} and K is the
dictionary size (optional)
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Näıve Bayes and Multinomial Event Model

Alternative text representation

I xi ∈ {1, . . . ,K} where K is the dictionary size

I Represent email of n words as x = {x1, . . . , xn}

”a free gift...” → {x1 = 1, x2 = 1300, x3 = 2433, . . .}

dictionary id 1 2 ... 1300 . . . 2433 . . .

word a aa ... free . . . gift . . .
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Naive Bayes and Multinomial Event Model

Multinomial event model
I first sampling y ∈ {0, 1} from p(y)

y ∼ Bernoulli(φy )

I Select x1, x2, . . . , xn independently from the same Multinomial
distribution p(xi |y)

xi |y = b ∼ Multinomial(φ1|y=b, . . . , φK |y=b), b = 0, 1

φk|y=b = p(xj = k |y = b) for all j ∈ {1, . . . , n}

For any word k in the dictionary, φk|y is the probability of k
appear in an email given email class y

I Joint probability: p(x1, . . . , xn, y) = p(y)
∏n

i=1 p(xi |y)



30/31

Multinomial event model parameters

Assume p(xj = k |y) is the same for all j

I φy = p(y)

I φk|y=1 = p(xj = k |y = 1) for k = 1, . . . , n

I φk|y=0 = p(xj = k |y = 0) for k = 1, . . . , n

Likelihood of training set (x (1), y (1)), . . . , (x (m), y (m)):

L(φy , φk|y=0, φk|y=1) =
m∏

i=1

p(x (i), y (i))

=
m∏

i=1

p(x
(i)
1 , . . . , x

(i)
n , y (i))

=
m∏

i=1

p(y (i);φy )

ni∏

j=1

p(xj
(i)|y ;φk|y=0, φk|y=1)

where ni is the # words in the i-th email.
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Maximum likelihood estimation with Laplace smoothing

I φy =
1

m

m∑

i=1

1{y (i) = 1}

I φk|y=1 =

∑m
i=1

∑ni
j=1 1{x (i)

j = k , y (i) = 1}+ 1
∑m

i=1 1{y (i) = 1}ni + K

I φk|y=0 =

∑m
i=1

∑ni
j=1 1{x (i)

j = k , y (i) = 0}+ 1
∑m

i=1 1{y (i) = 0}ni + K

K is the dictionary size.


	Introduction
	Discriminative & Generative Models
	Gaussian Discriminant Analysis
	Naïve Bayes

