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Today's Lecture

Supervised Learning (Part II)
» Discriminative & Generative Models
» Gaussian Discriminant Analysis

> Naive Bayes



Ask me a question

Q1

Balance between knowing clearly about the mechanism behind one
algorithm package and using a certain combination of multiple
algorithms?

Q2

Will it be beneficial to use residual connection for shallow CNNs?



Two Learning Approaches

Classify input data x into two classes y € {0, 1}
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Discriminative Learning Algorithms .‘\ o ® >
A class of learning algorithms that try to learn the @ .. . ®e
conditional probability p(y|x) directly or learn Al PR
mappings directly from X to . ® e e

> e.g. linear regression, logistic regression, k-Nearest Neighbors



Generative Learning Algorithms

A class of learning algorithms that model the
joint probability p(x, y).

» Equivalently, generative algorithms model p(x|y) and p(y)
» p(y) is called the class prior

» Learned models are transformed to p(y|x) later to classify
data using Bayes' rule

Bayes Rule
The posterior distribution on y given x:

p(xly)p(y)

plylx) = p(x)



Bayes Rule

The posterior distribution on y given x:

) = PIY)p(y)
p(y|x) p(x)

Make predictions in a generative model:

argmax p(y|x) = argmax M
Y y p(x)

= argmax p(x|y)p(y)

No need to calculate p(x).



Generative Models

Generative classification algorithms:
» Continuous input: Gaussian Discriminant Analysis

» Discrete input: Naive Bayes



Gaussian Discriminant Analysis: Overview

Goal
Binary classification with input in & = R"” and label in ) = {0, 1}

Main steps
1. Select a data generating distribution .

y ~ Bernoulli(¢)
xly =0~ N(uo, X), x|y =1~ N(u1,X)

2. Estimate model parameters ¢, ug 141 and X from training
data.

3. For any new sample x/, predict its label by computing
p(y‘X = X/; ¢7 Ho, K1, Z)



Multivariate Normal Distribution

Multivariate normal (or multivariate Gaussian) distribution
N(u, X)

» 1 € R” is the mean vector,

» ¥ € R"*" is the covariance matrix. ¥ is symmetric and SPD.

Density function:

b (e T xew)
(2m)" |Z[1/2

p(x;p, X) =




Multivariate Normal Distribution

Let X € R" be a random vector. If X ~ N(u,X),
E[X] = /P(X:M,Z)dx =p

Cov(X) =E [(X “EXD(X —E[X])T] =%



Gaussian Discriminative Analysis
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Diagonal entries of £ controls the “spread” of the distribution



Gaussian Discriminative Analysis
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The distribution is no longer oriented along the axes when
off-diagonal entries of X are non-zero.



Gaussian Discriminant Analysis (GDA) Model

Given parameters ¢, g, p1, 2,

y ~ Bernoulli(¢)
x|y =0~ N(uo, X)
xly =1~ N(u1,X)

Probability density functions:

ply) =¢"(1— )

1 1 Te_1
p(xly =0) = —e(_i(X—MO) ¥~ (x—po))
( ‘ ) (27r)n/2 |Z‘1/2
p(xly =1) = 1 (=3 (x—p1) "= (x—p1))

—_— €
(27)"? |Z|1/2



Log likelihood of the data:
/((bﬂ Ho, 11, z) = |°gHP(X(I)7Y(I)y (ba Ho, 11, z)
i=1

= log [ [ p(x 1y o, 11, £)p(y™; 6)
i=1
Maximum likelihood estimate of the parameters:

1 & .
_ = (1) _—
¢=— ,-E—l 1{y'" =1}

27;1 1{y(i) — b}x(i)
271:1 l{y(i) = b}

1 . .
= (D =)D = )T

m <
i=1

Wy = for b=0,1



Maximum likelihood estimation of GDA

GDA finds a linear decision boundary at which
p(y = 1lx) = p(y = 0[x) = 0.5




GDA and Logistic Regression

p(y = 1|x; &, o, 1, X) can be written in the form:

1
ply = 1x; ¢, X, po, ) = [P
x1
b [01] _ (1 — po) ) e |
02 3T o — p T4 ) —log 152 | X,
1
Similarly,
1
= 0|x; ¢, X, o, = —
p(y =0|x; ¢, X, po, pu1) s

If p(x|ly) ~ N(u, L), p(y|x) is a logistic function.



GDA and Logistic Regression

GDA
» Maximizes the joint likelihood T]7, p(x(), ()
» Modeling assumptions: x|y=>b ~ N (up, X), y ~ Bernoulli(¢)

» When modeling assumptions are correct, GDA is
asymptotically efficient and data efficient

Logistic Regression
» Maximizes the conditional likelihood []7, p(y()|x(1)
» Modeling assumptions: p(y|x) is a logistic function; no
restriction on p(x)
» More robust and less sensitive to incorrect modeling
assumptions.



Naive Bayes: Motivationg Example

A simple generative learning algorithm for discrete input variables

Example: Spam filter (document classification)

Classify email messages x to spam (y = 1) and non-spam (y = 0)
classes.

Hello INNNN

We need to confirm your info...

(1) FINAL MESSAGE: Payout Verification - $3000 PAYOUT is ready to be addressed in your
Name and we want to be sure it gets to the right place. Click below to start the confirmation
process. The sooner you act, the sooner it can be in your hands!

Raging Bull Casino

A sample spam email



Example: Spam Filter

Binary text features
Given a dictionary of size n, represent a

message composed of dictionary words
as x € {0,1}"™

_J1 i-th dictionary word is in message
: 0 otherwise

a
aardvark

casino
payout

zyzzyva



Naive Bayes Model

Probability of observing email xi, ..., x, given spam class y :

p(Xl) R aXn‘Y) = P(X1|Y)P(X2’Y7X1), e 7P(Xn‘y7X17 e ,Xn—l)

Naive Bayes (NB) assumption

x;'s are conditionally independent given y:

p(Xi|an17 s aXi—l) = p(XIb/)
n

p(xt, ... xaly) = pCaly)pCely) . .. p(xaly) = [ [ p(xily)
i=1



Naive Bayes Parameters

Multi-variate Bernoulli event model
x|y generated from n independent Bernoulli tria/s

p(x,y) = p(y)p(xly) = p(y HP(X:D/

» y ~ Bernoulli(¢y,) : assume email class (spam vs no-spam) is
randomly generated with prior p(y) = ¢}(1 — ¢, )17

> xily = b~ Bernoulli(¢j|,—p), b=1,2 : given y = b, each
word X; is included in the message independently with
p(xi = lly = b) = ¢jjy—p. i.e.

pxily = b) = &%, _,(1 = Gjjy=p)* ™
Model parameters:

> ¢y
> Pily=1,ijy=0 fori=1,....n



Naive Bayes Parameter Learning

Likelihood of i.i.d. training data (x(1), y(M) . (x(m y(m):

m

L(¢y7 qu\y:O’ ¢j|y:1) = H p(X(i)vy(i))

i=1

Maximum likelihood estimation of parameters:

1 & ; .
b, = p Zl 1{y) =1} % of spam emails
SR = 1,y0 = b)
Pjly=b = S 1{y@ = b}

% of spam(non-spam) emails containing jth dictionary word

forb=1,0



Naive Bayes Prediction

Given new example with feature x, compute the posterior
probability

pxly = )p(y =1)
p(x)
_ p(xly =1)p(y =1)
p(xly = 1)p(y = 1) + p(x|y = 0)p(y = 0)
[T, p(xily = 1)p(y = 1)

ply = 1x) =

[T7-1 p(xily = Dp(y = 1) + T}, p(xily = 0)p(y = 0)

Choose label y =1 (spam) if p(y = 1|x) > T where T € [0,1] is a
threshold .. e.g. T =0.5

T tradeoff between wrongly blocked non-spam (FPs) vs. wrongly
blocked spams (FNs).



Laplace smoothing

Issue with Naive Bayes prediction:

> Suppose word x; hasn't been seen in the training data,
Pjly=1 = Djly=0 =0

» Can not compute class posterior p(y = 1|x) = %.

Laplace smoothing

Let z € {1,..., k} be a multinomial random variable. Given m
independent observations z(V) ... 2™ maximum likelihood
estimation of ¢; = p(z = j) with Laplace smoothing is

doing 1{z0) = j} +1

0 = m+ k

» ¢; # 0 forall j

> Jl'(:1¢j:1



Naive Bayes with Laplace smoothing

Apply Laplace smoothing to ¢jj,—p, for b € {0,1}

g, Tty =10 = b} 41
jly=>b 2:1;1 1{y’ = b} +2

In practice we don't apply Laplace smoothing to ¢, = p(y = 1),
which is greater than 0.



Naive Bayes Summary

Naive Bayes (NB) assumption
x;'s are conditionally independent given y:

n

p(x1, ... xaly) = p(xaly)pCealy) .. p(xaly) = ] p(xily)
i=1
Different event models:

» Multi-variate Bernoulli model: represent a document of
dictionary size n as n independent Bernoulli trails.

» Multinomial event model: represent document of n words
as x = {x1,...,xn} where x; = {1,...,K} and K is the
dictionary size (optional)



Naive Bayes and Multinomial Event Model

Alternative text representation
» x; € {1,..., K} where K is the dictionary size

> Represent email of n words as x = {xy,...,xn}

"a free gift..." — {x3 = 1,x = 1300, x3 = 2433,...}

dictionary id [ 1| 2 | ... [ 1300 | ... | 2433 | ...

word ‘a ‘ aa ‘ ‘ free “ gift ‘



Naive Bayes and Multinomial Event Model

Multinomial event model
» first sampling y € {0,1} from p(y)

y ~ Bernoulli(¢y)

» Select x1,x2,...,X, independently from the same Multinomial
distribution p(x;|y)
Xily =b~ Multinomial(¢1|y:b, ey ¢K|y:b)7 b=0,1
Gily=b = P(xj = kly = b) for all j € {1,...,n}
For any word k in the dictionary, ¢y, is the probability of k
appear in an email given email class y

» Joint probability: p(x1,...,xa,y) = p(y) 171 p(xily)



Multinomial event model parameters

Assume p(x; = kl|y) is the same for all j

> ¢y = p(y)

> Gpy=1=p(xj=kly=1)for k=1,...,n

> Puly—0 = p(xj = kly =0) for k=1,...,n
Likelihood of training set (x(1), y(M) .. (x(m) y(m)).
L(dys Puly—0s Prjy=1) = H p(x)

= H P Xn ,y( ))
= H p(y; 6y) H P 71y: dxty—0: Prly—1)
pale =1

where n; is the # words in the i-th email.



Maximum likelihood estimation with Laplace smoothing
1 ;
> Oy = mgl{y():

S = ky D =1} 1
Z’" l{y :1}n,~+K
anl l{x _ky =0}+1

21:1 1{y() =0}n; + K
K is the dictionary size.

> Oply=1 =

> Pily—0 =
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