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Ask me a question

What is the difference between probabilistic and non-probabilistic
methods?
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Today’s Lecture

Supervised Learning (Part III)
! Review on linear and logistic regression
! Softmax Regression
! Review: exponential families
! Generalized linear models (GLM)

Written Assignment (WA1) is released. Due on Oct 8th. (Start early!)
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Review of Lecture 2
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Review of Lecture 2: Linear least square

! Hypothesis function for input feature x (i) ∈ Rn:

hθ(x (i)) = θT x (i), where θ =





θ0
θ1
...
θn




, x (i) =





1
x (i)

1
...

x (i)
n





! Cost function for m training examples (x (i), y (i)), i = 1, . . . ,m:

J(θ) =

1
2

m∑

i=1

(
y (i) − θT x (i)

)2

Also known as ordinary least square regression model.
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How to minimize J(θ)?
! Gradient descent:

update rule (batch)

θj ← θj + α · 1
m

m∑

i=1

(
y (i) − hθ(x (i))

)
x (i)

j

update rule (stochastic)

θj ← θj + α
(

y (i) − hθ(x (i))
)

x (i)
j

! Newton’s method

θ ← θ − H−1∇J(θ)

! Normal equation

XT Xθ = XT y
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Review of Lecture 2

Maximum likelihood estimation
! Log-likelihood function:

#(θ) = log

( m∏

i=1
p(y (i)|x (i); θ)

)
=

m∑

i=1
log p(y (i)|x (i); θ)

where p is a probability density function.

θMLE = argmax
θ

#(θ)

(True or False?) Ordinary least square regression is equivalent to the
maximum likelihood estimation of θ.
True under the assumptions:
! y (i) = θT x (i) + ε(i)

! ε(i) are i.i.d. according to N (0,σ2)
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Review of Lecture 2
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Review of Lecture 2: Logistic regression

! Hypothesis function:

hθ(x) = g(θT x), g(z) = 1
1 + e−z is the sigmoid function.

! Assuming y |x ; θ is distributed according to Bernoulli(hθ(x))

p(y |x ; θ) = hθ(x)y (1− hθ(x))1−y

! Log-likelihood function for m training examples:

#(θ) =
m∑

i=1
y (i) log hθ(x (i)) + (1− y (i)) log(1− hθ(x (i)))
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Review of Lecture 2: Multi-Class Classification

Approach 1: Turn multi-class classification to a binary classification
problem.

One-Vs-Rest
Learn k classifiers h1, . . . , hk . Each hi classify one class against the rest
of the classes.
Given a new data sample x , its predicted label ŷ :

ŷ = argmax
i

hi(x)

Drawbacks of One-Vs-Rest:
! Class imbalance: more negative samples than positive samples when

k is large
Approach 2: Multinomial classifier (one model for all classes)
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Softmax Regression
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Review: Multinomial Distribution

Models the probability of counts for each side of a k-sided
die rolled m times, each side with independent probability
φi

φ1 + · · ·+ φk = 1

x2
x1

k = 3, n = 10 ϕ = [ 1
2 , 1

3 , 1
6 ]
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Extend logistic regression: Softmax Regression

Assume p(y |x) is multinomial distributed, k = |Y|

Hypothesis function for sample x :

hθ(x) =




p(y = 1|x ; θ)

...
p(y = k|x ; θ)



 =
1

∑k
j=1 eθT

j xj




eθT

1 x

...
eθT

k x



 = softmax(θT x)

softmax(zi) =
ezi

∑k
j=1 e(zj )

Parameters: θ =




− θT

1 −
...

− θT
k −




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Softmax Regression

Given (x (i), y (i)), i = 1, . . . ,m, the log-likelihood of the Softmax model is

#(θ) =
m∑

i=1
log p(y (i)|x (i); θ)

=
m∑

i=1
log

k∏

l=1
p(y (i) = l |x (i))1{y (i)=l}

=
m∑

i=1

k∑

l=1
1{y (i) = l} log p(y (i) = l |x (i))

=
m∑

i=1

k∑

l=1
1{y (i) = l} log eθT

l x (i)

∑k
j=1 eθT

j x (i)
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Softmax Regression

Derive the stochastic gradient descent update:
! Find ∇θl #(θ)

∇θl #(θ) =
m∑

i=1

[(
1{y (i) = l}− P

(
y (i) = l |x (i); θ

))
x (i)
]
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Property of Softmax Regression

! Parameters θ1, . . . θk are not independent:∑
j p(y = j |x) =∑j φj = 1

! Knowning k − 1 parameters completely determines model.

Invariant to parameter shift

p(y |x ; θ) = p(y |x ; θ − ψ)
Proof.
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Relationship with Logistic Regression

When K = 2,

hθ(x) =
1

eθT
1 x + eθT

2 x

[
eθT

1 x

eθT
2 x

]

Replace θ =
[
θ1
θ2

]
with θ∗ = θ −

[
θ2
θ2

]
=

[
θ1 − θ2

0

]
,

hθ(x) =
1

eθT
1 x−θT

2 x + e0x

[
e(θ1−θ2)

T x

e0T x

]

=

[
e(θ1−θ2)T x

1+e(θ1−θ2)T x
1

1+e(θ1−θ2)T x

]

=

[ 1
1+e−(θ1−θ2)T x

1− 1
1+e−(θ1−θ2)T x

]
=

[ g(θ ∗T x)
1− g(θ∗T x)

]
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Relationship with Logistic Regression

When K = 2,

hθ(x) =
1

eθT
1 x + eθT

2 x

[
eθT

1 x

eθT
2 x

]

Replace θ =
[
θ1
θ2

]
with θ∗ = θ −

[
θ2
θ2

]
=

[
θ1 − θ2

0

]
,

hθ(x) =
1

eθT
1 x−θT

2 x + e0x

[
e(θ1−θ2)

T x

e0T x

]

=

[
e(θ1−θ2)T x

1+e(θ1−θ2)T x
1

1+e(θ1−θ2)T x

]

=

[ 1
1+e−(θ1−θ2)T x

1− 1
1+e−(θ1−θ2)T x

]
=

[ g(θ ∗T x)
1− g(θ∗T x)

]
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

When to use Softmax?

! When classes are mutually exclusive: use Softmax
! Not mutually exclusive (a.k.a. multi-label classification): multiple

binary classifiers may be better
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Summary: Linear models

What we’ve learned so far:
Learning task Model p(y |x ; θ)
regression Linear regression N (hθ(x) ,σ2)
binary classification Logistic regression Bernoulli( hθ(x) )
multi-class classification Softmax regression Multinomial([hθ(x)] )

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear
models in which y |x ; θ is from an exponential family.
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Summary: Linear models

What we’ve learned so far:
Learning task Model p(y |x ; θ)
regression Linear regression N (hθ(x) ,σ2)
binary classification Logistic regression Bernoulli( hθ(x) )
multi-class classification Softmax regression Multinomial([hθ(x)] )

Can we generalize the linear model to other distributions?

Generalized Linear Model (GLM): a recipe for constructing linear
models in which y |x ; θ is from an exponential family.
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Review: Exponential Family
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family of Distributions

Examples of distribution classes in the exponential family.
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family of Distributions

A class of distributions is in the exponential family if its density can be
written in the canonical form:

p(y ; η) = b(y)eηT T (y)−a(η)

! y : random variable
! η : natural/canonical parameter (that depends on distribution

parameter(s))
! T (y): sufficient statistic of the distribution
! b(y): a function of y
! a(η) : log partition function (or “cumulant function”)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family

Log partition function a(η) is the log of a normalizing constant.
i.e.

p(y ; η) = b(y)eηT T (y)−a(η) =
b(y)eηT T (y)

ea(η)

Function a(η) is chosen such that ∑y p(y ; η) = 1
(or
∫

y p(y ; η)dy = 1).

a(η) = log

(
∑

y
b(y)eηT T (y)

)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Bernoulli Distribution
Bernoulli(φ): a distribution over y ∈ {0, 1}, such that

p(y ;φ) = φy (1− φ)1−y

y

ϕ

1 − ϕ

0 1

PY(y)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Bernoulli Distribution
Bernoulli(φ): a distribution over y ∈ {0, 1}, such that

p(y ;φ) = φy (1− φ)1−y

How to write it in the form of p(y ; η) = b(y)eηT T (y)−a(η)?
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Bernoulli Distribution
Bernoulli(φ): a distribution over y ∈ {0, 1}, such that

p(y ;φ) = φy (1− φ)1−y

! η =

log
(

φ
1−φ

)

! b(y) =

1

! T (y) =

y

! a(η) =

log(1 + eη)
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Exponential Family Examples

Bernoulli Distribution
Bernoulli(φ): a distribution over y ∈ {0, 1}, such that

p(y ;φ) = φy (1− φ)1−y

! η = log
(

φ
1−φ

)

! b(y) = 1
! T (y) = y
! a(η) = log(1 + eη)

45 / 45



Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Gaussian Distribution (unit variance)
Probability density of a Gaussian distribution N (µ, 1) over y ∈ R:

p(y ; θ) = 1√
2π

exp

(
− (y − µ)2

2

)

! η =

µ

! b(y) =

1√
2π exp(−y2/2)

! T (y) =

y

! a(η) =

1
2η

2
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Gaussian Distribution (unit variance)
Probability density of a Gaussian distribution N (µ, 1) over y ∈ R:

p(y ; θ) = 1√
2π

exp

(
− (y − µ)2

2

)

! η = µ

! b(y) = 1√
2π exp(−y2/2)

! T (y) = y
! a(η) = 1

2η
2
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Exponential Family Examples

Two parameter example:

Gaussian Distribution
Probability density of a Gaussian distribution N (µ,σ2) over y ∈ R:

p(y ; θ) = 1√
2πσ2

exp

(
− (y − µ)2

2σ2

)

! η =




µ
σ2

− 1
2σ2





! b(y) = 1√
2π

! T (y) =
[

y
y2

]

! a(η) = µ2

2σ2 + log σ
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Poisson distribution: Poisson(λ)

Models the probability that an event occurring y ∈ N times in a fixed
interval of time, assuming events occur independently at a constant rate

Probability density
function of Poisson(λ)
over y ∈ Y :

p(y ;λ) = λy e−λ

y !
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Exponential Family Examples

Poisson distribution: Poisson(λ)

Models the probability that an event occurring y ∈ N times in a fixed
interval of time, assuming events occur independently at a constant rate

Probability density
function of Poisson(λ)
over y ∈ Y :

p(y ;λ) = λy e−λ

y !
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Exponential Family Examples

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over y ∈ Y :

p(y ;λ) = λy e−λ

y !

! η =

log λ

! b(y) =

1
y !

! T (y) =

y

! a(η) =

eη
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Exponential Family Examples

Poisson distribution Poisson(λ)

Probability density function of Poisson(λ) over y ∈ Y :

p(y ;λ) = λy e−λ

y !

! η = log λ

! b(y) = 1
y !

! T (y) = y
! a(η) = eη
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Generalized Linear Models
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models: Intuition

Example 1: Award Prediction
Predict y , the number of school awards a student gets given x , the
math exam score.
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models: Intuition

Problems with linear regression:
! Assumes y |x ; θ has a

Normal distribution.

! Assumes change in x is
proportional to change in y

55 / 45
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models: Intuition

Problems with linear regression:
! Assumes y |x ; θ has a

Normal distribution.
Poisson distribution is
better for modeling
occurrences

! Assumes change in x is
proportional to change in y
More realistic to be

proportional to the rate of
increase in y (e.g.
doubling or halving y)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models : Intuition

Generalized Linear Model (GLM): a recipe for constructing linear
models in which y |x ; θ is from an exponential family.

Design motivation of GLM
! We can select a distribution for Response variables y
! Allow (the canonical link function of y) to vary linearly with the

input values x
e.g. log(λ) = θT x

Nelder, John Ashworth, and Robert William Maclagan Wedderburn. 1972.
Generalized Linear Models. Journal of the Royal Statistical Society. Series A
(General) 135 (3): 37084.
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models: Construction

Formal GLM assumptions & design decisions:
1. y |x ; θ ∼ ExponentialFamily(η)

e.g. Gaussian, Poisson, Bernoulli, Multinomial, Beta ...
2. The hypothesis function h(x) is E [T (y)|x ]

e.g. When T (y) = y , h(x) = E [y |x ]
3. The natural parameter η and the inputs x are related linearly:

η is a number:
η = θT x

η is a vector:
ηi = θT

i x ∀i = 1, . . . , n or η = ΘT x
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models: Construction

Relate natural parameter η to distribution mean E [T (y); η] :
! Canonical response function g gives the mean of the distribution

g(η) = E [T (y); η]

a.k.a. the “mean function”

! g−1 is called the canonical link function

η = g−1(E [T (y); η])
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

Generalized Linear Models: Construction

Relate natural parameter η to distribution mean E [T (y); η] :
! Canonical response function g gives the mean of the distribution

g(η) = E [T (y); η]

a.k.a. the “mean function”
! g−1 is called the canonical link function

η = g−1(E [T (y); η])
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: ordinary least square

Apply GLM construction rules:
1. Let y |x ; θ ∼ N(µ, 1)

η = µ, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]
= µ = η

3. Adopt linear model η = θT x :

hθ(x) = η = θT x

Canonical response function: µ = g(η) = η (identity)
Canonical link function: η = g−1(µ) = µ (identity)
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GLM example: ordinary least square

Apply GLM construction rules:
1. Let y |x ; θ ∼ N(µ, 1)

η = µ, T (y) = y
2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]
= µ = η

3. Adopt linear model η = θT x :

hθ(x) = η = θT x

Canonical response function: µ = g(η) = η (identity)
Canonical link function: η = g−1(µ) = µ (identity)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: ordinary least square

Apply GLM construction rules:
1. Let y |x ; θ ∼ N(µ, 1)

η = µ, T (y) = y
2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]
= µ = η

3. Adopt linear model η = θT x :

hθ(x) = η = θT x

Canonical response function: µ = g(η) = η (identity)
Canonical link function: η = g−1(µ) = µ (identity)

63 / 45

Mobile User

Mobile User

Mobile User



Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: ordinary least square

Apply GLM construction rules:
1. Let y |x ; θ ∼ N(µ, 1)

η = µ, T (y) = y
2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]
= µ = η

3. Adopt linear model η = θT x :

hθ(x) = η = θT x

Canonical response function: µ = g(η) = η (identity)
Canonical link function: η = g−1(µ) = µ (identity)

64 / 45

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User



Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; θ ∼ Bernoulli(φ)

η = log
(

φ
1−φ

)
, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]

= φ =
1

1 + e−η

3. Adopt linear model η = θT x :

hθ(x) =
1

1 + e−θT x

Canonical response function: φ = g(η) = sigmoid(η)
Canonical link function : η = g−1(φ) = logit(φ)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; θ ∼ Bernoulli(φ)

η = log
(

φ
1−φ

)
, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]

= φ =
1

1 + e−η

3. Adopt linear model η = θT x :

hθ(x) =
1

1 + e−θT x

Canonical response function: φ = g(η) = sigmoid(η)
Canonical link function : η = g−1(φ) = logit(φ)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; θ ∼ Bernoulli(φ)

η = log
(

φ
1−φ

)
, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]

= φ =
1

1 + e−η

3. Adopt linear model η = θT x :

hθ(x) =
1

1 + e−θT x

Canonical response function: φ = g(η) = sigmoid(η)
Canonical link function : η = g−1(φ) = logit(φ)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; θ ∼ Bernoulli(φ)

η = log
(

φ
1−φ

)
, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]

= φ =
1

1 + e−η

3. Adopt linear model η = θT x :

hθ(x) =
1

1 + e−θT x

Canonical response function: φ = g(η) = sigmoid(η)

Canonical link function : η = g−1(φ) = logit(φ)
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GLM example: logistic regression

Apply GLM construction rules:
1. Let y |x ; θ ∼ Bernoulli(φ)

η = log
(

φ
1−φ

)
, T (y) = y

2. Derive hypothesis function:

hθ(x) = E [T (y)|x ; θ]
= E [y |x ; θ]

= φ =
1

1 + e−η

3. Adopt linear model η = θT x :

hθ(x) =
1

1 + e−θT x

Canonical response function: φ = g(η) = sigmoid(η)
Canonical link function : η = g−1(φ) = logit(φ)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: Poisson regression

Example 1: Award Prediction
Predict y , the number of school awards a student gets given x , the
math exam score.
Use GLM to find the hypothesis function...
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: Poisson regression

Apply GLM construction rules:

1. Let y |x ; θ ∼ Poisson(λ)

η = log(λ), T (y) = y
2. Derive hypothesis function:

hθ(x) = E [y |x ; θ]
= λ = eη

3. Adopt linear model η = θT x :

hθ(x) = eθT x

Canonical response function: λ = g(η) = eη
Canonical link function : η = g−1(λ) = log(λ)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: Poisson regression

Distribution of the predicted number of awards (y)

Poisson regression successfully captures the long tail of P(y)
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;φ) =
k∏

i=1
φ1{y=i}

i

Derive the exponential family form of Multinomial(φ1, ..,φk): Note:
φk = 1−∑k−1

i=1 φi is not a parameter

! T (y) =




1{y = 1}

...
1{y = k − 1}





T (y)i = 1{y = i} =

{
0 y "= i
1 y = i

! a(η) = − log(φk)

! η =





log
(

φ1
φk

)

...
log
(

φk−1
φk

)





! b(y) = 1
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Review of Lecture 2 Softmax Regression Review: Exponential Family Generalized Linear Models

GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;φ) =
k∏

i=1
φ1{y=i}

i

Derive the exponential family form of Multinomial(φ1, ..,φk): Note:
φk = 1−∑k−1

i=1 φi is not a parameter

! T (y) =




1{y = 1}

...
1{y = k − 1}





T (y)i = 1{y = i} =

{
0 y "= i
1 y = i

! a(η) = − log(φk)

! η =





log
(

φ1
φk

)

...
log
(

φk−1
φk

)





! b(y) = 1
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;φ) =
k∏

i=1
φ1{y=i}

i

Derive the exponential family form of Multinomial(φ1, ..,φk): Note:
φk = 1−∑k−1

i=1 φi is not a parameter

! T (y) =




1{y = 1}

...
1{y = k − 1}





T (y)i = 1{y = i} =

{
0 y "= i
1 y = i

! a(η) = − log(φk)

! η =





log
(

φ1
φk

)

...
log
(

φk−1
φk

)





! b(y) = 1
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GLM example: Softmax regression

Probability mass function of a Multinomial distribution over k outcomes

p(y ;φ) =
k∏

i=1
φ1{y=i}

i

Derive the exponential family form of Multinomial(φ1, ..,φk): Note:
φk = 1−∑k−1

i=1 φi is not a parameter

! T (y) =




1{y = 1}

...
1{y = k − 1}





T (y)i = 1{y = i} =

{
0 y "= i
1 y = i

! a(η) = − log(φk)

! η =





log
(

φ1
φk

)

...
log
(

φk−1
φk

)





! b(y) = 1
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GLM example: Softmax regression

Apply GLM construction rules:
1. Let y |x ; θ ∼ Multinomial(φ1, . . . ,φk), for all i = 1 . . . k − 1

ηi = log

(
φi
φk

)
, T (y) =




1{y = 1}

...
1{y = k − 1}





Compute inverse: φi =
eηi∑k
j=1 eηj← canonical response function

2. Derive hypothesis function:

hθ(x) = E




1{y = 1}

...
1{y = k − 1}

∣∣∣∣∣∣∣
x ; θ



 =




φ1
...

φk−1





φi =
eηi

∑k
j=1 eηj
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GLM example: Softmax regression

3. Adopt linear model ηi = θT
i x :

φi =
eθT

i x
∑k

j=1 eθT
j x for all i = 1 . . . k − 1

hθ(x) =
1

∑k
j=1 eθT

j x




eθT

1 x

...
eθT

k−1x





Canonical response function: φi = g(η) = eηi∑k
j=1 eηj

Canonical link function : ηi = g−1(φi) = log

(
φi
φk

)
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GLM example: Softmax regression

3. Adopt linear model ηi = θT
i x :

φi =
eθT

i x
∑k

j=1 eθT
j x for all i = 1 . . . k − 1

hθ(x) =
1

∑k
j=1 eθT

j x




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1 x

...
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
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Canonical response function: φi = g(η) = eηi∑k
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Canonical link function : ηi = g−1(φi) = log

(
φi
φk

)
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GLM Summary

Sufficient statistic T (y)
Response function g(η)

Link function g−1(E[T (y); η])

Exponential Family Y T (y) g(η) g−1(E[T (y); η])
N (µ, 1) R y η µ

Bernoulli(φ) {0, 1} y 1
1+e−η log

φ
1−φ

Poisson(λ) N y eη log(λ)

Multinomial(φ1, . . . ,φk) {1, . . . , k} 1{y = i} eηi∑k
j=1 eηj ηi = log

(
φi
φk

)

GLM is effective for modelling different types of distributions over y
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