Learning From Data Lecture 2: Linear Regression & Logistic Regression

Yang Li yangli@sz.tsinghua.edu.cn

September 23, 2022

Outline

Today's Lecture

Supervised Learning (Part I)

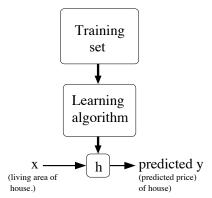
- Linear Regression
- Binary Classification
- Multi-Class Classification

Review: Supervised Learning

 \blacktriangleright Input space: ${\mathcal X}$, Target space: ${\mathcal Y}$

Review: Supervised Learning

- \blacktriangleright Input space: ${\mathcal X}$, Target space: ${\mathcal Y}$
- ► Given training examples, we want to learn a hypothesis function h : X → Y so that h(x) is a "good" predictor for the corresponding y.

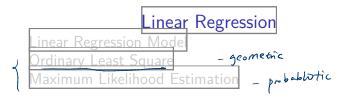


Review: Supervised Learning

y is discrete (categorical): classification problem
 y is continuous (real value): regression problem

Outline

$$h_{\theta}(\mathbf{x}) = \theta_{0} + \theta_{1} \mathbf{x}_{1} + \cdots + \theta_{n} \mathbf{x}_{n}, \quad = \quad \underline{\theta}^{\top} \mathbf{x}.$$



Linear Regression

Example: predict Portland housing price

Living area (<i>ft</i> ²)	# bedrooms	Price (\$1000)
<i>x</i> ₁	<i>x</i> ₂	у
2104	3	400
1600	3	330
2400	3	369
÷	÷	÷

Linear Approximation

A linear model

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

 θ_i 's are called **parameters**.

Linear Approximation

A linear model

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

 θ_i 's are called **parameters**.

Using vector notation,

$$h(x) = \theta^T x$$
, where $\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix}$, $x = \begin{bmatrix} 1 \\ x_1 \\ x_2 \end{bmatrix}$

Alternative Notation

$$h(x) = w_1 x_1 + w_2 x_2 + b$$

 w_1, w_2 are called weights, b is called the bias

$$h(x) = w^T x + b$$
, where $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$, $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

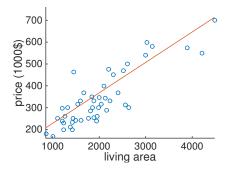
Apply model to new data

Suppose we have the optimal parameters $\boldsymbol{\theta}$, e.g.

```
> h = LinearRegression().fit(X, y)
> theta = h.coef
array([89.60, 0.1392, -8.738])
```

make a prediction of new feature x:

$$\hat{y} = h_{\theta}(x) = \theta^{T} x$$



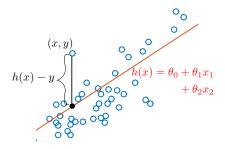
Model Estimation

How to estimate model parameters θ (or *w* and *b*) from data?

Model Estimation

How to estimate model parameters θ (or *w* and *b*) from data?

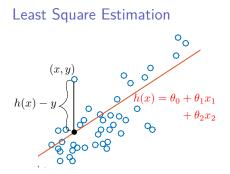
Least Square Estimation



geometric approach

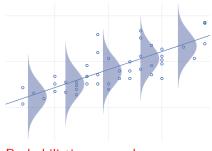
Model Estimation

How to estimate model parameters θ (or w and b) from data?



geometric approach

Maximum Likelihood Estimation



Probabilistic approach

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$(x, y)$$

$$h(x) - y$$

$$h(x) = \theta_0 + \theta_1 x_1$$

$$+ \theta_2 x_2$$

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$(x, y)$$

$$h(x) - y$$

$$h(x) = \theta_0 + \theta_1 x_1$$

$$+ \theta_2 x_2$$

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

The ordinary Least square problem is:

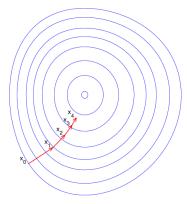
$$\min_{\theta} J(\theta) = \min_{\theta} \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

How to minimize $J(\theta)$?

- Numerical solution: gradient descent, Newton's method
- Analytical solution: normal equation

Gradient descent

A first-order iterative optimization algorithm for finding the minimum of a function $J(\theta)$.



Key idea

Start at an initial guess, repeatedly change θ to decrease $J(\theta)$:

$$\theta := \theta - \alpha \nabla J(\theta)$$

α is the learning rate

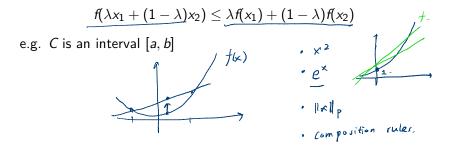
Definition (Convex set)

Let S be a vector space, any subset $C \subseteq S$ is **convex** if for any $x, y \in C$, $0 \le \lambda \le 1$, affine combination¹ $\lambda x + (1 - \lambda)y \in C$

 $^{^1\}text{An}$ affine combination is a linear combination where coefficients sum to 1. $_{13/49}$

Definition (Convex function)

A function f(x) is **convex** on a convex set C if for any $x_1, x_2 \in C$ and $0 \le \lambda \le 1$,



Definition (Convex function)

A function f(x) is **convex** on a convex set C if for any $x_1, x_2 \in C$ and $0 \le \lambda \le 1$,

$$f(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda f(x_1) + (1 - \lambda)f(x_2)$$

e.g. C is an interval [a, b]

Theorem

If $J(\theta)$ is convex, gradient descent finds the global minimum.

$$\Theta := \Theta - \neg \nabla J(\Theta)$$

For the ordinary least square problem, $\underline{J(\theta)} = \frac{1}{2} \sum_{i=1}^{m} (h_{o}(x^{(i)}) - y^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{m} (\underline{\theta^{T} x^{(i)}} - y^{(i)})^2,$

$$\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_{1}} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_{n}} \end{bmatrix}^{-,j} \text{ where } \frac{\partial J(\theta)}{\partial \theta_{j}} = \frac{\partial}{\partial \theta_{j}} \begin{bmatrix} \vdots \\ z \end{bmatrix}^{m} (\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)})^{2}$$
$$= \frac{1}{2} \qquad \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{j}} (\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)})^{2}$$
$$= \frac{1}{2} \qquad \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{j}} (\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)})^{2}$$
$$= \frac{1}{2} \qquad \sum_{i=1}^{m} 2(\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)})^{2} \frac{\partial}{\partial \theta_{j}} \theta^{\mathsf{T}} \chi^{(i)}$$
$$= \frac{\partial}{\partial \theta_{j}} \sum_{i=1}^{m} \frac{\partial}{\partial \theta_{j}} (\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)})^{2} \frac{\partial}{\partial \theta_{j}} \theta^{\mathsf{T}} \chi^{(i)}$$
$$= \sum_{i=1}^{m} 2(\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)}) \chi_{j}^{(i)}$$
$$= \sum_{i=1}^{m} (\theta^{\mathsf{T}} \chi^{(i)} - y^{(i)}) \chi_{j}^{(i)}$$

For the ordinary least square problem,

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 = \frac{1}{2} \sum_{i=1}^{m} (\theta^T x^{(i)} - y^{(i)})^2,$$

$$\nabla J(\theta) = \begin{bmatrix} \frac{\partial J(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial J(\theta)}{\partial \theta_n} \end{bmatrix}, \text{ where } \frac{\partial J(\theta)}{\partial \theta_j} = \frac{\partial}{\partial \theta_j} \left[\frac{1}{2} \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)} \right)^2 \right]$$
$$= \sum_{i=1}^m \left(\theta^T x^{(i)} - y^{(i)} \right) x_j^{(i)}$$

Gradient descent for ordinary least square

Gradient of cost function: $\nabla J(\theta)_j = \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$ Gradient descent update: $\theta = \theta - \alpha \nabla J(\theta)$

Batch Gradient Descent

Repeat until convergence {

$$\theta_j = \theta_j + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)} \text{ for every j}$$

 $y_{hi} \in \Theta \text{ is not converged}:$

for j in range (n):
$$O_j = O_j + \cdots$$

Gradient descent for ordinary least square

Gradient of cost function: $\nabla J(\theta)_j = \sum_{i=1}^m (\theta^T x^{(i)} - y^{(i)}) x_j^{(i)}$ Gradient descent update: $\theta := \theta - \alpha \nabla J(\theta)$

Batch Gradient Descent

Repeat until convergence{ $\theta_j = \theta_j + \alpha \sum_{i=1}^m (y^{(i)} - h_\theta(x^{(i)})) x_j^{(i)}$ for every j }

 θ is only updated after we have seen all *m* training samples.

Batch gradient descent

Repeat until convergence{

$$\theta_j = \theta_j + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$$
 for every j }

Stochastic gradient descent (S&P)

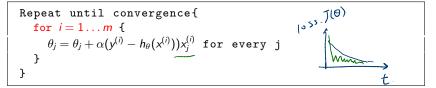
Repeat until convergence{ $\begin{cases}
for \ i = 1...m \\
\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)}))x_j^{(i)} \text{ for every } j \\
\end{cases}$

 $\boldsymbol{\theta}$ is updated each time a training example is read

Batch gradient descent

Repeat until convergence{ $\theta_j = \theta_j + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(x^{(i)})) x_j^{(i)}$ for every j }

Stochastic gradient descent

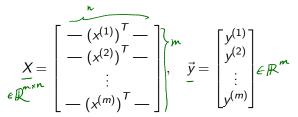


 $\boldsymbol{\theta}$ is updated each time a training example is read

- Stochastic gradient descent gets θ close to minimum much faster
- Good for regression on large data

Minimize $J(\theta)$ Analytically $\chi^{(i)} \in \mathbb{R}^n$ i = 1, ..., m

The matrix notation



X is called the **design matrix**.

Minimize
$$J(\theta)$$
 Analytically
 $z = \chi \theta - y = \begin{bmatrix} \chi^{(i)T} \theta - g^{(i)} \\ \chi^{(i)T} \theta - g^{(i)} \end{bmatrix}$
 $z^{T} z = \sum_{i=1}^{T} z_{i}^{z} = \sum_{i=1}^{T} (\chi^{(i)T} \theta - g^{(i)})^{2}$
The matrix notation

$$X = \begin{bmatrix} -(x^{(1)})^{T} - \\ -(x^{(2)})^{T} - \\ \vdots \\ -(x^{(m)})^{T} - \end{bmatrix} \begin{bmatrix} \theta_{i} \\ \vdots \\ \theta_{h} \end{bmatrix} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

X is called the **design matrix**. The least square function can be written as

$$\underbrace{J(\theta)}_{\underline{2}} = \underbrace{\frac{1}{2}}_{\underline{2}} \underbrace{(X\theta - y)^{T}(X\theta - y)}_{\underline{2}}$$

Compute the gradient of $J(\theta)$: least sq. function

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} \underbrace{(X\theta - y)^{T} (X\theta - y)}_{-} \right]$$

$$abla_{ heta} J(heta) =
abla_{ heta} \left[\frac{1}{2} (X \theta - y)^T (X \theta - y) \right]$$

$$abla_{ heta} J(heta) =
abla_{ heta} \left[rac{1}{2} (X heta - y)^T (X heta - y)
ight]$$

$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \left[\frac{1}{2} (X\theta - y)^{T} (X\theta - y) \right]$$
$$= X^{T} X \theta - X^{T} y = 0.$$

Since $J(\theta)$ is **convex**, x is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0.$ $\chi^T \chi \theta = \chi^T \Upsilon$ $\theta = (\chi^T \chi)^T \chi^T \Upsilon$

$$abla_{ heta} J(heta) =
abla_{ heta} \left[rac{1}{2} (X heta - y)^{\mathsf{T}} (X heta - y)
ight] = X^{\mathsf{T}} X heta - X^{\mathsf{T}} y$$

Since $J(\theta)$ is **convex**, *x* is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0$.

The Normal equation

$$\theta = (X^T X)^{-1} X^T y$$

Compute the gradient of $J(\theta)$:

$$abla_{ heta} J(heta) =
abla_{ heta} \left[rac{1}{2} (X heta - y)^{\mathsf{T}} (X heta - y)
ight] = X^{\mathsf{T}} X heta - X^{\mathsf{T}} y$$

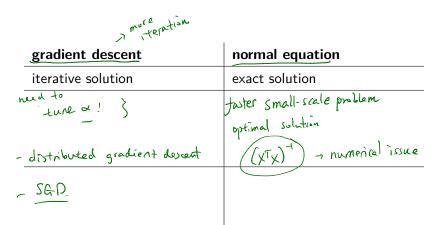
Since $J(\theta)$ is **convex**, *x* is a global minimum of $J(\theta)$ when $\nabla J(\theta) = 0$.

The Normal equation

$$\theta = \underbrace{(X^T X)^{-1} X^T}_{y}$$

 $(X^T X)^{-1} X^T$ is called the **Moore-Penrose** pseudoinverse of X

 $\min_{\Theta} J(\Theta)$



gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	

gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	numerically unstable when X is ill-conditioned. e.g. features are highly correlated

gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	numerically unstable when X is ill-conditioned. e.g. features are highly correlated
works well for large number of samples m	

 $\frac{1}{2}(X\Theta - y)^{T}(X\Theta - y)$

gradient descent	normal equation
iterative solution	exact solution
need to choose proper learning parameter α for cost function to converge	numerically unstable when X is ill-conditioned. e.g. features are highly correlated
works well for large number of samples m	solving equation is slow when <i>m</i> is large

Minimize $J(\theta)$ using Newton's Method

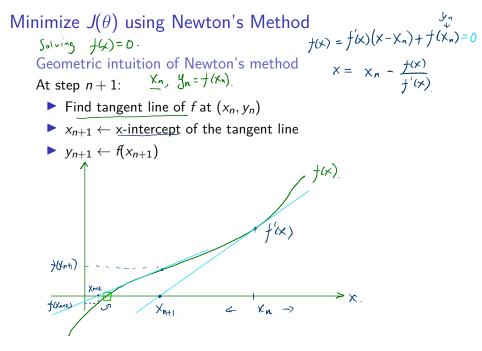
Numerically solve for θ in $\nabla_{\theta} J(\theta) = 0$

Newton's method

Solves real functions f(x) = 0 by iterative approximation:

- Start an initial guess x
- Update x until convergence

$$x := x - \frac{f(x)}{f(x)} \quad \frac{f(x)}{\frac{\partial f(x)}{\partial x}}$$



Newton's Method Demo

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Minimize $J(\theta)$ using Newton's Method $\vartheta = \vartheta - \frac{f(\theta)}{f'(\theta)}$

Newton's method for optimization $\min_{\theta} J(\theta)$

Use newton's method to solve $abla_{ heta} J(heta) = 0$:

θ is one-dimensional:

$$\theta := \theta - \underbrace{\begin{array}{c} f(\theta) \\ f'(\theta) \\ f''(\theta) \end{array}}_{f''(\theta)} f''(\theta)$$

Minimize $J(\theta)$ using Newton's Method

Newton's method for optimization min_{θ} $J(\theta)$ Use newton's method to solve $\nabla_{\theta} J(\theta) = 0$: Hession $\forall \mathcal{T}(\theta)$: $\forall \theta$ is one-dimensional: $\forall \theta = \begin{bmatrix} \frac{\partial \mathcal{T}}{\partial \theta^2} & \frac{\partial \mathcal{T}}{\partial \theta_1 - \theta_2} \\ \frac{\partial \mathcal{T}}{\partial \theta_2 - \theta_2} & \frac{\partial \mathcal{T}}{\partial \theta_2 - \theta_2} \end{bmatrix}$ \triangleright θ is one-dimensional: 27 28200, 27 20,20, 20,20, 28,20, $\theta := \theta - \frac{J'(\theta)}{I''(\theta)}$ θ is multidimensional: (nxn.) $\theta = \theta - H^{-1}(\theta) \nabla J(\theta)$ where *H* is the Hessian matrix of $J(\theta)$.

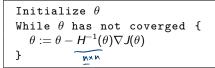
a.k.a Newton-Raphson method

Initialize
$$(\theta)$$

While θ has not coverged {
 $\theta := \theta - H^{-1}(\theta) \nabla J(\theta)$
}

Performance of Newton's method:

Needs fewer interations than batch gradient descent



Performance of Newton's method:

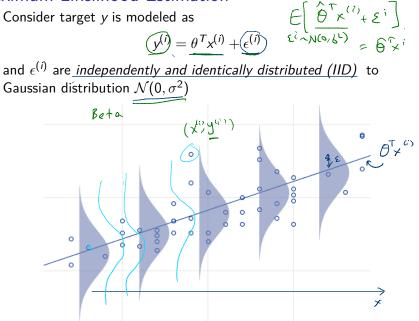
- Needs fewer interations than batch gradient descent
- Computing H^{-1} is time consuming

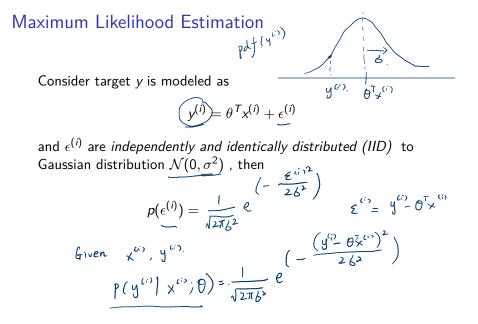
```
\begin{array}{l} \text{Initialize } \theta \\ \text{While } \theta \text{ has not coverged } \{ \\ \theta := \theta - H^{-1}(\theta) \nabla J(\theta) \\ \} \end{array}
```

Performance of Newton's method:

- Needs fewer interations than batch gradient descent
- Computing H⁻¹ is time consuming
- Faster in practice when n is small

Consider target y is modeled as





Consider target y is modeled as

$$y^{(i)} = \theta^T x^{(i)} + \epsilon^{(i)}$$

and $\epsilon^{(i)}$ are independently and identically distributed (IID) to Gaussian distribution $\mathcal{N}(0,\sigma^2)$, then

$$p(\epsilon^{(i)}) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{{\epsilon^{(i)}}^2}{2\sigma^2}
ight)$$

Consider target y is modeled as

$$\underbrace{\mathbf{y}^{(i)}}_{\mathbf{y}} = \boldsymbol{\theta}^{\mathsf{T}} \underbrace{\mathbf{x}^{(i)}}_{\mathbf{y}} + \boldsymbol{\epsilon}^{(i)}$$

and $\epsilon^{(i)}$ are independently and identically distributed (IID) to Gaussian distribution $\mathcal{N}(0,\sigma^2)$, then

$$p(\epsilon^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^{(i)^2}}{2\sigma^2}\right)$$
$$\underline{p(y^{(i)}|x^{(i)};\theta)} = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x^{(i)})^2}{2\sigma^2}\right)$$

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \underbrace{p(y_1, \dots, y_m | \mathbf{x}; \mathbf{\theta})}_{(\mathbf{x}; \mathbf{\theta})} = \underbrace{\prod_{i=1}^{m} p(y_i^{(i)} | \mathbf{x}; \mathbf{\theta})}_{(i)}$$

The **likelihood** of this model with respect to θ is

$$L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)$$

The **likelihood** of this model with respect to θ is

$$L(\theta) = p(\vec{y}|X; \theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)}; \theta)$$

Maximum likelihood estimation of θ :

$$\underbrace{\theta_{MLE}}_{\emptyset} = \operatorname{argmax}_{\emptyset} \underbrace{L(\theta)}_{\emptyset}$$

$$\max \sum_{i=1}^{m} \log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)};\theta)$$
$$= \sum_{i=1}^{m} \log \left(\frac{1}{\sqrt{2\pi\sigma^{2}}} \exp \left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\sigma^{2}}\right)\right)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\beta^{2}}} + \left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\beta^{2}}\right)$$
$$= m \log \frac{1}{\sqrt{2\pi\beta^{2}}} + \sum_{i=1}^{m} \left(-\frac{(y^{(i)} - \theta^{T}x^{(i)})^{2}}{2\beta^{2}}\right)$$

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2$$

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right)$$

$$= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2$$
$$\mathcal{T}(\Theta).$$
Then $\operatorname{argmax}_{\theta} \log L(\theta) \equiv \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{i=1}^m (y^{(i)} - \theta^T x^{(i)})^2$.

We compute log likelihood,

$$\log L(\theta) = \log \prod_{i=1}^{m} p(y^{(i)} | x^{(i)}; \theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$
$$= \sum_{i=1}^{m} \log \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y^{(i)} - \theta^T x)^2}{2\sigma^2}\right) \underbrace{\sum_{i=1}^{m} \mathcal{N}(0, b^2)}_{i \in \mathcal{I}}$$
$$= m \log \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{1}{\sigma^2} \cdot \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^T x^{(i)})^2$$

Then $\operatorname{argmax}_{\theta} \log L(\theta) \equiv \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{i=1}^{m} (y^{(i)} - \theta^{T} x^{(i)})^{2}$.

Under the assumptions on $\epsilon^{(i)}$, least-squares regression corresponds to the maximum likelihood estimate of θ .

Linear Regression Summary

How to estimate model parameters θ (or w and b) from data?

- Least square regression (geometry approach)
- Maximum likelihood estimation (probabilistic modeling approach)

Linear Regression Summary

How to estimate model parameters θ (or *w* and *b*) from data?

- Least square regression (geometry approach)
- Maximum likelihood estimation (probabilistic modeling approach)
- Other estimation methods exist, e.g. Bayesian estimation

Linear Regression Summary

How to estimate model parameters θ (or *w* and *b*) from data?

- Least square regression (geometry approach)
- Maximum likelihood estimation (probabilistic modeling approach)
- Other estimation methods exist, e.g. Bayesian estimation

How to solve for solutions ?

normal equation (close-form solution)

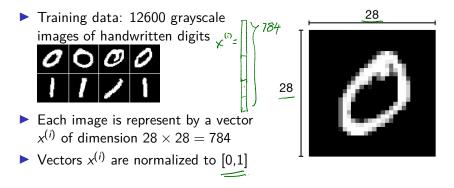
gradient descent

newton's method

Outline

A binary classification problem

Classify binary digits



A binary classification problem

Classify binary digits

Training data: 12600 grayscale images of handwritten digits
 O O O O O

28

- Each image is represent by a vector x⁽ⁱ⁾ of dimension 28 × 28 = 784
- Vectors $x^{(i)}$ are normalized to [0,1]

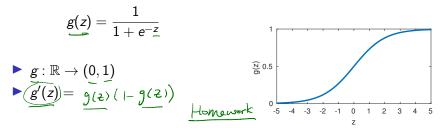
Binary classification: $\mathcal{Y} = \{0, 1\}$

• negative class: $y^{(i)} = 0$

• positive class:
$$y^{(i)} = 1$$

Logistic Regression Hypothesis Function

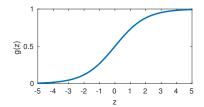
Sigmoid function



Logistic Regression Hypothesis Function

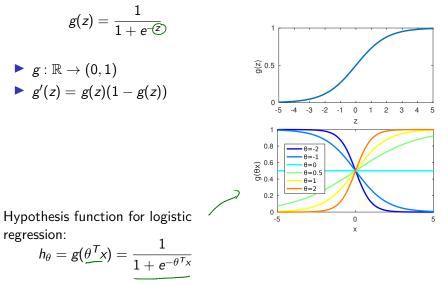
Sigmoid function

$$g(z)=\frac{1}{1+e^{-z}}$$



Logistic Regression Hypothesis Function

Sigmoid function



Review: Bernoulli Distribution

A discrete probability distribution of a binary random variable $x \in \{0, 1\}$:

$$\underbrace{\mathcal{Y}^{(i)}_{-} \setminus \mathcal{X}^{(i)}_{-}}_{= \lambda^{x} (1-\lambda)^{1-x}} \underbrace{\mathcal{Y}^{(i)}_{-} \wedge \mathcal{Y}^{(i)}_{-}}_{j = \lambda^{x} (1-\lambda)^{1-x}} \underbrace{\mathcal{Y}^{(i)}_{-} \wedge \mathcal{Y}^{(i)}_{-}}_{j = \lambda^{x} (1-\lambda)^{1-x}}$$

Logistic regression assumes y|x is **Bernoulli distributed**.

$$p(y = 1 | x; \theta) = \frac{h_{\theta}(x)}{1 - h_{\theta}(x)}$$

$$p(y = 0 | x; \theta) = \frac{1 - h_{\theta}(x)}{1 - h_{\theta}(x)}$$

Logistic regression assumes y|x is **Bernoulli distributed**.

$$p(y = 1 | x; \theta) = h_{\theta}(x)$$

$$p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$$

$$p(y | x; \theta) = (h_{\theta}(x))^{y}(1 - h_{\theta}(x))^{1-y}$$

Logistic regression assumes y|x is **Bernoulli distributed**.

$$p(y = 1 | x; \theta) = h_{\theta}(x)$$

$$p(y = 0 | x; \theta) = 1 - h_{\theta}(x)$$

$$p(y | x; \theta) = (h_{\theta}(x))^{y} (1 - h_{\theta}(x))^{1-y}$$

Given *m* independently generated training examples, the likelihood function is: $y \log h_{\theta}(x) + ((-y)\log(1-h_{\theta}(x)))$

$$\underline{L(\theta)} = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} \underline{p(y^{(i)}|x^{(i)};\theta)}$$

$$l(\theta) = \log(L(\theta)) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Maximum likelihood estimation for logistic regression $\bigcirc f$ is conceverent of f is convex \bigcirc f(x). Logistic regression assumes y|x is Bernoulli distributed.

Given *m* **independently generated** training examples, the likelihood function is:

$$L(\theta) = p(\vec{y}|X;\theta) = \prod_{i=1}^{m} p(y^{(i)}|x^{(i)};\theta)$$

$$l(\theta) = \log(L(\theta)) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$l(\theta) \text{ is concave!}$$

$$l(\theta) = \sum_{i=1}^{m} y^{(i)} \log \underline{h_{\theta}(x^{(i)})} + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Solve $\operatorname{argmax}_{\theta} l(\theta)$ using gradient ascent:

$$\begin{split} h_{\theta}(x^{(i)}) &= \underbrace{g(\theta^{T}x^{(i)})}_{\partial \theta_{j}} = \underbrace{\sum_{i=1}^{m} y^{i} \frac{1}{h_{\theta}(x^{(i)})} \underbrace{\frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)})}_{\partial \theta_{j}} + \frac{1 - y^{(i)}}{1 - h_{\theta}(x^{(i)})} (-1) \cdot \underbrace{\frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)})}_{\partial \theta_{j}} + \underbrace{\frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)})}_{\partial \theta_{j}} + \underbrace{\frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)})}_{\partial \theta_{j}} (-1) \cdot \underbrace{\frac{\partial}{\partial \theta_{j}} h_{\theta}(x^{(i)})}_{\partial \theta_{j}} + \underbrace{\frac{\partial}{\partial \theta_{$$

$$l(\theta) = \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Solve $\operatorname{argmax}_{\theta} l(\theta)$ using gradient ascent:

$$\frac{\partial l(\theta)}{\partial \theta_j} = \sum_{i=1}^m \left(y^{(i)} - h_{\theta}(x^{(i)}) \right) x_j^{(i)}$$

Stocastic Gradient Ascent

Repeat until convergence{
for
$$i = 1...m$$
 f
 $\theta_j = \theta_j + \alpha(y^{(i)} - h_{\theta}(x^{(i)}))x_j^{(i)}$ for every j
}

• Update rule has the same form as least square regression, but with different hypothesis function h_{θ}

Binary Digit Classification

 $\theta^{\tau}_{\mathsf{X}}$

Using the learned classifier

Given an image x, the predicted label is

$$\underline{\hat{y}} = \begin{cases} 1 & \underline{g(\theta^{T}x)} > 0.5 \\ 0 & \text{otherwise} \end{cases} \quad \mathcal{J}(\theta^{T}x) \in (0,1) \end{cases}$$

Binary digit classification results

Γ		sample size	accuracy
	Training	16200	100%
	Testing	1225	100%

► Testing accuracy is 100% since this problem is relatively easy. Q: label imbalance ?. focal boss

5

Horrowork Preview

$$flow work Preview$$

$$(10) = || y - x0|^{2} + \lambda ||0||^{2}$$

$$J(6) = || y - x0|^{2} + \lambda ||0||^{2}$$

$$J(6) = || y - x0|^{2} + \lambda ||0||^{2}$$

$$J(6) = || y - x0|^{2} + \lambda ||0||^{2}$$

$$\int e^{-x} e^{-x}$$

$$e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x} e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x} e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x} e^{-x} e^{-x} e^{-x}$$

$$e^{-x} e^{-x} e^{-x}$$

Outline

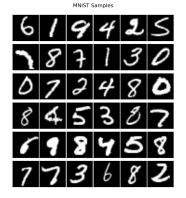
Multi-Class Classification

<u>Multiple Binary Cla</u>ssifiers Softmax Regression

Multi-class classification

Each data sample belong to one of k > 2 different classes.

$$\mathcal{Y} = \{1, \ldots, k\}$$



Given new sample $x \in \mathbb{R}^k$, predict which class it belongs.

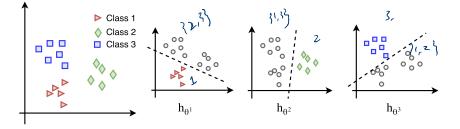
Naive Approach: Convert to binary classification

One-Vs-Rest

Learn k classifiers h_1, \ldots, h_k . Each h_i classify one class against the rest of the classes.

Given a new data sample x, its predicted label \hat{y} :

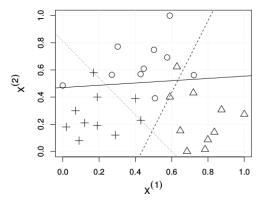
$$\hat{y} = \underset{i}{\operatorname{argmax}} h_i(x)$$



Multiple binary classifiers

Drawbacks of One-Vs-Rest:

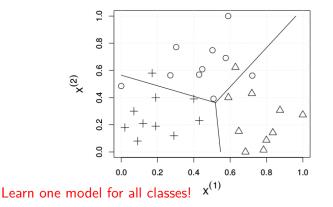
- 100 samples, 20 classes 5 positive samples for each hi Class unbalance: more negative samples than positive samples
- Different classifiers may have different confidence scales



Multiple binary classifiers

Drawbacks of One-Vs-Rest:

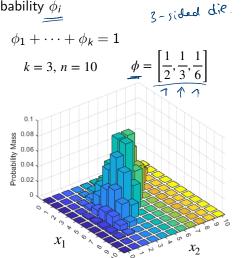
- Class imbalance: more negative samples than positive samples
- Different classifiers may have different confidence scales



Multinomial classifier

Review: Multinomial Distribution

Models the probability of counts for each side of a <u>k-sided die</u> rolled <u>m times</u>, each side with independent probability ϕ_i



Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $\underline{k} = |\mathcal{Y}|$

Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

$$\frac{h_{\theta}(x)}{\ell R^{\frac{k}{2}}} = \begin{bmatrix} p(y=1|x;\theta) \\ p(y=2;\theta) \\ p(y=k|x;\theta) \end{bmatrix} = \frac{1}{\sum_{j=1}^{k} e^{\theta_{j}^{T}x_{j}}} \begin{bmatrix} e^{\theta_{1}^{T}x} \\ \vdots \\ e^{\theta_{k}^{T}x} \end{bmatrix} = \operatorname{softmax}(\theta^{T}x)$$

$$\operatorname{softmax}(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{(z_{j})}}$$

Extend logistic regression: Softmax Regression

Assume p(y|x) is **multinomial distributed**, $k = |\mathcal{Y}|$ Hypothesis function for sample *x*:

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \underbrace{\log p(y^{(i)}|x^{(i)}; \theta)}_{l=1} = \sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l|x^{(i)})^{1\{y^{(i)}=l\}}$$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)} | x^{(i)}; \theta)$$

= $\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l | x^{(i)})^{1\{y^{(i)} = l\}}$
> $m \sum_{k \in C^{(AJ) \in S}} \frac{1}{1\{y^{(i)} = l\} \log p(y^{(i)} = l | x^{(i)})}$

Softmax Regression

Given $(x^{(i)}, y^{(i)}), i = 1, ..., m$, the log-likelihood of the Softmax model is

$$\ell(\theta) = \sum_{i=1}^{m} \log p(y^{(i)}|x^{(i)}; \theta)$$

= $\sum_{i=1}^{m} \log \prod_{l=1}^{k} p(y^{(i)} = l|x^{(i)})^{1\{y^{(i)}=l\}}$
= $\sum_{i=1}^{m} \sum_{l=1}^{k} 1\{y^{(i)} = l\} \log p(y^{(i)} = l|x^{(i)})$
= $\sum_{i=1}^{m} \sum_{l=1}^{k} 1\{y^{(i)} = l\} \log \frac{e^{\theta_{j}^{T}x^{(i)}}}{\sum_{j=1}^{k} e^{\theta_{j}^{T}x^{(j)}}}$

Derive the stochastic gradient descent update:

Find
$$\nabla_{\theta_l} \ell(\theta)$$

$$\nabla_{\theta_{l}}\ell(\theta) = \sum_{i=1}^{m} \left[\left(\mathbf{1} \{ y^{(i)} = l \} - P\left(y^{(i)} = l | x^{(i)}; \theta \right) \right) x^{(i)} \right]$$

Property of Softmax Regression

Parameters
$$\theta_1, \dots, \theta_k$$
 are not independent:
 $\sum_j p(y = j | x) = \sum_j \phi_j = 1$

• Knowning k - 1 parameters completely determines model.

Invariant to scalar addition

$$p(y|x;\theta) = p(y|x;\theta - \psi)$$

Proof.

Relationship with Logistic Regression

When K = 2,

$$h_{ heta}(x) = rac{1}{e^{ heta_1^T x} + e^{ heta_2^T x}} egin{bmatrix} e^{ heta_1^T x} \ e^{ heta_2^T x} \end{bmatrix}$$

Relationship with Logistic Regression

When K = 2,

$$h_{\theta}(x) = \frac{1}{e^{\theta_1^T x} + e^{\theta_2^T x}} \begin{bmatrix} e^{\theta_1^T x} \\ e^{\theta_2^T x} \end{bmatrix}$$
Replace $\theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}$ with $\theta * = \theta - \begin{bmatrix} \theta_2 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} \theta_1 - \theta_2 \\ 0 \end{bmatrix}$,

$$h_{\theta}(x) = \frac{1}{e^{\theta_1^T x - \theta_2^T x} + e^{\theta_2}} \begin{bmatrix} e^{(\theta_1 - \theta_2)^T x} \\ e^{0^T x} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{(\theta_1 - \theta_2)^T x}}{1 + e^{(\theta_1 - \theta_2)^T x}} \\ \frac{1 + e^{(\theta_1 - \theta_2)^T x}}{1 + e^{(\theta_1 - \theta_2)^T x}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{1 + e^{-(\theta_1 - \theta_2)^T x}} \\ 1 - \frac{1}{1 + e^{-(\theta_1 - \theta_2)^T x}} \end{bmatrix}$$

When to use Softmax?

- When classes are mutually exclusive: use Softmax
- Not mutually exclusive: multiple binary classifiers may be better