Learning From Data
Lecture 2: Linear Regression & Logistic
Regression
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Today's Lecture

Supervised Learning (Part I)
» Linear Regression
» Binary Classification
» Multi-Class Classification
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Review: Supervised Learning

» Input space: X', Target space: Y


Mobile User


Review: Supervised Learning

» Input space: X', Target space: Y

» Given training examples, we want to learn a hypothesis
function h: X — Y so that h(x) is a "good” predictor for the
corresponding y.

Training
set

Learning
algorithm

X —» predicted y
(living area of (predicted price)
house.) of house)
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Review: Supervised Learning

» y is discrete (categorical): classification problem

» y is continuous (real value): regression problem
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Linear Regression

Example: predict Portland housing price
Living area (ft?) # bedrooms Price ($1000)

X1 X2 <y
2104 3 400
1600 3 330

3 369

2400

living area
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Linear Approximation

A linear model
h(X) =0y + O01x1 + O2x

f;'s are called parameters.
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Linear Approximation

A linear model
h(X) =0y + O01x1 + O2x

f;'s are called parameters.

Using vector notation,
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Alternative Notation

h(x) = wix1 + waxa + b

wi, wy are called weights, b is called the bias

h(x) =w'x +b, where w = [Wl] , X= [Xl}

w2 X2
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Apply model to new data

Suppose we have the optimal parameters/6 |, e.g.

> h = LinearRegression().fit(X, y)
> theta = h.coef
array([89.60, 0.1392, -8.738])

make a prediction of new feature x:

= ho(x) = 07 x

1000 2000 3000 4000
living area
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Model Estimation

How to estimate model parameters 6 (or w and b) from data?



Model Estimation

How to estimate model parameters 6 (or w and b) from data?

Least Square Estimation

(o]
(z.y
re g&va\
@:_y O($)=90+9]$1
ODO + O
8% %
&0 0¥
0%

geometric approach
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Model Estimation

How to estimate model parameters 6 (or w and b) from data?

R et cbok Z ni-5] 7
Least Square Estimation ex Maximum Likelihood

[C— e (=

IR

Estimation (MLE)

N2 8

feg)

geometric approach x <
Probabilistic approach
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Ordinary Least Square

ol fecnstive 'e’“/f
Cost function: gguace

J(0) = Z (D) =y L Jig)

(w) = 0o + 6171
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Ordinary Least Square

Cost function:

h(x) —y O(x) =0y + 0121
00, + 01



Ordinary Least Square

Cost function:



Ordinary Least Square

Cost function:

How to minimize J(6) ?

» Numerical solution: gradient descent, Newton's method

» Analytical solution: normal equation
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Gradient descent

A first-order iterative optimization algorithm for finding the

minimum of a function J(0).
st
p e

Key idea

Start at an initial guess, @,
repeatedly change 0 to decrease

ey

Bl

0:=60—-aVJo)

« is the learning rate
£R
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Review: Convex function Chadeey

C
N

Nt ”"03/&3

X
(onve Non-ctonuex

Definition +f Convex Set C -

Convex-set Let S be a vector space, any subset C C S is convex if
for any x,y € C,WS A <1, affine combination Ax + (1 — )\B EVC

(onvex £oml;inf~}-($w 7L x,g
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Definition
A function f(x) is convex on a convex set C if for any xj,x € C
and 0 < A <1,

FAx + (1 — A)xo) < M (xa) + (1 — N ()

e.g. Cis an interval [a, b]
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Definition
A function f(x) is convex on a convex set C if for any xj,x € C
and 0 < A <1,

f(Ax1+ (1= A)x2) < Af(x1) + (1= A)f(y2)

e.g. Cis an interval [a, b]

Theorem
If J(0) is convex, gradient descent finds the global minimum.
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For the ordinary least square problem,

J(0) = 3 Sy (h(xD) = y D)2 = 357, (071 — yD)2,

8J(6)
96,

VJ@O)=1| : |, where 8;29) =
9J(0) J




For the ordinary least square problem

J(0) = %Z;’;l(h(x(")) - ) 2 Z

8J(6)
96,

VJ@O)=1| : |, where 8;29) = %
9J(0) J J
a0,

(07

X0 — )2,



Gradient descent for ordinary least square

Gradient of cost function: VJ(8); = > 7, (QTX(i) - y(i)) x{7)
Gradient descent update: 6 := 60 — aVJ(0)

Batch Gradient Descent

‘ Repeat until convergence{
ej:0j+az7;1(y(i)—hG(X(i)))Xj(I) for every j
}




Gradient descent for ordinary least square

Gradient of cost function: VJ(8); = > 7, (QTX(i) - y(i)) x{7)
Gradient descent update: 6 := 60 — aVJ(0)

Batch Gradient Descent

‘ Repeat until convergence{
ej:0j+azll~11(y(i)—hG(X(i)))Xj(I) for every j
}

0 is only updated after we have seen all m training samples.



Batch gradient descent

‘ Repeat until convergence{
=0+a >, (y(i)—he(x(i)))xj.(') for every j
}

Stochastic gradient descent

Repeat until convergence{
for i=1...m {
0; =0, —|—a( hg(x{ ))X for every j
}
1

0 is updated each time a training example is read



Batch gradient descent

‘ Repeat until convergence{
0 =0+a 37, (Y- he(x(i)))xj(') for every j
}

Stochastic gradient descent

Repeat until convergence{
for i=1. m{
9-9—!—(1( he(x )))x
}

for every j

}

0 is updated each time a training example is read

» Stochastic gradient descent gets 6 close to minimum much

faster

» Good for regression on large data



Minimize J(#) Analytically

The matrix notation

— (x)" — YD)

— (T _ o |y®
X = ( : ) s Y=

— (xtm)T — (m)

X is called the design matrix.



Minimize J(#) Analytically

The matrix notation

— (x)" — YD)

— (x@" — B y()
X = ( : ) s Y=

_ (X(m))T _ y(m)

X is called the design matrix. The least square function can be
written as

J0) = S(X0— )T (X0~ y)



Compute the gradient of J(6) :

Vod(0) =V | 5(X0— )T (X0 - )



Compute the gradient of J(0) :

Vod(0) =V | 5(X0— )T (X0 - )

Hint: (let x < 0, Q + X)

x.yeiR",  Qer™. 0. Ksp
Ldix) = 3 (@x-4)Cax-5)
,j%( I
= 1 (<elmx-gax- "‘13*3&)
= $x'dlax - §o-x iy
Yo =L 'a(x:a:%)_ I -a(n:’a:) .




Compute the gradient of J(0) :

Vad(6) =0 | 5(X0— )T (X0 - y)



Compute the gradient of J(0) :
1
Vo J(0) =V | 5(X0 = y)T (X0 - y)
=XTX0-XTy

Since J(0) is convex, x is a global minimum of J(#) when
VJ(#) = 0.



Compute the gradient of J(0) :

1
Vo J(0) =V | 5(X0 = y)T (X0 - y)
=XTX0-XTy

Since J(0) is convex, x is a global minimum of J(#) when
VJ(#) = 0.

The Normal equation

0= (X"X)"XTy



Compute the gradient of J(0) :

1
Vo J(0) =V | 5(X0 = y)T (X0 - y)
=XTX0-XTy

Since J(0) is convex, x is a global minimum of J(#) when
VJ(#) = 0.

The Normal equation
0= (X"X)"XTy

(XTX)™1XT is called the Moore-Penrose pseudoinverse of X



Which method to use?

gradient descent normal equation

iterative solution exact solution




Which method to use?

gradient descent normal equation

iterative solution exact solution

need to choose proper learning
parameter « for cost function
to converge




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when X is
ill-conditioned. e.g. features
are highly correlated




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when X is
ill-conditioned. e.g. features
are highly correlated

works well for large number of
samples m




Which method to use?

gradient descent

normal equation

iterative solution

exact solution

need to choose proper learning
parameter « for cost function
to converge

numerically unstable when X is
ill-conditioned. e.g. features
are highly correlated

works well for large number of
samples m

solving equation is slow when
m is large



Minimize J(#) using Newton's Method

Numerically solve for 6 in VyJ(6) =0

Newton's method
Solves real functions f(x) = 0 by iterative approximation:
> Start an initial guess x

» Update x until convergence




Minimize J(#) using Newton's Method

Geometric intuition of Newton's method
At step n+ 1:

» Find tangent line of f at (x, ¥n)

P> X,41 < X-intercept of the tangent line

> Yni1 < f(Xny1)



Newton's Method Demo

Funktion
Tangente

(=)be(+)

https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif


https://en.wikipedia.org/wiki/File:NewtonIteration_Ani.gif

Minimize J(#) using Newton's Method

Newton's method for optimization ming J(6)
Use newton's method to solve VyJ(#) =0 :

» 0 is one-dimensional:
J'(9)

0:=0-— 7(6)




Minimize J(#) using Newton's Method

Newton's method for optimization ming J(6)
Use newton's method to solve VJ(0) =0 :
» @ is one-dimensional:
_J')
J/I(g)

0:=60

> x is multidimensional:
6=0—H16)VJI®H)
where H is the Hessian matrix of J(0).

a.k.a Newton-Raphson method



Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0:=0—HO)VJI(H)

}




Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0:=0—HO)VJI(H)

}

Performance of Newton's method:

» Needs fewer interations than batch gradient descent



Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0:=0—HO)VJI(H)

}

Performance of Newton's method:
» Needs fewer interations than batch gradient descent

» Computing H™! is time consuming



Newton's Method for Optimization

Initialize 6

While 6 has not coverged {
0:=0—HO)VJI(H)

}

Performance of Newton's method:
» Needs fewer interations than batch gradient descent
» Computing H™! is time consuming

» Faster in practice when n is small



Maximum Likelihood Estimation
Consider target y is modeled as

and €\) are independently and identically distributed (IID) to
Gaussian distribution A(0, o?)

27/49



Maximum Likelihood Estimation

Consider target y is modeled as
y() =T x() 4 ()

and €() are independently and identically distributed (1ID) to
Gaussian distribution A/(0,02) , then

p(e?) =



Maximum Likelihood Estimation

Consider target y is modeled as
y() =T x() 4 ()

and €() are independently and identically distributed (1ID) to
Gaussian distribution A/(0,02) , then

0 1 e’
p(6 ) = W eXp | — 20_2



Maximum Likelihood Estimation

Consider target y is modeled as
y() =T x() 4 ()

and €() are independently and identically distributed (1ID) to
Gaussian distribution A/(0,02) , then

(1) 1 e’
p(6 ) = W eXp | — 20_2

N 1 (y(i) — aTx(i))2
Dy gy = = AR Sy
pOOID:6) = = exp ( 202



Maximum Likelihood Estimation

The likelihood of this model with respect to 6 is

m

L(6) = p(71X:0) = [ oy 1x";6)
i=1



Maximum Likelihood Estimation

The likelihood of this model with respect to 6 is

m

L(8) = p(71X:0) = [ p/ 7 1x; 6)
i=1

Maximum likelihood estimation of 6:

QMLE = argmax L(@)
0



Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = log ] [ p(y”}x("; Zlogp NxD; )
i=1

m | 1 (y( i) _ T (i ))2
= Iz:; og *271—0—2 exp ——20_2




Maximum Likelihood Estimation

We compute log likelihood,
log L(#) = |Ong(y(i)|x(i); 0) = Z log p(y[x("); §)
i=1 i=1

m () _ pT )2
= Iog 1 exp <_(‘ye)<)>

202




Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = long Dx0;0) = " log p(y|x1; 0)




Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = long Dx0;0) = " log p(y|x1; 0)

1 1 1
—m = () _ g7 x(1))2
= mlog o o2 E (y 0" x\")

Then argmax, log L(0) = argmin, % Z;’;l(y(") —0Tx()2



Maximum Likelihood Estimation

We compute log likelihood,

log L(0) = Iong Dx0;0) = " log p(y|x1; 0)

1 1 1
=mlo — == () _ 9T x(1y2
Then argmaxg log L(0) = argming 2 37, (y() — 0T x(1)2 |

Under the assumptions on (), least-squares regression corresponds
to the maximum likelihood estimate of 6.



Linear Regression Summary

How to estimate model parameters § (or w and b) from data?

» Least square regression (geometry approach)

» Maximum likelihood estimation (probabilistic modeling
approach)
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Other estimation methods exist, e.g. Bayesian estimation



Linear Regression Summary

How to estimate model parameters § (or w and b) from data?

» Least square regression (geometry approach)

» Maximum likelihood estimation (probabilistic modeling
approach)

Other estimation methods exist, e.g. Bayesian estimation
How to solve for solutions ?

» normal equation (close-form solution)

» gradient descent

» newton's method



Outline

[Logistic Regression

33/49



A binary classification problem

Classify binary digits

» Training data: 12600 grayscale
images of handwritten digits

2000
EREAP4NS &

» Each image is represent by a vector
x() of dimension 28 x 28 = 784

> Vectors x(7) are normalized to [0,1]




A binary classification problem

Classify binary digits

» Training data: 12600 grayscale
images of handwritten digits

2000
EREAP4NS &

» Each image is represent by a vector
x() of dimension 28 x 28 = 784

> Vectors x(7) are normalized to [0,1]

Binary classification: Y = {0, 1}
> negative class: y() =0
> positive class: y() =1



Logistic Regression Hypothesis Function

Sigmoid function

» g:R—(0,1)
> g'(2) =

o5
o

0
5 4 3 2 414 0 1 2 383 4 5

z



Logistic Regression Hypothesis Function

Sigmoid function

» g:R—(0,1)
> g'(z) = g(2)(1 — g(2))

o5
o

-5

4 3 2 1 0 1 2 3 4 5
z



Logistic Regression Hypothesis Function

Sigmoid function

> g:R—(0,1)
> g'(2) = g(2)(1 - g(2))

Hypothesis function for logistic
regression:

ho = g(QTx) = 1

S 14 e f7x

o5
o

3 2 -1 0 1 2 3 4 5

DDDD DD

NEOOL Y,
w




Review: Bernoulli Distribution

A discrete probability distribution of a binary random variable
x €{0,1}:

() A ifx=1
x) =
P 1-\ ifx=0

=p(1-p)>

.



Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
> ply =1]x;0) = ho(x)
» p(y =01 x;0) =1— hy(x)
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Maximum likelihood estimation for logistic regression

Logistic regression assumes y|x is Bernoulli distributed.
> ply =11]x0)= hy(x)
> ply =0 x;60) =1— hy(x)
p(y | x:8) = (ho(x))’ (1 — hy(x))* ™
Given m independently generated training examples, the
likelihood function is:

m

L(0) = p(7|1X:0) = [ p(yV1x7; 0)

i=1

1(0) = log(L(0)) = Zy(’) log ha(x™) + (1 — y) log(1 — he(x))
I(6) is concave! i=1



Maximum likelihood estimation for logistic regression

10) = >~ v log hy(x1) + (1 = y D) log(1 — hy(x(M))
i=1
Solve argmaxy /(0) using gradient ascent:

21(6)
06;




Maximum likelihood estimation for logistic regression

m

I(H) = Zy(i) log hg(X(i)) + (]_ — y(i)) |og(1 _ hg(X(i)))

i=1

Solve argmax, /(6) using gradient ascent:

ol(0 N . i
(‘9(91):Z<y()_h9(x()))xj()

i=1

Stocastic Gradient Ascent

Repeat until convergence{
for i=1...m {
0; = 0; + a(y" - hQ(X((‘)))Xj(i) for every j
}
}

» Update rule has the same form as least square regression, but
with different hypothesis function hy



Binary Digit Classification

Using the learned classifier

Given an image x, the predicted label is

. |1 g(6"x)>05
Y 0 otherwise

Binary digit classification results

‘ sample size ‘ accuracy
Training 16200 100%
Testing 1225 100%

» Testing accuracy is 100% since this problem is relatively easy.
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Multi-class classification

Each data sample belong to one of k > 2 different classes.

V={1,....k}

MNIST Samples
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ﬂﬂm Giv.en new s.ample x € R, predict
which class it belongs.
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Naive Approach: Convert to binary classification

One-Vs-Rest
Learn k classifiers hy, ..., hi. Each h; classify one class against the
rest of the classes.

Given a new data sample x, its predicted label y:

y = argmax hj(x)
i
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Multiple binary classifiers

Drawbacks of One-Vs-Rest:
» Class unbalance: more negative samples than positive samples
» Different classifiers may have different confidence scales

Multiple binary classifiers
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Drawbacks of One-Vs-Rest:
» Class imbalance: more negative samples than positive samples

» Different classifiers may have different confidence scales

Multinomial classifier
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Review: Multinomial Distribution

Models the probability of counts for each side of a
k-sided die rolled m times, each side with
independent probability ¢;

pr+-+o=1
oo |LL ]
k=3,n=10 =73




Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed, k = |)/|
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Extend logistic regression: Softmax Regression

Assume p(y|x) is multinomial distributed, k = |)/|

Hypothesis function for sample x:

p(y = 1|x;0) . 01 %
hg(X) = = W = SOftmaX(QTX)
ply = kixie)| T |t

e%

Zj'(:l e(zj)

softmax(z;) =
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Softmax Regression

Given (x(),y()) i =1,..., m, the log-likelihood of the Softmax
model is

m . -
= Z log p(y([x); 0)
—ZIong —I]x l{y =1}
i=1



Softmax Regression

Given (x(),y()) i =1,..., m, the log-likelihood of the Softmax
model is

m . .
= "log p(y!|x); 0)
i=1
k

= zm:Iong = /]x l{y =/}
i=1

m k
= ZZ 1{y") = I} log p(y) = 1|x(1)
i=1 I=1



Softmax Regression

Given (x(),y()) i =1,..., m, the log-likelihood of the Softmax
model is

Z og p(y|x"); 0)

m k
H () = 1]x(1) l{y =/}
N k_

Z
= >3 1{yD =} log p(y ) = 1x1)

i=1 |=1

m  k e@/ ()
= Z Z 1 = l} |0g Zk engX(i)

i=1 =1 j=1



Softmax Regression

Derive the stochastic gradient descent update:
> Find Vg,ﬁ(@)

m

Vo, £(0) = Z [(l{y(i) =I}-P (y(i) = /]x(; 0)) x(i)}

i=1



Property of Softmax Regression

> Parameters 61, ...60, are not independent:
ij(y =jlx) = Zj¢j =1

» Knowning k — 1 parameters completely determines model.

Invariant to scalar addition

p(ylx; 0) = p(y|x; 0 — 1)
Proof.



Relationship with Logistic Regression

When K = 2,
1 [eelTX



Relationship with Logistic Regression

When K = 2,
1 eelx
hG(X) = m [eQZTX]

R _ |02 _ |01 —02
Replace 0 = [92} with 0% = 6 [92] = [ 0 ]
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When to use Softmax?

» When classes are mutually exclusive: use Softmax

> Not mutually exclusive: multiple binary classifiers may be
better
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