Learning From Data
Lecture 14: Semi-Supervised Learning

Yang Li  yangli@sz.tsinghua.edu.cn

December 30, 2022
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Today’s Lecture

» What is semi-supervised learning?

» (lassical approaches

» Generative models

> Semi-supervised SVM

> Graph-based methods —

> Multi\view learning \%

> Deep semi-supervised learning
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Motivation: Some labels are hard to obtain

Supervised learning requires lots of labeled data
> Labeled data: expensive and scarce
> Unlabeled data: cheap (or even free)
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Motivation: Some labels are hard to obtain

Supervised learning requires lots of labeled data

> Labeled data: expensive and scarce

> Unlabeled data: cheap (or even free)

e.g. Clinical concept normalization

The patient is a 28-year-old
woman who is HIV positive for
two years .

She presented with left upper
quadrant pain as well as nausea
and vomiting which is a long-
standing complaint .

Clinical Narrative files

Text in a document

Candidates

HIV positive
HIV Seropositivity
test; HIV, ...
HIV test false ...

Human immuno...

Mentions

left upper quad...
Left upper quad...

painin upper ...

pain in upper out...

pain in upper inn...

JDausea
nausea
Nausea Adverse ...
Have Nausea

How Much Naus...

The process of normalization

» MCN Corpus (2019): normalize clinical concepts corresponding to
medical problems, treatments, and tests

» Manually annotated 3790 concepts and over 13,600 distinct concept

mentions.
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Motivation: Some labels are hard to obtain

e.g. letter transcription

» Shakespeares transcription

for | may as well take that

| take n-the after | com hom

as in the morning the woman tould
me so this morning this hoping

| shall here from you and-then
yott for | thinke it were better

for me to go then stay
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What is Semi-supervised learning?

Semi-supervised learning (SSL) are supervised learning tasks that also
make use of unlabeled data for training.

Notations
> Labeled data: (Xg, Y.) = {(x),y®), (x(), y(")} ot wla beled olicta
> Unlabeled data: Xy = {x(*V) ... x(MY [+ u=mu>1
» Hypothesis f : X — )
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What is Semi-supervised learning?

Semi-supervised learning (SSL) are supervised learning tasks that also
make use of unlabeled data for training.

Notations
> Labeled data: (X, Y1) = {(x®,yM), (x(), y(D)}
> Unlabeled data: Xy = {xU*V) ... x("MY [+ u=mu>1I
» Hypothesis f : X — )

Two types of SSL:

/P Transductive semi-supervised learning finds the hypothesis f that
j best classify the unlabeled data Xy
» Inductive semisupervised learning learns a hypothesis f for future
data (not in Xy U Xy).
@should be better than using X; alone.
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How does unlabeled data help?

Hypothesis function using labeled data:

4 1 I
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How does unlabeled data help?

Hypothesis function using labeled data:
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Hypothesis function using both labeled and unlabeled data:
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Semi-supervise learning assumptions

Semi-supervise learning algorithms rely on one of the following
assumptions:
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Semi-supervise learning assumptions

Semi-supervise learning algorithms rely on one of the following

assumptions:
Smoothness assumption: If two data samples are similar, then output
labels should be similar.

Cluster assumption: Samples in the same cluster are more likely to
./"“"“"" )/ : WAhave the same label. i.e. low-density separation between

z seme'™ classes A special case of the smoothness assumption
2N\ —
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Semi-supervise learning assumptions

Semi-supervise learning algorithms rely on one of the following
assumptions:

Smoothness assumption: If two data samples are similar, then output
labels should be similar.

Cluster assumption: Samples in the same cluster are more likely to
have the same label. i.e. low-density separation between
classes A special case of the smoothness assumption

Manifold assumption: Data lie approximately on a manifold of
dimension < n. This allows us to use distances on the
manifold
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Using unlabeled data in ge
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Example: guassian discriminant model

ative models
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Using unlabeled data in generative

Example: guassian discriminant model

-3 -2 -1 o 1 2 3 4 5

without unlabeled data

models

4 ek’ 1}034&

L 7 ety

-2 -1 0 1 2 3 4 5

with unlabeled data

-3

Notice the difference in the decision boundaries
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Supervised Generative Models

Given random variables x € X, y € ), assume that

> class prior distribution p(y; )
e.g. y ~ Multinomial(¢)

> data generating distribution p(xly; 0)
eg. x|y ~ N(p,X) /
(pr =)
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Supervised Generative Models

Given random variables x € X', y € ), assume that

> class prior distribution p(y; )
e.g. y ~ Multinomial(¢)

> data generating distribution p(x|y; 6)
eg. x|y ~ N(p,T)
A generative model computes the joint probability as

p(x,y;0) = p(x|y; 0)p(y; 0)
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Supervised Generative Models

Given random variables x € X', y € ), assume that
> class prior distribution p(y; )
e.g. y ~ Multinomial(¢)
> data generating distribution p(x|y; 6)
e.g. xly ~ N(u,X)
A generative model computes the joint probability as

p(x,yi0) = p(xly: 0)p(y: 0)
Classifier using Baye's rule:

o P(xly;0)ply: 0)
o) = ELEE
p(xly: 0)p(y; 0)

~ X, p(xly’0)p(y'; 0)
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Training Generative Models

.

Given data (x(1), y() . (x(m y(m) g can be estimated using
maximum likelihood:

B g = argmaxlog H p(X(i)’ Y. 9)
o i=1
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Training Generative Models

Given data (x(1), y() . (x(m y(m) g can be estimated using
maximum likelihood:

argmax log H p(x, y(). )
& i=1

Alternative ways to learn 6:
> MAP estimator

» Bayesian estimator
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Semi-supervised Generative Model fenone "o 1y)

= L+u pUlD
l
Given labeled data (x™),y™M) ... (x(N, y("), and unlabeled data

("‘"1) X(’+“ yow \,mla\:»{\e& som\?Le_g
mwehhood estimation of 6:

I4u
argmaxlong (x1, (. g) H—hog H p(x1;0)
i=1 i=1+1

labeled data unlabeled data
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Semi-supervised Generative Model

Given labeled data (x®),yM) ... (x(N,y("), and unlabeled data
xUHD) o xU+e)

Maximimum likelihood estimation of 6:

I+u
argmaxlong (x, y: 0) +Xlog H p(x(; 6)
i=1 i=I+1
labeled data unlabeled data
where
I+u I+u I+u

log H p(x: 0 Z Iogp_&_/)* Z Iogz x(),@H
T oi=i41 i=I+1 i=l+1 }fy——

is typically non-concave. We can only find local optimal solutions.
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Training semi-supervised generative model

Treat unknown labels y(), ..., y(+) as hidden variables.

An EM algorithm e
- Initialize 6 randomly qod & '

- Repeat until convergence{ 7 ¢ *

E-step » Compute Q;i(y)) = p(y|x(;8) for all
i=141,7 .. TT 0 wnlobeled olata

M-step  » Update 6 using full data (X, X,)
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Application: Document classification

20 Newsgroup Dataset Generative model
> X;: 10000 unlabeled documents » Naive bayes model
—_—
> Xy: 20-5000 labeled documents > MAP estimator

> yel, ... 20 topics

100% T — T T — T T T

10000 unlabeled documents —+—
90% |- No unlabeled documents -+---

80%

70%

60% [

50%

1 Accuracy

40%

T

30%

T
»

T

20%

T

10%

0% i . L A
10 20 50 100 200 500 1000 2000 800
Number of Labeled Documents l/

K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39, 2000. 24 /47
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Generative model assumptions

Generative model works well when the model choice is correct.
e.g. for a mixture model,

» Cluster assumption: data in the same class lie in a cluster, which is
separated from other clusters

» The # of clusters = number of classes

25 /47
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Generative model assumptions

Generative model works well when the model choice is correct.
e.g. for a mixture model,

» Cluster assumption: data in the same class lie in a cluster, which is

separated from other clusters dorto v & clurter does nof

lhowe Hhe ame kel !

» The # of clusters = nbgmber of classes

wnd &
t]m A

Example of incorrect assumption

26 /47


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


L | pemi-supervised SVIiVi) 1 L ] L

|[Semi-Supervised SVM|
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Semi-Supervised SVM

» Unlabeled data from different classes are separated by large margin

» |dea: The decision boundary shouldn’t lie in the regions of high

density p(x)
@ G;k )i ©
Lo 1 -
o |
i €]
without unlabeled data with unlabeled data
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Review: Soft-Margin SVM

Given training data (x(),y(M) ... (x(m) y(m)
Train a soft-margin SVM classifier:
l<

s\‘(
m|n 7||WH2—|—CZ§,
NS

s.t. y()(w x4 p) > 17@
f;ZO,iZl,...,m

Can be solved using quadratic
programming.
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Semi-Supervised SVM
ISV
Optimization variables:
> Estimated label for unlabeled data: {§/*!,..., y/*tu}
> Margin of labeled data: {{1,...,&} . -
» Margin of unlabeled data:;{élﬂ, e ’é’:“}

I4+u

+C>» &+C £
wb{a}{sj}{yjﬂ" wllz Z 2.4

j=I+1
s.t. (LVTX('Mp)y(') >1-¢ Vi=1,...,1

) >1-§ VYj=I+1,...,/+u
Ne {-1,1} Vj=I+1,...,/1+u

T. Joachims. Transductive inference for text classification using support vector
machines. In Proc. 16th International Conf. on Machine Learning, p200209. 1999
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Semi-Supervised SVM Discussion

g‘ e3-\

» Semi-supervised SVM is an integer programming problem: NP-hard

Numerical optimization

» Approximated solutions are used in practice

Low-Density Assumption

» Decision boundary should lie in a low density region

» Equivalent to the cluster assumption
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|Graph-based Methods|

tLransdu |
§ Inducuny |
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Label propagation idea

Main idea

» Build a graph connecting data _Jenm 3““!’“‘ j:]
points x(M), .. x(m) - Neig™”

> Assign weights to edges -4t
according to similarity measure
s(x(), x())

> (Propagate labels from labeled L0}
points forward to unlabeled
points

Label propagation is a transductive
algorithm.
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Label Propagation: lterative Approach
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Label Propagation: lterative Approach

Node labels: Y = [Y

Define T to be the m x m transition matrix that realizes the propagation
of labels:

0

1
2. Repeat until coiﬂ ance {
c—
3. G-yt ~ e M\g%umt-
4.
5

A
Initialige YO — Y| & F™"™ (ot
nitlialize v = |—& P hv\wp\»\ﬂ/\a ‘

:

Clamp the labelted data YLt:Y
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Label propagation: analytical solution

Write the transition step as block matrices:

Y =[Ty

\7 T | Tru |:YL:|

L Toc | Twu
We can solve for the unknown labels Yy:

(Yo =TuYe + Tu

l Yo=(-Tw) ' TuYe
V-

Yu

assuming that (/ — Tyy)~? is invertible.

How to find T7?
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How to find 77 Gresph )_,T\M;M : LZ%;% s pmorkite )
Gaussian similarity: N ownelaed LurW‘M oL :D”'L=D"(D—w)5 1-Ow
1

" L w
\ R
reortion?

( 2) fori,j=1,...,m probost A,

’J - exp ’ )
Let D = diag(W1) be the degree matrix T.‘:%WI
e o
Z;:l Wi 0 A 0 Xu \;1_\53;1
D_ 0 ijl W2j 0 w\\N
: : : X1 o
0 0 “e ZJ,',:I Wmj K2,

Define T = D 'W <« | — L, where L, is the normalized Laplacian!

1’) = Ty = <5~ ——<Is the transition probability from point i to j
J Z/ 1 Wil W
~| DUL he
%} R,J 1 D" W
Yo = (1= Tou) ™" TuYe = (Du = Wou) "Wur Vi (1)
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]
Interpretation of T = D!\W : Random Walk
(lass membupr vector of node ¥ oo a given class ¢ afer on wp

Y(c = E!Y\c + PraYoe <

+ ﬂN\:NQ ) whase

02 e
¥ < . Lo b
.= P iY(c* iziY‘-‘-* N,
L-_)Y‘C - Pu o= P ezl

W‘CM'O»C(‘\\{ \/&f/‘k‘of f‘tf”
Sums lAL; 4o one.

» Randomly walk from unlabeled node i to j with probability
Ty = gl -

- - 2o Wi
» Stop if we hit a labeled node
> The label function Yjc = Pr( hit label ¢ | start from /)

Vo2 pe it lebe) g | siariing g 3)

dote T-TT
P;J‘: TIJ
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Iterative label propagation example

n3
-15
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Label propagation as an optimization problem

Let random vector y; € R# represent the label for data i
We can solve label propagation by

.1 G )
min 5 > Wllyi =l

ij=1

Y
» Minimize the distance between class membership vectors based on
weight similarity
> W; is very large: need to ensure ||y; — y;||? is small
> Mmall: Hz/,-—_yjHMconstrained

» Equivalent to iterative solution Y, = (Dy — Wyy) *WuL YL
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Label Propagation

Let L = D — W be the unnormalized graph laplacian of G.

Lemma 1 P

miny, icu 3 21 —1 Willyi — jl[? is equivalent to miny, tr(YTLY)

Theorem 1

The optimal solution to miny, icu 3 >_11—y Willyi — yl[* is
Yy = (Du — Wyu) " Wur Y

Proofs can be found in:
Bodd, Zalan, and Lehel Csaté. A note on label propagation for semi-supervised
learning. Acta Universitatis Sapientiae, Informatica 7, no. 1: 18-30, 2015.
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Inductive semi-supervised learning

» Goal: Learn a better predictor f : X — ) using unlabeled data Xy
» In graph-based learning, a large Wj; implies a preference for
f(x) = f(x1), represented by an energy function :
S
i WD) = D) ()

Example: no labeled data

energy=0

The top-ranked (smoothest) hypothesis is f(x) = 1 or f(x) =0

_—
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Inductive semi-supervised learning

» Goal: Learn a better predictor f : X — ) using unlabeled data Xy

» In graph-based learning, a large Wj; implies a preference for
f(x() = f(x1)), represented by an energy function :

> Wy(F(x) — £(xW))? (+)
L L (mnecﬁiLJ o~
edge

Example: conditioned on labeled data ~¢“"* wWi=1 oy

energy=2 energy=1

O\,j-.
it J D wighet
ro\,\\«‘«\t]
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Find f that both fits the labeled data well and ranks high (being smooth
on the graph or underlying manifold.

argmin - Z.C ),y D)+ Al 120D Wy(F(xD) — F(x0))2
fer i=1 ij=1

supervised loss regularization of Xy

» [ is a convex loss function, e.g. hinge-loss, squared loss

» This problem is convex with efficient solvers
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Find f that both fits the labeled data well and ranks high (being smooth

on the graph or underlying manifold. 1Lt Lj}
-
argmin - Z L(F(xD), yD) + AP+ X2 Y Wy(F(xD) — F(xD))?
= i=1 ij=1
supervised loss regularization of Xy

» [ is a convex loss function, e.g. hinge-loss, squared loss
» This problem is convex with efficient solvers

By Lemma 1, it can be written as
1
- () 2
argmin +)\ |7+ Xotr(f' LF
g Zz tllFIF + datr(FTLE)

Algorithm variations: graph min-cut, manifold regularization, etc
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Further readings on inductive graph-based semi-supervised learning:

» M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A
geometric framework for learning from labeled and unlabeled
examples. Journal of Machine Learning Research, 7:23992434,
November 2006.

» A. Blum and S. Chawla. Learning from labeled and unlabeled data
using graph mincuts. In Proc. 18th International Conf. on Machine
Learning, 2001.
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Graph-based semi-supervised learning discussion

Sooo
. ‘cL xx&s""'w\?
When to use graph-based SSL? maniye
» SSL only works well when the underlying assumptions hold on the
data

» Constructing a good graph is important!
Transductive vs inductive?

> Transductive: predict labels on the unlabeled data (known at
fraining time)e). loba! pepagesow

» Inductive: predict labels for future (unseen) data

5"34 W‘Rnij’a'J fej wlarizetion
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[Multiview Learning]
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Example: Web page classification

Multiview learning assumptions:

» Multiple learners are trained on the same labeled data
> Learners agree on the unlabeled data

e.g. A web page has multiple subsets of features, or views

x = (x1, %2, %3)

web page (x) topic (y)
N\ sports
i X1 text
vie? - politics
oY )
gt Xp | images
et travel
X3 links |
food
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Multiview semi-supervised learning

+oyt (_\b.hf’j(ar egp dw;:'ffer*

o,

Let fi, 7. ., fi be the hypothesis function on k views.
The disagreement of hypothesis tuple (fi, ..., fx) on the unlabeled data
can be defined as (/““l“";itfﬁ\rles

I+u k

D> L(f(x), £,(x1))

i=1+1 u,v, -

~J \'{QX‘L
eq. ey
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Multiview semi-supervised learning

Let f1,..., fx be the hypothesis function on k views.
The disagreement of hypothesis tuple (fi, ..., fx) on the unlabeled data

can be defined as
I+u k

PRI ACDRACL))

i=I+1 u,v
Common loss function £
» 0-1 loss (discrete y)

1 if f,(xD) = £,(x(0)

0 otherwise

ﬂ&&mLﬁUm»:{

» Squared error (continuous )

L (D), £,(D)) = [1fu(xD) = £,(xD)) 2
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Multiview semi-supervised learning :

P =
o “;ws el 4 f"«‘)“LTfM‘QMa,
@ /1 v

L(f,. .-, f) ;1(/25“ yN) +2Q, (f))

regularized empirical risk on labeled data

I+u k ) )

+ Y > L(R(), £(x1))
i=I+1 u,v

disagreement on unlabeled data

where L, is the loss of view u.
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Multiview semi-supervised learning

K / 5 Ou
LA, f) =) (} D Lo(fu(x1), yD) + mu(fu)>

regularized empirical risk on labeled data

I+u k

50 S L(R(D), £(xD)

i=I+1 u,v

1

disagreement on unlabeled data
where L, is the loss of view u.

To find the optimal hypothesis:

argmin L(f, ..., f)
[

When L,,€Q, and £ and are all convex, numerical solution can easily be
obtained.

53 /47


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


L ] L / L

Multiview learning discussion

Muttiview Learning)

Independent view assumption: there exists subsets of features (views),

each of which

> is independent of other views given the class

» is sufficient for classification

/| . « °
view 2 . .
- .
ke
L]
L
L
.
° .
view 1
- °
. . o
. 04
(L] °
.
.
. X
L) .

V. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized approach to semi-supervised
learning with multiple views. In Proc. of the 22nd ICML Workshop on Learning with
Multiple Views, August 2005.
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IDeep Semi-Supervised Learning]
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Deep Semi-Supervised Learning

Main categories of recent deep semi-supervised methods:

> Proxy-label method: leverage a trained model on the labeled data
to produce additional training examples by labeling unlabeled
samples based on some heuristics. e.g. self-training, pseudo-labeling
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Deep Semi-Supervised Learning

Main categories of recent deep semi-supervised methods:

> Proxy-label method: leverage a trained model on the labeled data
to produce additional training examples by labeling unlabeled
samples based on some heuristics. e.g. self-training, pseudo-labeling

» Consistency regularity: assumes that when a perturbation was
applied to the unlabeled data points, the prediction should not
change significantly e.g. -Model, Mixup

57 /47
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Deep Semi-Supervised Learning

Main categories of recent deep semi-supervised methods:

> Proxy-label method: leverage a trained model on the labeled data
to produce additional training examples by labeling unlabeled
samples based on some heuristics. e.g. self-training, pseudo-labeling

» Consistency regularity: assumes that when a perturbation was
applied to the unlabeled data points, the prediction should not
change significantly e.g. -Model, Mixup

» Graph-based approaches: use label propagation on unlabeled
data with supervised deep feature embedding e.g. GNN based
methods

58 /47
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Deep Semi-Supervised Learning

Main categories of recent deep semi-supervised methods:

> Proxy-label method: leverage a trained model on the labeled data
to produce additional training examples by labeling unlabeled
samples based on some heuristics. e.g. self-training, pseudo-labeling

> Consistency regularity: assumes that when a _perturbation was
applied to the unlabeled data points, the prediction should not
change significantly e.g. -Model, Mixup

» Graph-based approaches: use label propagation on unlabeled
data with supervised deep feature embedding e.g. GNN based
methads  mdudive

> Generative models: estimate the input distribution p(x) from
unlabeled data in addition to classification (VAE or GAN based
methods) T
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Deep Semi-Supervised Learning

Main categories of recent deep semi-supervised methods:

> Proxy-label method: leverage a trained model on the labeled data
to produce additional training examples by labeling unlabeled
samples based on some heuristics. e.g. self-training, pseudo-labeling

» Consistency regularity: assumes that when a perturbation was
applied to the unlabeled data points, the prediction should not
change significantly e.g. -Model, Mixup

» Graph-based approaches: use label propagation on unlabeled
data with supervised deep feature embedding e.g. GNN based
methods

> Generative models: estimate the input distribution p(x) from
unlabeled data in addition to classification (VAE or GAN based
methods)

» Hybrid approaches: combining multiple techniques e.g. MixMatch
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L
Proxy-Label Methods 6.5) ¢
= ]?( ;0 2 <
Pseudo-labeling S VWZ l j[gu) F/‘\ “ y(g )'_\l:g;? aprx S = A
» Use labeled data D; = {X], Y;} to train a prediction function@l
> Assign pseudo-labels = argmax fo(x) to each unlabeled sample P}

x € X,. fy(x,) is a probability distribution over classes Y % e

> add (x, ) to Dy if max fy(x) > 7 for some threshold 7 > 0 (% 4)
Lh K e highes
rY Yorio 000 ... ...
' — i — 000X

Dbt o XX
retrain

pseudo-label
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Pseudo-label example

Lee, Dong-Hyun. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in __ -
representation learning, ICML, 2013. Sewdo tebel . ol e
Overall loss function: ! € oy >\ lé&m
1 & E o | v
== L im’ zm @ L ;mv zlm
" n;; wi", f ( ,;; (_y_ fi

Proper scheduling of a(t) is important for network performance!

% ED £ ET o 10 E) W

% EY E

(a) without unlabelned datam(dropl\;N) ° (b) with unlabeled data and Pseudo—Label (+PL)
Feature embedding results on MNIST
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Consistency regularization

» Favoring functions f; that give consistent predictio imilar

data points. « clustering assumption
> Given unlabeled sample x € X, and its perturbed version

f(2))

» Minimize the distance between the two outputs d(fy(x),
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Consistency regularization

» Favoring functions f; that give consistent predictions for similar
data points. < clustering assumption

> Given unlabeled sample x € X, and its perturbed version X
» Minimize the distance between the two outputs d(fy(x), fp(X))

» C di f i : casres . o DS =, C
ommon distance functions , + o %v“)' % 7£ Q 3
1 @
duse(fo(x), (%) = = D _(falx); — (%);)*
- j:1 - -
1< (%),
die(fo(x), (%)) = & D_ falx)slog & @),
e = ;
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Consistency Regularization Example: [1-Model

Laine, Samuli, and Timo Aila. "Temporal ensembling for semi-supervised
learning." arXiv preprint arXiv:1610.02242 (2016).

Y o

(:l ; Network fo
Augmentations
‘E-— ¢ with dropout \'

— W

» Perturb each input x by random augmentations (e.g. image translation,
flipping, rotations etc) and random dropout to obtain distinct predictions

.,y
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Consistency Regularization Example: [1-Model

Laine, Samuli, and Timo Aila. "Temporal ensembling for semi-supervised
learning." arXiv preprint arXiv:1610.02242 (2016).

Yy -
(:l ; Network fo
Augmentations
< g with dropout \'
-— y2

> Perturb each input x by random augmentations (e.g. image translation,
flipping, rotations etc) and random dropout to obtain distinct predictions

.y
> Enforce a consistency over two perturbed versions of x by
L, = duse(n — ¥2)

Entropy | £s
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Consistency Regularization Example: [1-Model M

Laine, Samuli, and Timo Aila. "Temporal ensembling for semi-supervised
learning." arXiv preprint arXiv:1610.02242 (2016).

Yy
€T Augmentations Network fo
with dropout
- )

> Perturb each input x by random augmentations (e.g. image translation,
flipping, rotations etc) and random dropout to obtain distinct predictions

.y
» Enforce a consistency over two perturbed versions of x by
L, = duse(n — ¥2)
> If x € X,, minimize the cross- entrop}/ Io.is L/(y, f(x (55 ev*ﬂ\’%/

rv,{yhdwm (u"U’
L= |D | Z dMSE(ylayZ) Z ‘Cl ya
x€Dy, XyED,

w is set to zero for the first 20% training time
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Semi-supervised learning summary

AS&;N
. o
o Approach Assumptions Type
Graph-based manifold assumption (transductive), in-
5\'// ductive
Generative (, MM} cluster assumption inductive
X model
SVM low density separation/cluster as- | inductive
} sumption -
[ Multi-view iw inductive
learning
f roxy-label manifold assumption inductive
1 onsistency reg- | cluster assumption inductive
ularization
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Online poster session information

4
> Submit your posters by Jan 3, 2023, before noon (11:592m)

» All teams will be divided into 4 tracks. Your poster will be shared
online for pair-review and voting by other teams within your track,
starting from Jan 5th.

> Each team will deliver a 3-min presentation for the poster on Jan 6,
2023.

> Prizes available for the best presenter, best poster and most
impactful work!

Detailed grading policy will be posted later.
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