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Today’s Lecture

I What is semi-supervised learning?
I Classical approaches

I Generative models
I Semi-supervised SVM
I Graph-based methods
I Multiview learning

I Deep semi-supervised learning
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Motivation: Some labels are hard to obtain
Supervised learning requires lots of labeled data
I Labeled data: expensive and scarce
I Unlabeled data: cheap (or even free)

e.g. Clinical concept normalization

I MCN Corpus (2019): normalize clinical concepts corresponding to
medical problems, treatments, and tests

I Manually annotated 3790 concepts and over 13,600 distinct concept
mentions.
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Motivation: Some labels are hard to obtain

e.g. letter transcription
I Shakespeares transcription

for I may as well take that
I take in the after I com hom
as in the morning the woman tould
me so this morning this hoping
I shall here from you and then
you for I thinke it were better
for me to go then stay
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What is Semi-supervised learning?

Semi-supervised learning (SSL) are supervised learning tasks that also
make use of unlabeled data for training.

Notations
I Labeled data: (XL, YL) = {(x (1), y (1)), (x (l), y (l))}
I Unlabeled data: XU = {x (l+1), . . . , x (m)}, l + u = m, u � l
I Hypothesis f : X → Y

Two types of SSL:
I Transductive semi-supervised learning finds the hypothesis f that

best classify the unlabeled data XU

I Inductive semisupervised learning learns a hypothesis f for future
data (not in XU ∪ XL).
f should be better than using XL alone.
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How does unlabeled data help?
Hypothesis function using labeled data:

Hypothesis function using both labeled and unlabeled data:
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Semi-supervise learning assumptions

Semi-supervise learning algorithms rely on one of the following
assumptions:

Smoothness assumption: If two data samples are similar, then output
labels should be similar.

Cluster assumption: Samples in the same cluster are more likely to
have the same label. i.e. low-density separation between
classes A special case of the smoothness assumption

Manifold assumption: Data lie approximately on a manifold of
dimension � n. This allows us to use distances on the
manifold
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Generative models
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Using unlabeled data in generative models

Example: guassian discriminant model

without unlabeled data

with unlabeled data
Notice the difference in the decision boundaries
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Supervised Generative Models

Given random variables x ∈ X , y ∈ Y, assume that
I class prior distribution p(y ; θ)

e.g. y ∼ Multinomial(φ)
I data generating distribution p(x |y ; θ)

e.g. x |y ∼ N(µ,Σ)

A generative model computes the joint probability as

p(x , y ; θ) = p(x |y ; θ)p(y ; θ)

Classifier using Baye’s rule:

p(y |x ; θ) = p(x |y ; θ)p(y ; θ)
p(x ; θ)

=
p(x |y ; θ)p(y ; θ)∑

y ′ p(x |y ′; θ)p(y ′; θ)
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Training Generative Models

Given data (x (1), y (1)) . . . (x (m), y (m)), θ can be estimated using
maximum likelihood:

argmax
θ

log
m∏

i=1
p(x (i), y (i); θ)

Alternative ways to learn θ:
I MAP estimator
I Bayesian estimator
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Semi-supervised Generative Model

Given labeled data (x (1), y (1)), . . . , (x (l), y (l)), and unlabeled data
x (l+1), . . . , x (l+u)

Maximimum likelihood estimation of θ:

argmax
θ

log
l∏

i=1
p(x (i), y (i); θ)︸ ︷︷ ︸

labeled data

+λ log
l+u∏

i=l+1
p(x (i); θ)︸ ︷︷ ︸

unlabeled data

where

log
l+u∏

i=l+1
p(x (i); θ) =

l+u∑
i=l+1

log p(x (i); θ) =
l+u∑

i=l+1
log
∑
y∈Y

p(x (i), y ; θ)

is typically non-concave. We can only find local optimal solutions.
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Training semi-supervised generative model

Treat unknown labels y (l), . . . , y (l+u) as hidden variables.

An EM algorithm
- Initialize θ randomly
- Repeat until convergence{

E-step I Compute Qi(y (i)) = p(y |x (i); θ) for all
i = l + 1, . . . , l + u

M-step I Update θ using full data (Xl ,Xu)

}
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Application: Document classification

20 Newsgroup Dataset
I XL: 10000 unlabeled documents
I XU : 20-5000 labeled documents
I y ∈ 1, . . . , 20 topics

Generative model
I Naive bayes model
I MAP estimator

K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using EM. Machine Learning, 39, 2000. 24 / 47



Front Matter Generative models Semi-Supervised SVM Graph-based Methods Multiview Learning Deep Semi-Supervised Learning

Generative model assumptions

Generative model works well when the model choice is correct.
e.g. for a mixture model,
I Cluster assumption: data in the same class lie in a cluster, which is

separated from other clusters
I The # of clusters = number of classes

Part I Mixture Models

The assumption of mixture models
Assumption: the data actually comes from the mixture model, where
the number of components, prior p(y), and conditional p(x|y) are all
correct.
When the assumption is wrong:

−5 0 5−6
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4
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x1

x 2

y = 1

y = −1

For example, classifying text by topic vs. by genre.
Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 27 / 99
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Heuristics to lessen the danger
Carefully construct the generative model, e.g., multiple Gaussian
distributions per class
Down-weight the unlabeled data (� < 1)

log p(Xl, Yl, Xu|✓) =
Pl

i=1 log p(yi|✓)p(xi|yi, ✓)
+ �

Pl+u
i=l+1 log

⇣P2
y=1 p(y|✓)p(xi|y, ✓)

⌘
Other

dangers: identifiability, EM local optima

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 28 / 99

Example of incorrect assumption
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Semi-Supervised SVM
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Semi-Supervised SVM

I Unlabeled data from different classes are separated by large margin
I Idea: The decision boundary shouldn’t lie in the regions of high

density p(x)

Part I S3VMs and Entropy Regularization

Semi-supervised Support Vector Machines

SVMs

−

+
+

−
+

−

Semi-supervised SVMs (S3VMs) = Transductive SVMs (TSVMs)

Assumption: Unlabeled data from di↵erent classes are separated with large
margin.

Xiaojin Zhu (Univ. Wisconsin, Madison) Tutorial on Semi-Supervised Learning Chicago 2009 58 / 99
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Review: Soft-Margin SVM

Given training data (x (1), y (1)), . . . , (x (m), y (m))

Train a soft-margin SVM classifier:

min
w ,b,ξ

1
2 ||w ||

2 + C
m∑

i=1
ξi

s.t. y (i)(wT x (i) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m

Can be solved using quadratic
programming.
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Semi-Supervised SVM

Optimization variables:
I Estimated label for unlabeled data: {ŷ l+1, . . . , ŷ l+u}
I Margin of labeled data: {ξ1, . . . , ξl}
I Margin of unlabeled data: {ξ̂l+1, . . . , ξ̂l+u}

min
w ,b,{εi},{ε̂j},{ŷj}

1
2 ||w ||

2
2 + C

l∑
i=1

ξi + C ′
l+u∑

j=l+1
ξ̂j

s.t. (wT x (i) + b)y (i) ≥ 1− ξi ∀i = 1, . . . , l
(wT x (j) + b)ŷ (j) ≥ 1− ξ̂j ∀j = l + 1, . . . , l + u
ŷ (j) ∈ {−1, 1} ∀j = l + 1, . . . , l + u

T. Joachims. Transductive inference for text classification using support vector
machines. In Proc. 16th International Conf. on Machine Learning, p200209. 1999

30 / 47



Front Matter Generative models Semi-Supervised SVM Graph-based Methods Multiview Learning Deep Semi-Supervised Learning

Semi-Supervised SVM Discussion

Numerical optimization
I Semi-supervised SVM is an integer programming problem: NP-hard
I Approximated solutions are used in practice

Low-Density Assumption
I Decision boundary should lie in a low density region
I Equivalent to the cluster assumption
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Graph-based Methods
Transductive Semi-Supervised Classification: Label Propagation
Inductive Semi-Supervised Learning: Manifold Regularization
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Label propagation idea

Main idea
I Build a graph connecting data

points x (1), . . . , x (m)

I Assign weights to edges
according to similarity measure
s(x (i), x (j))

I Propagate labels from labeled
points forward to unlabeled
points

Label propagation is a transductive
algorithm.

Low energy ! Label Propagation

energy: E(y) = 1
2

P
i,j wij (yi � yj)

2

With no labelled data, then y = 1 or y = 0 is a min energy configuration:

energy=0

Conditioned on labeled data:

energy=4 energy=2 energy=1
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Label Propagation: Iterative Approach

Node labels: Y =

[
YL
YU

]
∈ Rm×n

Low energy ! Label Propagation

energy: E(y) = 1
2

P
i,j wij (yi � yj)

2

With no labelled data, then y = 1 or y = 0 is a min energy configuration:

energy=0

Conditioned on labeled data:

energy=4 energy=2 energy=1

Define T to be the m ×m transition matrix that realizes the propagation
of labels:

1. Initialize Y 0 =

[
YL
0

]
2. Repeat until convergence {
3. Y t = TY t−1

4. Clamp the labeled data Y t
L = YL

5. }
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Label propagation: analytical solution

Write the transition step as block matrices:

Y = TY[
YL
YU

]
=

[
TLL TLU
TUL TUU

] [
YL
YU

]
We can solve for the unknown labels YU :

YU = TULYL + TUUYU

YU = (I − TUU)
−1TULYL

assuming that (I − TUU)
−1 is invertible.

How to find T?
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How to find T?
Gaussian similarity:

Wi,j = exp

(
−||x

(i) − x (j)||22
2σ2

)
for i , j = 1, . . . ,m

Let D = diag(W 1) be the degree matrix

D =


∑n

j=1 w1j 0 . . . 0
0

∑n
j=1 w2j . . . 0

...
...

. . .
...

0 0 . . .
∑n

j=1 wmj


Define T = D−1W ← I − Lrm where Lrm is the normalized Laplacian!

Tij =
wij∑n
l=1 wil

←is the transition probability from point i to j

Yu = (I − TUU)
−1TULYL = (DU −WUU)

−1WULYL (1)
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Interpretation of T = D−1W : Random WalkfU Interpretation: Random Walks

P (j|i) =
wijP
k wik

fi = P (reach label 1|from i)

1

0

i

I Randomly walk from unlabeled node i to j with probability
Tij =

wij∑n
l=1 wil

I Stop if we hit a labeled node
I The label function Yic = Pr( hit label c | start from i)
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Iterative label propagation example
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Label propagation as an optimization problem

Let random vector yi ∈ Rn represent the label for data i
We can solve label propagation by

min
yi ,i∈U

1
2

m∑
i,j=1

Wij ||yi − yj ||2

I Minimize the distance between class membership vectors based on
weight similarity
I Wij is very large: need to ensure ||yi − yj ||2 is small
I Wij is very small: ||yi − yj ||2 is not constrained

I Equivalent to iterative solution Yu = (DU −WUU)
−1WULYL
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Label Propagation

Let L = D −W be the unnormalized graph laplacian of G.

Lemma 1
minyi ,i∈U

1
2
∑m

i,j=1 Wij ||yi − yj ||2 is equivalent to minYU tr(Y T LY )

Theorem 1
The optimal solution to minyi ,i∈U

1
2
∑m

i,j=1 Wij ||yi − yj ||2 is
Yu = (DU −WUU)

−1WULYL

Proofs can be found in:
Bodó, Zalán, and Lehel Csató. A note on label propagation for semi-supervised
learning. Acta Universitatis Sapientiae, Informatica 7, no. 1: 18-30, 2015.
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Inductive semi-supervised learning

I Goal: Learn a better predictor f : X → Y using unlabeled data XU

I In graph-based learning, a large Wij implies a preference for
f (x (i)) = f (x (j)), represented by an energy function :

m∑
i,j

Wij(f (x (i))− f (x (j)))2 (∗)

Example: no labeled data

The top-ranked (smoothest) hypothesis is f (x) = 1 or f (x) = 0
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Inductive semi-supervised learning

I Goal: Learn a better predictor f : X → Y using unlabeled data XU

I In graph-based learning, a large Wij implies a preference for
f (x (i)) = f (x (j)), represented by an energy function :

m∑
i,j

Wij(f (x (i))− f (x (j)))2 (∗)

Example: conditioned on labeled data
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Find f that both fits the labeled data well and ranks high (being smooth
on the graph or underlying manifold.

argmin
f ∈F

1
l

l∑
i=1
L(f (x (i)), y (i)) + λ1||f ||2︸ ︷︷ ︸

supervised loss

+λ2

m∑
i,j=1

Wij(f (x (i))− f (x (j)))2

︸ ︷︷ ︸
regularization of XU

I L is a convex loss function, e.g. hinge-loss, squared loss
I This problem is convex with efficient solvers

By Lemma 1, it can be written as

argmin
f ∈F

1
l

l∑
i=1
L(f (x (i)), y (i)) + λ1||f ||2 + λ2tr(f T Lf )

Algorithm variations: graph min-cut, manifold regularization, etc
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Further readings on inductive graph-based semi-supervised learning:
I M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A

geometric framework for learning from labeled and unlabeled
examples. Journal of Machine Learning Research, 7:23992434,
November 2006.

I A. Blum and S. Chawla. Learning from labeled and unlabeled data
using graph mincuts. In Proc. 18th International Conf. on Machine
Learning, 2001.
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Graph-based semi-supervised learning discussion

When to use graph-based SSL?
I SSL only works well when the underlying assumptions hold on the

data
I Constructing a good graph is important!

Transductive vs inductive?
I Transductive: predict labels on the unlabeled data (known at

training time)
I Inductive: predict labels for future (unseen) data
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Multiview Learning
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Example: Web page classification

Multiview learning assumptions:
I Multiple learners are trained on the same labeled data
I Learners agree on the unlabeled data

e.g. A web page has multiple subsets of features, or views

x = 〈x1, x2, x3〉
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Multiview semi-supervised learning

Let f1, . . . , fk be the hypothesis function on k views.
The disagreement of hypothesis tuple 〈f1, . . . , fk〉 on the unlabeled data
can be defined as

l+u∑
i=l+1

k∑
u,v
L(fu(x (i)), fv (x (i)))

Common loss function L
I 0-1 loss (discrete y)

L(fu(x (i)), fv (x (i))) =

{
1 if fu(x (i)) = fv (x (i))

0 otherwise

I Squared error (continuous y)

L(fu(x (i)), fv (x (i))) = ||fu(x (i))− fv (x (i))||2
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Multiview semi-supervised learning

L(f1, . . . , fk) =
k∑

u=1

(
1
l

l∑
i=1
Lu(fu(x (i)), y (i)) + λΩu(fu)

)
︸ ︷︷ ︸

regularized empirical risk on labeled data

+
l+u∑

i=l+1

k∑
u,v
L(fu(x (i)), fv (x (i)))︸ ︷︷ ︸

disagreement on unlabeled data

where Lu is the loss of view u.

To find the optimal hypothesis:

argmin
f1,...,fk

L(f1, . . . , fk)

When Lu,Ωu and L and are all convex, numerical solution can easily be
obtained.
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Multiview learning discussion
Independent view assumption: there exists subsets of features (views),
each of which
I is independent of other views given the class
I is sufficient for classification

Assumption: Independent Views Exist

There exist subsets of features, called views, each of which

is independent of the others given the class;

is su�cient for classification.

view 1

view 2

Algorithmic idea: Co-TrainingV. Sindhwani, P. Niyogi, and M. Belkin. A co-regularized approach to semi-supervised
learning with multiple views. In Proc. of the 22nd ICML Workshop on Learning with

Multiple Views, August 2005.
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Deep Semi-Supervised Learning
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Deep Semi-Supervised Learning

Main categories of recent deep semi-supervised methods:
I Proxy-label method: leverage a trained model on the labeled data

to produce additional training examples by labeling unlabeled
samples based on some heuristics. e.g. self-training, pseudo-labeling

I Consistency regularity: assumes that when a perturbation was
applied to the unlabeled data points, the prediction should not
change significantly e.g. Π-Model, Mixup

I Graph-based approaches: use label propagation on unlabeled
data with supervised deep feature embedding e.g. GNN based
methods

I Generative models: estimate the input distribution p(x) from
unlabeled data in addition to classification (VAE or GAN based
methods)

I Hybrid approaches: combining multiple techniques e.g. MixMatch
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Proxy-Label Methods
Pseudo-labeling

I Use labeled data Dl = {Xl ,Yl} to train a prediction function fθ
I Assign pseudo-labels ŷ = argmax fθ(x) to each unlabeled sample

x ∈ Xu. fθ(xu) is a probability distribution over classes Y
I add (x , ŷ) to Dl if max fθ(x) > τ for some threshold τ > 0

fθ(x)
train

pseudo-label

Dl

Xu

Xu, ̂Yuτ

D′ l

retrain
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Pseudo-label example
Lee, Dong-Hyun. Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks. In Workshop on challenges in
representation learning, ICML, 2013.
Overall loss function:

Pseudo-Label : The Simple and E�cient Semi-Supervised Learning Method for Deep Neural Networks

data. But dropout is di↵erent from bagging in that all
of the sub-models share same weights.

For successful SGD training with dropout, An expo-
nentially decaying learning rate is used that starts at
a high value. And momentum is used to speed up
training.

�W (t+ 1) = p(t)�W (t)� (1� p(t)) ✏(t) < rWL >

(10)
W (t+ 1) = W (t) +�W (t) (11)

where,
✏(t+ 1) = k ✏(t) (12)

p(t) =

(
t
T pf +

�
1� t

T

�
pi t < T

pf t � T
(13)

with k = 0.998, pi = 0.5, pf = 0.99, T = 500, t is
the current epoch, < rWL > is the gradient of loss
function, ✏(0) is the initial learning rate. We use these
parameters from original dropout paper (Hinton et al.,
2012), but don’t use weight regularization.

2.4. Pseudo-Label

Pseudo-Label are target classes for unlabeled data as if
they were true labels. We just pick up the class which
has maximum predicted probability for each unlabeled
sample.

y
0
i =

(
1 if i = argmaxi0 fi0(x)

0 otherwise
(14)

We use Pseudo-Label in a fine-tuning phase with
Dropout. The pre-trained network is trained in a su-
pervised fashion with labeled and unlabeled data si-
multaneously. For unlabeled data, Pseudo-Labels re-
calculated every weights update are used for the same
loss function of supervised learning task.

Because the total number of labeled data and unla-
beled data is quite di↵erent and the training balance
between them is quite important for the network per-
formance, the overall loss function is

L =
1

n

nX

m=1

CX

i=1

L(ymi , f
m
i )+↵(t)

1

n0

n0X

m=1

CX

i=1

L(y0mi , f
0m
i ),

(15)
where n is the number of mini-batch in labeled data
for SGD, n0 for unlabeled data, fm

i is the output units
of m’s sample in labeled data, ymi is the label of that,
f
0m
i for unlabeled data, y0mi is the pseudo-label of that
for unlabeled data, ↵(t) is a coe�cient balancing them.

The proper scheduling of ↵(t) is very important for
the network performance. If ↵(t) is too high, it dis-
turbs training even for labeled data. Whereas if ↵(t)

is too small, we cannot use benefit from unlabeled
data. Furthermore, the deterministic annealing pro-
cess, by which ↵(t) is slowly increased, is expected to
help the optimization process to avoid poor local min-
ima (Grandvalet et al., 2006) so that the pseudo-labels
of unlabeled data are similar to true labels as much as
possible.

↵(t) =

8
><

>:

0 t < T1
t�T1
T2�T1

↵f T1  t < T2

↵f T2  t

(16)

with ↵f = 3, T1 = 100, T2 = 600 without pre-training,
T1 = 200, T2 = 800 with DAE.

3. Why could Pseudo-Label work?

3.1. Low-Density Separation between Classes

The goal of semi-supervised learning is to improve gen-
eralization performance using unlabeled data. The
cluster assumption states that the decision boundary
should lie in low-density regions to improve general-
ization performance (Chapelle et al., 2005).

Recently proposed methods of training neural net-
works using manifold learning such as Semi-Supervised
Embedding and Manifold Tangent Classifier utilize
this assumption. Semi-Supervised Embedding (Weston
et al., 2008) uses embedding-based regularizer to im-
prove the generalization performance of deep neural
networks. Because neighbors of a data sample have
similar activations with the sample by embedding-
based penalty term, it’s more likely that data samples
in a high-density region have the same label. Manifold
Tangent Classifier (Rifai et al., 2011b) encourages the
network output to be insensitive to variations in the
directions of low-dimensional manifold. So the same
purpose is achieved.

3.2. Entropy Regularization

Entropy Regularization (Grandvalet et al., 2006) is a
means to benefit from unlabeled data in the framework
of maximum a posteriori estimation. This scheme fa-
vors low density separation between classes without
any modeling of the density by minimizing the condi-
tional entropy of class probabilities for unlabeled data.

H(y|x0) = � 1

n0

n0X

m=1

CX

i=1

P (ymi = 1|x0m) logP (ymi = 1|x0m)

(17)
where n

0 is the number of unlabeled data, C is the
number of classes, ymi is the unknown label of the mth
unlabeled sample, x0m is the input vector of mth unla-

Proper scheduling of α(t) is important for network performance!

Feature embedding results on MNIST
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Consistency regularization

I Favoring functions fθ that give consistent predictions for similar
data points. ← clustering assumption

I Given unlabeled sample x ∈ Xu and its perturbed version x̂
I Minimize the distance between the two outputs d(fθ(x), fθ(x̂))

I Common distance functions:

dMSE (fθ(x), fθ(x̂) =
1
C

C∑
j=1

(fθ(x)j − fθ(x̂)j)
2

dKL(fθ(x), fθ(x̂)) =
1
C

C∑
j=1

fθ(x)j log
fθ(x)j
fθ(x̂)j
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Consistency Regularization Example: Π-Model
Laine, Samuli, and Timo Aila. "Temporal ensembling for semi-supervised
learning." arXiv preprint arXiv:1610.02242 (2016).

Network
with dropout

Augmentations

Cross
Entropy

Loss

Figure 3: Loss computation for ⇧-Model. The MSE between the two outputs is computed for the unsu-
pervised loss, and if the input is a labeled example, we add the supervised loss to the weighted unsupervised
loss.

2.2 Pi-Model

The ⇧-Model [92] is a simplification of the �-Model of Ladder Networks, where the corrupted encoder is
removed, and the same network is used to get the prediction for both corrupted and uncorrupted inputs.
Specifically, ⇧-Model takes advantage of the stochastic nature of the prediction function f✓ in neural networks
due to common regularization techniques, such as data augmentation and dropout, that typically don’t alter
the model predictions. For any given input x, the objective is to reduce the distances between two predictions
of f✓ with x as input in both forward passes. Concretely, as illustrated in fig. 3, we would like to minimize
d(y, ỹ), where we consider one of the two outputs as a target. Given the stochastic nature of the predictions
function (e.g., using dropout as a noise source), the two outputs f✓(x) = ỹ1 and f✓(x) = ỹ2 will be distinct,
and the objective is to obtain consistent predictions for both of them. In case the input x is a labeled data
point, we also compute the cross-entropy supervised loss using the provided labels y:

L = w
1

|Du|
X

x2Du

dMSE(ỹ1, ỹ2) +
1

|Dl|
X

x,y2Dl

H(y, f(x)) (2.6)

with w as a weighting function, starting from 0 up to a fixed weight � (e.g., 30) after a given number of
epochs (e.g., 20% of training time). This way, we avoid using the untrained and random prediction function,
providing us with unstable predictions at the start of training.

2.3 Temporal Ensembling

⇧-Model can be divided into two stages, we first classify all of the training data without updating the weights
of the model, obtaining the predictions y, and in the second stage, we consider the predictions y as targets for
the unsupervised loss and enforce consistency of predictions by minimizing the distance between the current
outputs ỹ and the outputs of the first stage y under different dropouts and augmentations.

The problem with this approach is that the targets y are based on a single evaluation of the network
and can rapidly change. This instability in the targets can lead to an instability during training and reduces
the amount of training signal that can be extracted from the unlabeled examples. To solve this, Laine et

al. [92] propose a second version of ⇧-Model called Temporal Ensembling, where the targets yema are
the aggregation of all the previous predictions. This way, during training, we only need a single forward
pass to get the current predictions ỹ and the aggregated targets yema, speeding up the training time by
approximately 2⇥. The training process is illustrated in fig. 4.

For a target ỹ, at each training iteration, the current output ỹ is accumulated into the ensemble output

yema by an exponentially moving average update:

yema = ↵yema + (1� ↵)ỹ (2.7)

where ↵ is a momentum term that controls how far the ensemble reaches into training history. ỹ can also

8

I Perturb each input x by random augmentations (e.g. image translation,
flipping, rotations etc) and random dropout to obtain distinct predictions
ỹ1, ỹ2

I Enforce a consistency over two perturbed versions of x by
Lu = dMSE (ỹ1 − ỹ2)

I If x ∈ Xl , minimize the cross-entropy loss Ll(y , f (x))

L = w 1
|Du|

∑
x∈Du

dMSE (ỹ1, ỹ2) +
1

|Dl |
∑

x,y∈Dl

Ll(y , f (x))

w is set to zero for the first 20% training time
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Consistency Regularization Example: Π-Model
Laine, Samuli, and Timo Aila. "Temporal ensembling for semi-supervised
learning." arXiv preprint arXiv:1610.02242 (2016).
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2.2 Pi-Model

The ⇧-Model [92] is a simplification of the �-Model of Ladder Networks, where the corrupted encoder is
removed, and the same network is used to get the prediction for both corrupted and uncorrupted inputs.
Specifically, ⇧-Model takes advantage of the stochastic nature of the prediction function f✓ in neural networks
due to common regularization techniques, such as data augmentation and dropout, that typically don’t alter
the model predictions. For any given input x, the objective is to reduce the distances between two predictions
of f✓ with x as input in both forward passes. Concretely, as illustrated in fig. 3, we would like to minimize
d(y, ỹ), where we consider one of the two outputs as a target. Given the stochastic nature of the predictions
function (e.g., using dropout as a noise source), the two outputs f✓(x) = ỹ1 and f✓(x) = ỹ2 will be distinct,
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with w as a weighting function, starting from 0 up to a fixed weight � (e.g., 30) after a given number of
epochs (e.g., 20% of training time). This way, we avoid using the untrained and random prediction function,
providing us with unstable predictions at the start of training.

2.3 Temporal Ensembling

⇧-Model can be divided into two stages, we first classify all of the training data without updating the weights
of the model, obtaining the predictions y, and in the second stage, we consider the predictions y as targets for
the unsupervised loss and enforce consistency of predictions by minimizing the distance between the current
outputs ỹ and the outputs of the first stage y under different dropouts and augmentations.

The problem with this approach is that the targets y are based on a single evaluation of the network
and can rapidly change. This instability in the targets can lead to an instability during training and reduces
the amount of training signal that can be extracted from the unlabeled examples. To solve this, Laine et

al. [92] propose a second version of ⇧-Model called Temporal Ensembling, where the targets yema are
the aggregation of all the previous predictions. This way, during training, we only need a single forward
pass to get the current predictions ỹ and the aggregated targets yema, speeding up the training time by
approximately 2⇥. The training process is illustrated in fig. 4.

For a target ỹ, at each training iteration, the current output ỹ is accumulated into the ensemble output
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ỹ1, ỹ2
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I If x ∈ Xl , minimize the cross-entropy loss Ll(y , f (x))

L = w 1
|Du|

∑
x∈Du

dMSE (ỹ1, ỹ2) +
1

|Dl |
∑

x,y∈Dl

Ll(y , f (x))
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Consistency Regularization Example: Π-Model
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2.2 Pi-Model

The ⇧-Model [92] is a simplification of the �-Model of Ladder Networks, where the corrupted encoder is
removed, and the same network is used to get the prediction for both corrupted and uncorrupted inputs.
Specifically, ⇧-Model takes advantage of the stochastic nature of the prediction function f✓ in neural networks
due to common regularization techniques, such as data augmentation and dropout, that typically don’t alter
the model predictions. For any given input x, the objective is to reduce the distances between two predictions
of f✓ with x as input in both forward passes. Concretely, as illustrated in fig. 3, we would like to minimize
d(y, ỹ), where we consider one of the two outputs as a target. Given the stochastic nature of the predictions
function (e.g., using dropout as a noise source), the two outputs f✓(x) = ỹ1 and f✓(x) = ỹ2 will be distinct,
and the objective is to obtain consistent predictions for both of them. In case the input x is a labeled data
point, we also compute the cross-entropy supervised loss using the provided labels y:
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with w as a weighting function, starting from 0 up to a fixed weight � (e.g., 30) after a given number of
epochs (e.g., 20% of training time). This way, we avoid using the untrained and random prediction function,
providing us with unstable predictions at the start of training.

2.3 Temporal Ensembling

⇧-Model can be divided into two stages, we first classify all of the training data without updating the weights
of the model, obtaining the predictions y, and in the second stage, we consider the predictions y as targets for
the unsupervised loss and enforce consistency of predictions by minimizing the distance between the current
outputs ỹ and the outputs of the first stage y under different dropouts and augmentations.

The problem with this approach is that the targets y are based on a single evaluation of the network
and can rapidly change. This instability in the targets can lead to an instability during training and reduces
the amount of training signal that can be extracted from the unlabeled examples. To solve this, Laine et

al. [92] propose a second version of ⇧-Model called Temporal Ensembling, where the targets yema are
the aggregation of all the previous predictions. This way, during training, we only need a single forward
pass to get the current predictions ỹ and the aggregated targets yema, speeding up the training time by
approximately 2⇥. The training process is illustrated in fig. 4.
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ỹ1, ỹ2

I Enforce a consistency over two perturbed versions of x by
Lu = dMSE (ỹ1 − ỹ2)

I If x ∈ Xl , minimize the cross-entropy loss Ll(y , f (x))

L = w 1
|Du|

∑
x∈Du

dMSE (ỹ1, ỹ2) +
1

|Dl |
∑

x,y∈Dl

Ll(y , f (x))

w is set to zero for the first 20% training time
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Semi-supervised learning summary

Approach Assumptions Type
Graph-based manifold assumption transductive , in-

ductive
Generative
model

cluster assumption inductive

SVM low density separation/cluster as-
sumption

inductive

Multi-view
learning

independent view assumption inductive

Proxy-label manifold assumption inductive
Consistency reg-
ularization

cluster assumption inductive
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Online poster session information

I Submit your posters by Jan 3, 2023
I All teams will be divided into 4 tracks. Your poster will be shared

online for pair-review and voting by other teams within your track,
starting from Jan 5th.

I Each team will deliver a 3-min presentation for the poster on Jan 6,
2023.

I Prizes available for the best presenter, best poster and most
impactful work!

Detailed grading policy will be posted later.
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