Learning From Data Lecture 12: Unsupervised Learning III

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 16, 2022

ntroduction

endent Component Analysis

Today's Lecture

Unsupervised Learning (Part III)

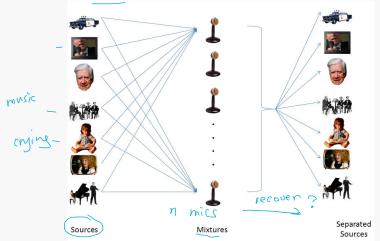
- ► Independent Component Analysis (ICA)
- ► Canonical Correlation Analysis (CCA)

Independent Component Analysis

Independent Component Analysis

The cocktail party problem

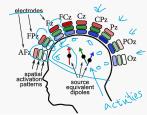
- n microphones at different locations of the room, each recording a mixture of *n* sound sources
- ► How to "unmix" the sound mixtures?

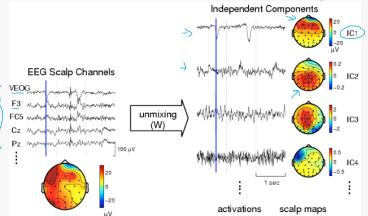


Sample audio: https://cnl.salk.edu/~tewon/Blind/blind audio.html http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html

EEG Analysis

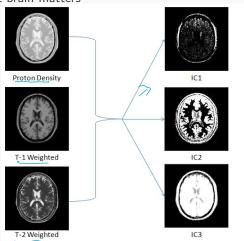
- Electrodes on patient scalp measure a mixture of different brain activations
- Finding independent activation sources helps removing artifacts in the signal





Brian imaging

- ▶ Different brain matters: gray matter, white matter, cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
- An MRI scan is a mixture of magnetic response signals from different brain matters



Problem Model

- \triangleright Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = \underline{a_{11}}\underline{s_1} + \underline{a_{12}}\underline{s_2}$$

 $x_2 = \underline{a_{21}}\underline{s_1} + \underline{a_{22}}\underline{s_2}$

Problem Model

Case: n=2

- ightharpoonup Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$
$$x_2 = a_{21}s_1 + a_{22}s_2$$

A is called the **mixing matrix**
$$\begin{pmatrix} x_l \\ x_{\lambda} \end{pmatrix} = \begin{pmatrix} A_{al} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} S_1 \\ S_2 \end{pmatrix}$$

$$x = As$$

Problem Model

Case: n=2

- ▶ Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$
$$x_2 = a_{21}s_1 + a_{22}s_2$$

A is called the mixing matrix

$$\begin{bmatrix} x_i^{(i)} \\ y_1^{(i)} \end{bmatrix} \quad x = As$$

$$S^{\alpha \gamma} = \begin{bmatrix} S_1 \\ S_2 \\ S_3 \end{bmatrix}$$

The blind source separation (cocktail party) problem

Given repeated observation $\{x_i^{(i)}; i=1,\ldots,m\}$, recover sources $\underline{s}^{(i)}$ that generated the data $(x_i^{(i)}=As^{(i)})$

Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)} = As^{(i)})$

Let $W = A^{-1}$ be the unmixing matrix

Goal of ICA: Find W, such that given $\underline{x}^{(i)}$, the sources can be recovered

by
$$\underline{s^{(i)}} = \underline{W}x^{(i)}$$

$$\downarrow \xrightarrow{S_{n}^{(i)}} = \begin{bmatrix} w_{1}^{T} - w_{1}^{T} - w_{1}^{T} - w_{1}^{T} - w_{1}^{T} - w_{1}^{T} \end{bmatrix} \quad W = \begin{bmatrix} -w_{1}^{T} - w_{1}^{T} \end{bmatrix}$$

$$S_{j}^{(i)} = w_{j}^{T} \times x^{(i)}$$

Question: Does assuming E[si2]=1 resolve the scale ambiguity in x= As?

A: No, because - S; gives the same result as S;

Assume data is **non Gaussian**, ICA has two ambiguities:

Scale Variance of the sources: We can fix the magnitude of s_i by setting

$$\mathbb{E}[s_i^2] = 1$$

$$x = As$$

$$x_j = \sum_{i=1}^{n} a_{ji}(s_i) \text{ for all } j$$

$$= \sum_{i=1}^{n} a_{ji}(\frac{1}{c_j})(c_j(s_i)) \text{ for any } c_j \neq 0$$

$$W = A^{-1}$$

$$A^{-1} = A^{-1}$$

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
S_1 \\
S_2 \\
S_3
\end{bmatrix}
=
\begin{bmatrix}
S_2 \\
S_3 \\
S_3
\end{bmatrix}$$

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- Order of the sources $\underline{s_1}, \dots, \underline{s_n}$: Let P be a permutation matrix, then we have $\underline{x} = \underbrace{APP^{-1}s}$.

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- Order of the sources s_1, \ldots, s_n : Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- Order of the sources $s_1, ..., s_n$: Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Why is Gaussian data problematic?

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- Order of the sources $s_1, ..., s_n$: Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Why is Gaussian data problematic?

- ► The distribution of any rotation of Gaussian x has the same distribution as x.
- As long as at least one s_j is non-Gaussian, given enough data, we can recover the n independent sources.

Densities and Linear Transformations

Let
$$A=2$$

$$x = As_{2s} \sim (Uniform(0,2))$$

$$\frac{4}{2} = \frac{1}{2}$$

$$\begin{array}{c} P_{c}(s) = 1. \\ P_{c}(s) = 1. \\ \hline \text{Theorem 1} \end{array} \begin{array}{c} \frac{P_{v}(x)}{P_{s}(s)} \cdot P_{x}(As) = 0.5, \\ P_{s}(s) \cdot |A^{-1}| \cdot 1 \cdot \frac{1}{2} = 0.5. \end{array}$$

5~ U(0,1) × U(0,1)

If random vector s has density p_s , and x = As for a square, invertible matrix A, then the density of x is

$$\underline{p_x(x)} = \underline{p_s(Wx)} |W|$$

where $W = A^{-1}$.

The joint distribution of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$\underline{p(s)} = \prod_{j=1}^{n} \underline{p_s(s_j)}$$

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

$$p(s) = \prod_{j=1}^{n} p_s(s_j)$$

The density of observation x = As is: $s_j = \omega_j^{\mathsf{T}_{\mathsf{X}}}$.

$$p_{x}(x) = p_{s}(s)|W| = \prod_{j=1}^{n} p_{s}(\underline{s_{j}})|W| = \prod_{j=1}^{n} p_{s}(\underline{w_{j}^{T}x})|W|$$

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

$$p(s) = \prod_{j=1}^n p_s(s_j)$$

The density of observation x = As is:

$$p_x(x) = p_s(s)|W| = \prod_{j=1}^n p_s(s_j)|W| = \prod_{j=1}^n \underbrace{p_s(w_j^T x)}|W|$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the *non-Gaussian* cdf for p_s , then

$$\underbrace{p_s(s)}=g'(s)$$

The joint distribution of *independent* sources $s = \{s_1, \ldots, s_n\}$:

$$p(s) = \prod_{j=1}^n p_s(s_j)$$

The density of observation x = As is:

$$p_x(x) = p_s(s)|W| = \prod_{j=1}^n p_s(s_j)|W| = \prod_{j=1}^n p_s(w_j^T x)|W|$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the *non-Gaussian* cdf for p_s , then

$$p_s(s) = g'(s)$$

This appears to be a heuristic choice, yet it can be justified rigorously in other interpretations.

ICA Algorithm
$$\frac{\text{Pdy of S}}{\text{d}} : g'(s) = g(s) (1-g(s))$$

Given i.i.d. training samples $\{x^{(1)}, \dots, x^{(m)}\}$, the log likelihood is

$$I(W) = \sum_{i=1}^{m} log(\underline{p_x(x^{(i)})}) = \sum_{i=1}^{m} log(\underbrace{\prod_{j=1}^{n} \underline{p_s(w_j^T x)|W|}}_{j=1})$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} log \underline{g'(w_j^T x^{(i)})} + log |W|\right)$$

Given i.i.d. training samples $\{x^{(1)}, \dots, x^{(m)}\}$, the log likelihood is

$$I(W) = \sum_{i=1}^{m} log(p_{x}(x^{(i)})) = \sum_{i=1}^{m} log(\prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|\underline{W}|)$$

$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} log g'(w_{j}^{T}x^{(i)}) + \underline{log}|\underline{W}| \atop \Im(\omega_{j}^{T}x^{(i)}) \subseteq \Im(\omega_{j}^{T}x^{(i)}) \right)$$

Stochastic gradient ascent learning rule for sample $x^{(i)}$:

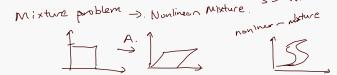
$$W := W + \alpha \left(\underbrace{\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix}}_{T \setminus M} x^{(i)^T} + (W^T)^{-1} \right)$$

Check this at home!

11/2

Theoretical Motivation of ICA

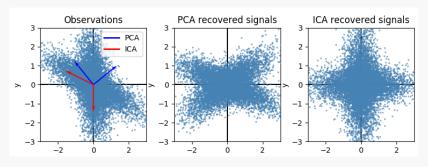
- Originally proposed by Jutten & Herault (1991) ¹90 years later than PCAW= A-1
- Equivalent to learning projection directions w_1, \ldots, w_n that
 - maximize the sum of non-gaussianity of the projected signals
 - minimize the mutual information of the projected signals \rightarrow independent on the projected signals \rightarrow independent of the projected signals \rightarrow independent \rightarrow independent under the constraint that $w_1^T x, \dots, w_n^T x$ are uncorrelated. ²



¹Christian Jutten, Jeanny Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991

²Hyvärinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms and applications." Neural networks 13.4-5 (2000): 411-430.

ICA vs PCA



	PCA	ICA
	approxim <u>ately Gaussian da</u> ta	<u>non-Gaussian</u> data
_	removes correlation (low order	
ے۔	d <u>ependen</u> ce)	order dependence E(×4)
)	ordered importance	all components are equally impor-
		tant
	orthogonal	not orthogonal

Yang Li yangli@sz.tsinghua.edu.cn

Learning From Data

Canonical Correlation Analysis

Canonical Correlation Analysis

Canonical Correlation Analysis

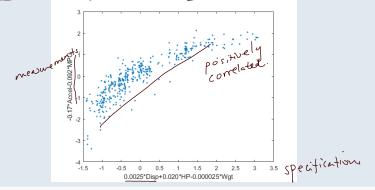
Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Canonical Correlation Analysis

Canonical correlation analysis (<u>CCA</u>) finds the associations among two sets of variables.

Example: two sets of measurements of 406 cars:

- Specification: Engine displacement (Disp), horsepower (HP), weight (Wgt)
 - Measurement: Acceleration (Accel), MPG



find important features that explain covariation between sets of variables

Random vectors
$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$$
 and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$

$$\begin{array}{c} (0 \lor (\times) & cov \lor Y \\ (0 \lor (\times) & \Sigma & X \end{array}) \\ Covariance matrix \Sigma_{XY} = \underline{cov}(X, Y) \\ \Sigma_{XX} \end{array}$$

CCA Definitions

- Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$
- ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- \triangleright CCA finds vectors a and <u>b</u> such that the random variables a^TX and $b^T Y$ maximize the correlation

$$\underline{\rho} = corr(a^T X, b^T Y)$$

CCA Definitions

- ▶ Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
- ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- ightharpoonup CCA finds vectors a and b such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$\rho = corr(\underbrace{a^T X}_{\bigvee}, \underbrace{b^T Y}_{\bigvee})$$

 $V = a^T X$ and $V = b^T Y$ are called **the first pair of canonical** variables

CCA Definitions

- Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$
- ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- \triangleright CCA finds vectors a and b such that the random variables a^TX and $b^T Y$ maximize the correlation

relation
$$\rho = corr(a^{T}X, b^{T}Y)$$

$$A_{i,j}b_{i} = arg^{rna} \times corr(a^{T}X, b^{T}Y)$$

- $V = a^T X$ and $V = b^T Y$ are called the first pair of canonical variables
- ightharpoonup Subsequent pairs of canonical variables maximizes ho while being uncorrelated with all previous pairs

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle $(m \times n)$ matrices M.

eigenvalue decomposition to re
$$(m \times n) (m \times m) (m \times n) (n \times n)$$

$$M = U \sum_{i} V^{T}_{i} = \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$$

$$V_{i} = V_{i} = V_{i} = V_{i}$$

- $V \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices
- $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix. r = min(m, n)

Examples:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \end{bmatrix}$$

Diagonal entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$, $k = \min(n, m)$ are called singular values of M.

Review: Singular Value Decomposition

A non-negative real number $\underline{\sigma}$ is a singular value for $\underline{M} \in \mathbb{R}^{m \times n}$ if and only if there exist unit-length $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

$$\underline{M}v = \underline{\sigma}u$$
$$M^{\mathsf{T}}u = \underline{\sigma}v$$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for $M \in \mathbb{R}^{m \times n}$ if and only if there exist unit-length $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

$$Mv = \sigma u$$
$$M^{\mathsf{T}} u = \sigma v$$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Connection to eigenvalue decomposition

- Given SVD of matrix $M = U\Sigma V^T$,
 - $M^T M = (V \Sigma^T U^T)(U \Sigma V^T) = V(\Sigma^T \Sigma) V^T \leftarrow v_i \text{ is an eigenvector}$ of M^TM with eigenvalue σ^2
 - ► $MM^T = (U\Sigma V^T)(V^T\Sigma^T U) = U(\Sigma\Sigma^T)U^T \leftarrow u_i$ is an eigenvector of MM^T with eigenvalue σ^2

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \operatorname{corr}(\underline{a}^T X, \underline{b}^T Y)$$
(1)

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \operatorname{corr}(a^T_i X, b^T_i Y)$$
(1)

Assume
$$\mathbb{E}[x_1] = \cdots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \cdots = \mathbb{E}[y_{n_2}] = 0$$
,
$$corr(a^T X, b^T X) = \frac{\mathbb{E}[(a^T X)(b^T Y)]}{\sqrt{\mathbb{E}[(a^T X)^2]\mathbb{E}[(a^T Y)^2]}}$$

$$= \frac{a^T \Sigma_{XY} b}{\sqrt{a^T \Sigma_{XY} a} \sqrt{b^T \Sigma_{YY} b}}$$

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}}{\operatorname{argmax}} \underbrace{\operatorname{corr}(\underline{a}^T_i X, \underline{b}^T_i Y)} \tag{1}$$

Assume $\mathbb{E}[x_1] = \cdots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \cdots = \mathbb{E}[y_{n_2}] = 0$,

$$corr(\underline{a^{T}X}, \underline{b^{T}X}) = \frac{\mathbb{E}[(a^{T}X)(b^{T}Y)]}{\sqrt{\mathbb{E}[(a^{T}X)^{2}]\mathbb{E}[(a^{T}Y)^{2}]}}$$
$$= \frac{a^{T}\Sigma_{XY}b}{\sqrt{a^{T}\Sigma_{XX}a}\sqrt{b^{T}\Sigma_{YY}b}}$$

(1) is equivalent to:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \underline{a^T \Sigma_{XY} b}$$

$$a^T \Sigma_{XX} a = b^T \Sigma_{YY} b = 1$$

18/2

(2)

max
$$aT \sum_{xy} b$$
. (1)

 $a \in \mathbb{R}^n$
 st , $aT \sum_{xx} a = 1$
 $b \in \mathbb{R}^n$
 st , $aT \sum_{xy} b = a^T \sum_{xx} \sum_{xx} \sum_{xy} \sum_{xy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} b$.

 $= ((\sum_{xx} \sum_{x} \sum_{xx} \sum_{xx} \sum_{xy} \sum_{xy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} b)$
 $= (\sum_{xx} \sum_{x} a)^T (\sum_{xx} \sum_{xy} \sum_{xy} \sum_{xy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} \sum_{yy} b)$
 $= (\sum_{xx} \sum_{x} a)^T (\sum_{xx} \sum_{xy} \sum_$

19/23

st. ||c||2=1

Define $\Omega \in R^{n_1 \times n_2}$, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$

$$c = \sum_{XX}^{\frac{1}{2}} a$$

$$d = \sum_{YY}^{\frac{1}{2}} b$$

(2) can be written as

$$(c_1, d_1) = \underset{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2}}{\operatorname{argmax}} \underbrace{c^T \underline{\Omega} \underline{d}}_{||c||^2 = ||d||^2 = 1}$$

$$(3)$$

Define $\Omega \in R^{n_1 \times n_2}$, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$

$$c = \sum_{XX}^{\frac{1}{2}} a \implies \alpha = \sum_{\infty}^{-\frac{1}{2}} c$$

$$d = \sum_{YY}^{\frac{1}{2}} b$$

(2) can be written as

$$(c_1, d_1) = \underset{c \in \mathbb{R}^{n_1}, d \in \mathbb{R}^{n_2}}{\operatorname{argmax}} c^T \underline{\Omega} d$$

$$||c||^2 = ||d||^2 = 1$$
(3)

 $(\underline{c_1, d_1})$ can be solved by \underline{SVD} , then the first pair of $\underline{canonical\ variables}$ are

$$a_1 = \sum_{XX}^{-\frac{1}{2}} c_1, \quad b_1 = \sum_{YY}^{-\frac{1}{2}} d_1$$

$$(c_1,d_1) = \mathop{\mathsf{argmax}}\limits_{egin{subarray}{c} c \in \mathbb{R}^{n_1}, \, d \in \mathbb{R}^{n_2} \ ||c||^2 = ||d||^2 = 1 \end{array}$$

Proposition 1

 c_1 and d_1 are the left and right unit singular vectors of Ω with the largest singular value.

$$(c_1,d_1) = \mathop{\mathsf{argmax}}\limits_{c \in \mathbb{R}^{n_1},\,d \in \mathbb{R}^{n_2}} c^T \underline{\Omega} d$$

 $||c||^2 = ||d||^2 = 1$

Proposition 1

 c_1 and d_1 are the left and right unit singular vectors of $\underline{\Omega}$ with the largest singular value.

Theorem 2

 $\underline{c_i}$ and $\underline{d_i}$ are the left and right unit singular vectors of $\underline{\Omega}$ with the ith largest singular value. $\underline{\Omega} = \mathcal{U} \sum_{i} V^{T_i}$

Input: Covariance matrices for centered data X and Y:

- $ightharpoonup \underline{\Sigma}_{XY}$, invertible $\underline{\Sigma}_{XX}$ and $\underline{\Sigma}_{YY}$

Output: CCA projection matrices A_k and B_k :

- ightharpoonup Compute SVD decomposition of Ω

$$\Omega = \begin{bmatrix} | & \dots & | \\ c_1 & \dots & c_{n_1} \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} -d_1^T - \\ \vdots \\ -d_{n_2}^T - \end{bmatrix}$$

$$\underline{\underline{A}_k} = \underline{\Sigma_{XX}^{-\frac{1}{2}}[c_1, \dots, c_k]} \text{ and } \underline{B_k} = \underline{\Sigma_{YY}^{-\frac{1}{2}}[\underline{d}_1, \dots, \underline{d}_k]}$$

Discussion of CCA

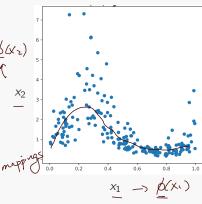
- CCA only measures linear dependencies
- ► Non-linear generalizations:
 - Kernel CCA (KCCA)
 - Deep CCA (DCCA)

Maximal HGR Correlation

non-parametric ma

$$y \rightarrow f(y)$$

$$y \rightarrow g(y)$$



Non-linear dependency between x_1 and x_2

X, y are discrete pirection

— Alternating expectation
(ACE).

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector \mathbf{x} , transform it to a low-dimensional vector \mathbf{y} through a projection matrix U:

$$y = \underline{U}^T x$$

PCA. ICA and CCA

Linear Subspace Learning

<u>Х</u> Ъ.

Given high dimensional random vector $\underline{\mathbf{x}}$, transform it to a low-dimensional vector $\underline{\mathbf{y}}$ through a projection matrix U:

$$y = U^T x$$

▶ PCA, ICA and CCA are all unsupervised linear subspace learning methods.

met	noas.		
راك س Name	What is U ?	goal	subspace
PCA	principal component	remove (low order) cor-	single
Jul -	(<i>U</i>)	relation	
"ICA"	unmixing matrix (W)	remove (high order) cor-	single
		relation	
↑ CCA	canonical projection	maximize correlation	paired
	matrices (A, B)	between feature pairs	
2002			