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introduction

Today’s Lecture

Unsupervised Learning (Part III)
» Independent Component Analysis (ICA)
» Canonical Correlation Analysis (CCA)
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[Independent Component Analysis|
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The cocktail party problem

» n microphones at different locations of the room, each recording a
mixture of n sound sources
» How to “unmix" the sound mixtures?

\ 7,
\ I
fecove ™ ‘II

.

N mics —_—

. Separated
Sources Mixtures
—_— Sources

Sample audio: https://cnl.salk.edu/~tewon/Blind/blind_audio.html,
http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html
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EEG Analysis

» Electrodes on patient scalp measure a mixture
of different brain activations

» Finding independent activation sources helps
removing artifacts in the signal

Independent Components
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Brian imaging
> Different brain matters: gray matter, white matter, cerebrospinal
fluid (CSF), fat, muscle/skin, glial matter etc.

> An MRI scan is a mixture of magnetic response signals from
different brain matters '

Proton Density
Z
T-2 Weighted 1C3
Vang Ui yanglioszsinghuncducn  MIRI SCANS (X) —Apdependent Components (s)
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Problem Model s J,,,L,ra;w | ubles
Lj’ (WJJ'I _.bL j’ b:a(\/“ s
Case n=2"

» Observed random variables: xi, x>

Independent sources: s, € R

X1 = 31151 + 125

—

—

Xp = a151 + ans
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Problem Model

Case: n=2
» Observed random variables: xi, x>
» Independent sources: s1,s5 € R

X1 = a1151 + a12%2

Xp = a151 + ans

. Aa Qe S
A is called the mixing matrix(xg = ( by A

x = As
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Problem Model

Case: n=2
» Observed random variables: xi, x>
» Independent sources: s1,s5 € R

X1 = a1151 + a12%2

Xp = a151 + ans

A is called the mixing matrix , g)m‘x
bl
T x = As S X
le“’
The blind source separation (cocktail party) problem

Given repeated observation {)L(’l.%m} recover sourcesi(’) that
generated the data (x() = As())
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pendent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation {x(): i =1,..., m}, recover sources s() that
generated the data (x() = As())
- atn<
mz\:'X“’C‘j "

Let W = A1 be the unmixing matrix
Goal of ICA: Find _V‘V such that given x() the sources can be recovered

mx(i) . -

o — = T
[S’(‘) [_WI ) {yl l o
— | = " o
- () G W S .
Sn — oy T— X, o
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ICA Ambiguities 4y e w=fAs 2
. 2= gesolue 4 scele “”""‘3\”3 Lot S5
s Asﬁ‘*w‘j E[—Sl/ S/ ‘{Sveg e Sew pea J

ézm_ed—fovu . Doe I

A s WO, \’ECD"M
Assume data is non Gaussian, ICA has two ambiguities:

Scole > Variance of the sources: We can fix the magnitude of s; by setting

L 21
E[sf] =1 < As
xj > ?—_1029_ j,r p.llj
- zlmj;(f‘j)(c)‘s;) oo g G7°
(e —
o T
w=A AT 2
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ICA Ambiguities 01 01(s %
{o © ’}K g"l: KS:}
([ ow 53 S

~\
Bl s s

Assume data is non Gaussian, ICA has two ambiguities:
» Variance of the sources: We can fix the magnitude of s; by setting
E[s?]=1
» Order of the sources si,...,5, :
Let P be a permutation matrix, then we have x = APP~!s.
— P o RN

S A) <)
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ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:
» Variance of the sources: We can fix the magnitude of s; by setting
E[s?] =1
» Order of the sources sq,...,s, :
Let P be a permutation matrix, then we have x = APP~!s.
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ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:
» Variance of the sources: We can fix the magnitude of s; by setting
E[s?] =1
» Order of the sources sq,...,s, :
Let P be a permutation matrix, then we have x = APP~1s.

Why is Gaussian data problematic?
de-F’"dJ' E[As = AEE;} =A0>

#e ] e S
x'= A-R/g _ = RT -1
x.'~ N (D, (IAQ(AR)‘ ) = N(o, AA\T)
ARRTAT= AT
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ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:
» Variance of the sources: We can fix the magnitude of s; by setting
E[s?]=1
» Order of the sources sq,...,s, :
Let P be a permutation matrix, then we have x = APP~!s.

Why is Gaussian data problematic?

> The distribution of any rotation of Gaussian x has the same
distribution as x.

> As long as at least one s; is non-Gaussian, given enough data, we
can recover the n independent sources.
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Densities and Linear Transformations? s UL, n)ylﬁ@/b
S
(et 5~ [niferrt® D A
L4 A=a l b -E__
2= As afhforn(0s2) SRSES:

Pq(Q; 1. { ?\L(XB Px A—g>., 05 . 5\LK

). 4.8 =
Theorem 1 Pf_(i)— 1ﬁ‘~l

If random vector s has density / Ps, and x = As for a square, invertible
matrix A, then the density of x is

PX(X) = ps( WX)@

wis
YVW”'"“
where W = A—1. T dete
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ICA Algorithm

The joint distribution of independent sources s = {sy, ...

p(s) = [ pe(s)
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ICA Algorithm

The joint distribution of independent sources s = {s1,...,sp}:

= H ps(s;)

.
The density of observation x = As is: Sy = UU‘ X

x (s)|W s(s;)| W SWXW
p()W)H@HPwﬂp( w
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ICA Algorithm

The joint distribution of independent sources s = {sy,...,s,}:

= H Ps(sj)
=

The density of observation x = As is:

px(x) = ps(s)|W| = HpssjlWI—Hps x)| W]

Choose the sigmoid function g(s) = as the non-Gaussian cdf for

Ps. then

_1
1+e—s

Pels) = £/(5)
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ICA Algorithm

The joint distribution of independent sources s = {s1,...,sp}:

= H Ps(sj)
=

The density of observation x = As is:
px(x) = ps(s)|W| = Hps%IWI—HpsW x)|Wi

Choose the sigmoid function g(s) = as the non-Gaussian cdf for

ps, then

_1
1+e—s

ps(s) = &'(s)

This appears to be a heuristic choice, yet it can be justified rigorously in
other interpretations.
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ICA Algorithm %45: 3(;) g[@ﬁ!-’J(Q)

T NS
Given i.i.d. training samples {x(1), ... 7x(’")}, the log likelihood is

(W) = z/og ))—Z/ongs A
=) (Z log g'(w;" x1") + log | WI)
i=1 \j= -

—

3

3
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ICA

Algorithm

Given i.i.d. training samples {x(1), ... x(™1  the log likelihood is

(W) = log(px(x") = 3 tog([  pe(w )| W)

= Z (Z Iogg’(ij_x(’l)) + log | WQ

i=1 \j=1 gﬁwj‘y\‘)(l— Sluﬁ‘
Stochastic gradient ascent learning rule for sample x(:

1—2g(w "x)
W:=W-+a«a x(")T—l—(WT)_1
1 —2g(w, " x)

W.
Check this at home! )
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independent Lomponent Analysis|

Theoretical Motivation of ICA

» Originally proposed by Jutten & Herault (1991) 190 years later than
p’gA W = At a5
» Equivalent to learning projection directions wy, ..., w, that Yl
> maximize the sum of non-gaussianity of the projeged signals J\m»“k
> minimize the mutual information of the projected signals > \V\W;S

. bLA
under the constraint that wy x,...,w," §

x are uncorrelated. 2
< = WX
Mt b2 s MRMVTE e

1 5= 1S

LChristian Jutten, Jeanny Herault, Blind separation of sources, part I: An_adaptive
algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991

2Hyvarinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms
and applications." Neural networks 13.4-5 (2000): 411-430.
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L Lacependent —omponent Znayses
ICA vs PCA
Observations 5 PCA recovered signals ICA recovered signals

ICA

approximately Gaussian data

non-Gaussian data

removes correlation (low order

:} dependence)

removes _correlations and higher

order dependence Erx?]

A ordered importance all components are equally impor-
tant
orthogonal not orthogonal
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[Canonical Correlation Analysis|
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—_ Lanonical Lorrelation Analysis

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among
two sets of variables.
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—_ [Lanonical Lorrelation Analysis
Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among
two sets of variables.
Example: two sets of measurements of 406 cars:

> Specification: Engine displacement (Disp), horsepower (HP), weight
(Wet)

» Measurement: Acceleration (Accel), MPG
LUEdSURE TICT; MIS

3
2
S
z
NQ,O‘-”( § 0
g
©
gt
N
(S
G 2
3
A (et ova
Ys 4 05 o0 05 1 15 2 25 3 35 < e(,\‘!"(":\'Q
0.0025*Disp+0.020*HP-0.000025"Wgt
find i nt features that explain covariation between sets of variables
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—_ Lanonical Lorrelation Analysis

CCA Definitions

X1 1
» Random vectors X = | : | and Y = | :
cov( )C) covlY ) S Vi

[ov(_)(/§3 = 25,

Covariance matrix Xxy = cov(X, Y)
2
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—_ [Lanonical Lorrelation Analysis

CCA Definitions

X1 )21
» Random vectors X = | © | and Y =

Xny Y,
» Covariance matrix Lxy = cov(X,Y)

» CCA finds vectors a and b such that the random variables aTi( and
bTY maximize the correlation

p=corr(a’ X,b"Y)
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CCA Definitions

X1 7
» Random vectors X = | © | and Y =

Xny Yn,
» Covariance matrix Lxy = cov(X,Y)

» CCA finds vectors a and b such that the random variables a’ X and
bTY maximize the correlation

p = corr(a’ X, lfl’)
VS \
» U=a’"Xand V =b"Y are called the first pair of canonical

variables
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[Lanonical Lorrelation Analysis

CCA Definitions

X1 7
Random vectors X = | : | and ¥V =

Xny Yn,
Covariance matrix Xxy = cov(X, Y)

CCA finds vectors a and b such that the random variables a7 X and

bTY maximize the correlation o~y Loer (<",
oo, by = 2 AT

p=corr(a’ X,b"Y) ﬁ&k_ .

U=a"Xand V= bTY are called the first pair of canonical
variables

Subsequent pairs of canonical variables maximizes p while being
uncorrelated with all previous pairs

l)\_z.l_a_{l_
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—_ [Lanonical Lorrelation Analysis

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition\ﬁto rectangle (m x n)

" g
matrices M. (s Qo ) (Df'*
T T
MZUEVD =S ouy
X .
\' W
{

> U eR™™M V & R™" are orthogonal matrices

> ¥ € R™*" is a rectangular diagonal matrix.
St

Examples:

Diagonal entries o1 > 03 > -+ > 0k, k = min(n, m) are called

singular values of M.

Learning From Datal
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Lanonical Lorrelation Analysis
\59@ 2‘ (-] ?Aserw LYE(

Review: Singular Value Decomposition Av=Iu

A non-negative real number o is a singular value for M € R™*" if and
only if there exist unit-length v € R™ and v € R” such that

Mv =ou

MTu=ov

u is called the left singular vector of o, v is called the right singular
vector of o
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Review: Singular Value Decomposition

A non-negative real number o is a singular value for M € R™*" if and
only if there exist unit-length u € R™ and v € R" such that

Mv =ou

MTu=ov

u is called the left singular vector of o, v is called the right singular

vector of o L,
< Z= [ X
Connection to eigenvalue decomposition  +
I Jym &‘ .
Given SVD of matrix M = UX VT, / é \&

>@ (VETWUT)(UzZVT) = @) VT « v; is an eigenvector
of MT M with eigenvalue <1,.2 - o

> MMT = (UZVT)(VTETU) = U(ZZT)UT « u; is an eigenvector
of MMT with eigenvalue o2 Y \}: \
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CCA Derivations

The original problem: TN J -
(a1, by) = argmax corr(a’ X,b"Y) (1)
scmipere
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[Lanonical Lorrelation Analysis

CCA Derivations

The original problem:

(a1, b)) = argmax corr(a’ X, bTY) (1)
a€R™ ,beR™ Us
Assume E[x1] = -+ = E[x,] = E[y1] = - - - = Elyn,] = O
P o’ ﬁ;[*\f] b
orr( TX bT ) ]E[( TX)(bTV{)]
VE[(a X)?|E[(aT Y)?]
B a'Yxyb
B \/aTZXXa\/bTZyyb
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[Lanonical Lorrelation Analysis

CCA Derivations

The original problem:

(a1, by) = argmax corr(a’ X,b"Y) (1)
a€R™ ,beR™ — Ly
Assume E[x1] = -+ = E[xp,] = E[y1] = -+ = E[yn,] =0,
E[(a"X)(b"Y)]
Ty 1T
corr(a’ X, b' X) =
orla X.67X) VE[(a"XIE[(aT Y )?]
- aTszb
\/aTZXXa\/bTZyyb

is equivalent to:

(a1, b1) = argmax a'Tyxyb
nbheRm @
aTZXXa = bTZyyb =1
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[Lanonical Lorrelation Analysis

CCA Derivations
e x D‘TZMY b )

&emm
ve ™

st DJZA":[
LTZY'(E': 1 T

AP 2. ify ij b
()Y S5 2a 2 b
(Tda)T ( %o Ze S ) Zerth)
S~ d.
ROPWE IETSA = (7o el
LTy = did=tdlP

o E%YB

il

(1

—c
|

Treefore. €O is e‘j“—"”(—('e‘“-{’ o W‘faé‘;n, CT_Q—J\

derR™

st [lel=l
=4

Yang Li  yangli@sz.tsinghua.edu.cn

Learning From Datal


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


—_ Lanonical Lorrelation Analysis

CCA Derivations

Define Q € R™*™ ¢ € R™ and d € R™,

1 1

— 3 2 2

Q=22 xy2¢
1

@ — L2
1
d=32b
Syeve
can be written as give
L
(c1,d1) = argmax c'Qd (3)
ceRM™, deR™
el = 1|2 = 1
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CCA Derivations

Define Q € R™*™ ¢ € R™ and d € R™,

Q= TriTxy Iyl

L
2

_ vz Z &
2 —_ =
c=Xjya = o £

1
@ = et
can be written as
(c1,di) = argmax cTQd
ceR™M deR™
llell? = [1d|]> = 1

[Lanonical Lorrelation Analysis

(3)

(c1,d1) can be solved by SVD, then the first pair of canonical variables

are

_1 _1
ay = Zx)écl, b1 = ny,dl
|
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—_ Lanonical Lorrelation Analysis

CCA Derivations

(c1,d1) = argmax c'Qd
ceRm deR™
llell? = Id|]* =1

Proposition 1

c1 and dy are the left and right unit singular vectors of Q) with the largest
singular value.
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CCA Derivations

(c1,dh) = argmax c"Qd
ceR",deR™
llell? = Id|]* =1

Proposition 1

¢ and dy are the left and right unit singular vectors of § with the largest
singular value.

Theorem 2
¢ and d; are the left and right unit singular vectors of Q with the ith
largest singular value. O = SV T

s [

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


—_ _—

CCA Algorithm

Input: Covariance matrices for centered data X and

> 3 xy , invertible X xx and Xyy

» Dimension k < min(ny, ny)

Output: CCA projection matrices Ax and By:

_1 1
> Compute 2 =3, 23 xyXyy
» Compute SVD decomposition of Q

01

_1
> A =X ia,... ck] and Bk Y[dl,...,

Or

]

[Lanonical Lorrelation Analysis

_le_ Kl&

—dT—

n2
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—_ [Lanonical Lorrelation Analysis

Discussion of CCA

» CCA only measures linear “
dependencies 5
» Non-linear generalizations: N
> Kernel CCA (KCCA)

> Deep CCA (DCCA)

> Maximal HGR Correlation s wﬁJg :
non- PMW“
G * F&d = =
y = 3[3) Non-linear dependency between x; and
dizerets n
W =X E [- 'jb#) 3(‘/‘]33 Xl\i;h:lé &{/_k', g%%‘;{'\ab
Cod™ ce

7;} gg)-Fhlee, Tpl-Egi-e
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PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector x, transform it to a
low-dimensional vector y through a projection matrix U:

y=U"x
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—_ [Lanonical Lorrelation Analysis

PCA, ICA and CCA

&

_E\

Given high dimensional random vector x, transform it to a
low-dimensional vector y through a projection matrix U:

Linear Subspace Learning f

y=UTx
» PCA, ICA and CCA are all unsupervised linear subspace learning
methods.
vz "Name | Whatis U ? goal subspace
PCA | principal component | remove (low order) cor- | single
T (V) relation
ICA | unmixing matrix (W) remove (high order) cor- | single
- - relation
> CCA | canonical projection | maximize  correlation | paired
N matrices (A, B) between feature pairs -

[
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