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introduction

Today’s Lecture

Unsupervised Learning (Part III)
» Independent Component Analysis (ICA)
» Canonical Correlation Analysis (CCA)

Yang Li  yangli@sz.tsinghua.edu.cn Leaming From Data



inaependent Lomponent Analysis

The cocktail party problem

» n microphones at different locations of the room, each recording a
mixture of n sound sources
» How to “unmix" the sound mixtures?

Separated
Sources

Sources Mixtures

Sample audio: https://cnl.salk.edu/~tewon/Blind/blind_audio.html,
http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html
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inaependent Lomponent Analysis

EEG Analysis

electrodes
AY

, FCz &2 cpy

» Electrodes on patient scalp measure a mixture
of different brain activations

» Finding independent activation sources helps
removing artifacts in the signal
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independent Lomponent Analysis

Brian imaging
> Different brain matters: gray matter, white matter, cerebrospinal
fluid (CSF), fat, muscle/skin, glial matter etc.

» An MRI scan is a mixture of magnetic response signals from
different brain matters

Proton Density

IC3

T-2 Weighted

MRI Scans (x) Learning ADAERENdENt Components (s)
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inaependent Lomponent Analysis

Problem Model

Case: n=2
» Observed random variables: xi, x>

» Independent sources: si, s, € R

X1 = a1181 + a12s

Xp = a151 + ans

A is called the mixing matrix
x = As

The blind source separation (cocktail party) problem

Given repeated observation {x(’); i=1,...,m}, recover sources s() that
generated the data (x()) = As())
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inaependent Lomponent Analysis

Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation {x(); i =1,..., m}, recover sources s() that
generated the data (x() = As())

Let W = A1 be the unmixing matrix
Goal of ICA: Find W, such that given x(), the sources can be recovered
by s(D = pix()

T
—wy —

Yang Li  yangli@sz.tsinghua.edu.cn Leaming From Data



inaependent Lomponent Analysis

ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:
» Variance of the sources: We can fix the magnitude of s; by setting
E[s?] =1
» Order of the sources sq,...,s, :
Let P be a permutation matrix, then we have x = APP~1s.

Why is Gaussian data problematic?

» The distribution of any rotation of Gaussian x has the same
distribution as x.

> As long as at least one s; is non-Gaussian, given enough data, we
can recover the n independent sources.

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Data



inaependent Lomponent Analysis

Densities and Linear Transformations

Theorem 1

If random vector s has density ps, and x = As for a square, invertible
matrix A, then the density of x is

pu(x) = pe(Wk) - [ W]

where W = A—1.
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inaependent Lomponent Analysis

ICA Algorithm
The joint distribution of independent sources s = {sy,...,s,}:
s) =[] pe(s)
j=1
The density of observation x = As = W~ 1s is

px(x) = ps(s)|W| = Hpss,|vv| Hps(wfx)ww

Choose the sigmoid function g(s) = # as the non-Gaussian cdf for

ps, then
ps(s) = &'(s)

This appears to be a heuristic choice, yet it can be justified rigorously in
other interpretations.
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inaependent Lomponent Analysis

ICA Algorithm

Given i.i.d. training samples {x(1), ... x(™1 the log likelihood is

(W) =3 log(pu(x)) = > og(I ] ps(w x)IW))
i=1 i=1 j=1
=3 (Z log g’ (w;"x(")) + log | WI)
i=1 \j=1
Stochastic gradient ascent learning rule for sample x(:

1—2g(w "x)
W:=W-+a«a x(")T—l—(WT)_1
1 —2g(w, " x()

Check this at home!
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inaependent Lomponent Analysis

Theoretical Motivation of ICA

» Originally proposed by Jutten & Herault (1991) 190 years later than
PCA

» Equivalent to learning projection directions wy, ..., w, that

> maximize the sum of non-gaussianity of the projected signals
» minimize the mutual information of the projected signals

under the constraint that wy" x, ..., w,] x are uncorrelated. 2

LChristian Jutten, Jeanny Herault, Blind separation of sources, part I: An adaptive
algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991

2Hyvirinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms
and applications." Neural networks 13.4-5 (2000): 411-430.
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inaependent Lomponent Analysis

ICA vs PCA

Observations PCA recovered signals ICA recovered signals
3 . 3

PCA

ICA

approximately Gaussian data

non-Gaussian data

removes correlation (low order
dependence)

removes correlations and higher
order dependence

ordered importance

all components are equally impor-
tant

orthogonal

not orthogonal
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Lanonical Lorrelation Analysis

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among
two sets of variables.
Example: two sets of measurements of 406 cars:

> Specification: Engine displacement (Disp), horsepower (HP), weight
(Wet)

» Measurement: Acceleration (Accel), MPG

3

-0.17*Accel-0.092*MPG

-1.5 -1 0.5 o 05 1 15 2 25 3 35
0.0025"Disp+0.020"HP-0.000025"Wgt

find important features that explain covariation between sets of variables

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Data



Lanonical Lorrelation Analysis

CCA Definitions

X1 7
» Random vectors X = | © | and Y =

Xny Yn,
» Covariance matrix Lxy = cov(X,Y)

» CCA finds vectors a and b such that the random variables a’ X and
bTY maximize the correlation

p=corr(a’ X,b"Y)

» U=a’"Xand V =b"Y are called the first pair of canonical
variables

» Subsequent pairs of canonical variables maximizes p while being
uncorrelated with all previous pairs
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Lanonical Lorrelation Analysis

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle (m x n)
matrices M.

,
M=UsVT =3 oy
i=1

> U eR™™M Ve R™" are orthogonal matrices
> ¥ € R™*" is a rectangular diagonal matrix.

Examples:
? f 8 o1 0 0 0
Y = 2 =10 oo, 0 0
v ey 0 0 o3 0
0 0 0 3

Diagonal entries o1 > 03 > -+ > 0k, k = min(n, m) are called
singular values of M.
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Lanonical Lorrelation Analysis

Review: Singular Value Decomposition

A non-negative real number o is a singular value for M € R™*" if and
only if there exist unit-length u € R™ and v € R" such that

Mv =ou

MTu=ov

u is called the left singular vector of o, v is called the right singular
vector of o

Connection to eigenvalue decomposition

Given SVD of matrix M = UZ VT,
> MTM = (VETUT)(UZVT) = V(ETE)VT «+ v; is an eigenvector
of MT M with eigenvalue o2
> MMT = (UZVT)VTETU) = U(ZZT)UT « u; is an eigenvector
of MMT with eigenvalue o
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CCA Derivations

The original problem:

(a1, by) = argmax corr(a’ X,b"Y) (1)
acR™ beR™

Assume E[xi] = -+ = E[xp,] = E[y1] = - -+ = E[yn,] =0,

El(a7X)(b7Y)]
> o g
aTszb

::x/aTZXXax/bTZyyb

(1) is equivalent to:

(a1, b1) = argmax alYyxyb
aeR™ be R™ (2)
aTZXXa = bTZyyb =1

Lanonical Lorrelation Analysis
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Lanonical Lorrelation Analysis

CCA Derivations

Define Q € R™*™ ¢ € R™ and d € R™,

-1 1
Q=2xxTxylyy
1

@ — L2
d=%3b
(2) can be written as
(c1,d1) = argmax c'Qd (3)
ceRM™, deR™
llell? = ld|]> =1

(c1,d1) can be solved by SVD, then the first pair of canonical variables
are o i
ay = Zx)écl, b1 = ny,dl
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Lanonical Lorrelation Analysis

CCA Derivations

(c1,dh) = argmax c"Qd
ceRm deR™
llell? = Id|]* =1

Proposition 1

c1 and dy are the left and right unit singular vectors of Q) with the largest
singular value.

Theorem 2

¢; and d; are the left and right unit singular vectors of Q) with the ith
largest singular value.
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CCA Algorithm

Lanonical Lorrelation Analysis

Input: Covariance matrices for centered data X and Y:

> 3 xy , invertible X xx and Xyy

» Dimension k < min(ny, ny)

Output: CCA projection matrices Ax and By:

_1 1
> Compute Q2 =X, 2Y xyXyy
» Compute SVD decomposition of Q

01

0

_1 _1
> Ac =X %[cr,...,a] and By =X, 2[dL,. ..

T

1

Or —dT—

n2

7dk]
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Discussion of CCA

» CCA only measures linear
dependencies
» Non-linear generalizations:
> Kernel CCA (KCCA)

»> Deep CCA (DCCA)
> Maximal HGR Correlation

X2

Lanonical Lorrelation Analysis
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Non-linear dependency between x; and
X2
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Lanonical Lorrelation Analysis

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector x, transform it to a
low-dimensional vector y through a projection matrix U:

y=UTx
» PCA, ICA and CCA are all unsupervised linear subspace learning
methods.
Name | Whatis U ? goal subspace
PCA | principal component | remove (low order) cor- | single
(V) relation
ICA | unmixing matrix (W) remove (high order) cor- | single
relation
CCA | canonical projection | maximize  correlation | paired
matrices (A, B) between feature pairs
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