Learning From Data Lecture 12: Unsupervised Learning III

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 15, 2022

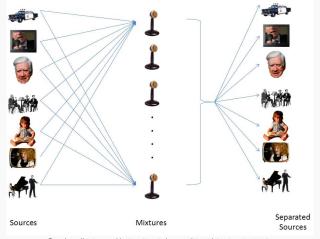
Today's Lecture

Unsupervised Learning (Part III)

- ► Independent Component Analysis (ICA)
- ► Canonical Correlation Analysis (CCA)

The cocktail party problem

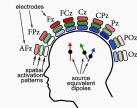
- n microphones at different locations of the room, each recording a mixture of *n* sound sources
- ► How to "unmix" the sound mixtures?

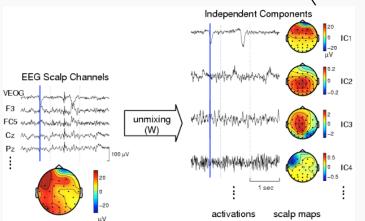


Sample audio: https://cnl.salk.edu/~tewon/Blind/blind_audio.html, http://www.kecl.ntt.co.jp/icl/signal/sawada/demo/bss2to4/index.html

EEG Analysis

- ► Electrodes on patient scalp measure a mixture of different brain activations
- Finding independent activation sources helps removing artifacts in the signal

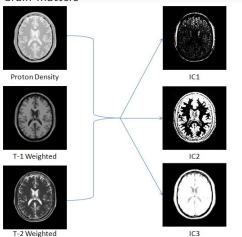




Brian imaging

Yang Li yangli@sz.tsinghua.edu.cn

- ▶ Different brain matters: gray matter, white matter, cerebrospinal fluid (CSF), fat, muscle/skin, glial matter etc.
- ► An MRI scan is a mixture of magnetic response signals from different brain matters



Problem Model

Case: n=2

- \triangleright Observed random variables: x_1, x_2
- ▶ Independent sources: $s_1, s_2 \in \mathbb{R}$

$$x_1 = a_{11}s_1 + a_{12}s_2$$

 $x_2 = a_{21}s_1 + a_{22}s_2$

A is called the mixing matrix

$$x = As$$

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $\{x^{(i)}=As^{(i)}\}$

Independent Component Analysis (ICA)

The blind source separation (cocktail party) problem

Given repeated observation $\{x^{(i)}; i=1,\ldots,m\}$, recover sources $s^{(i)}$ that generated the data $(x^{(i)}=As^{(i)})$

Let $W = A^{-1}$ be the **unmixing matrix** Goal of ICA: Find W, such that given $x^{(i)}$, the sources can be recovered

by $s^{(i)} = Wx^{(i)}$

$$W = \begin{bmatrix} -w_1^T - \\ \vdots \\ -w_n^T - \end{bmatrix}$$

ICA Ambiguities

Assume data is non Gaussian, ICA has two ambiguities:

- Variance of the sources: We can fix the magnitude of s_i by setting $\mathbb{E}[s_i^2] = 1$
- ▶ Order of the sources $s_1, ..., s_n$: Let P be a permutation matrix, then we have $x = APP^{-1}s$.

Why is Gaussian data problematic?

- ► The distribution of any rotation of Gaussian *x* has the same distribution as *x*.
- As long as at least one s_j is non-Gaussian, given enough data, we can recover the n independent sources.

Densities and Linear Transformations

Theorem 1

If random vector s has density p_s , and x = As for a square, invertible matrix A, then the density of x is

$$p_{x}(x) = p_{s}(Wx) \cdot |W|$$

where $W = A^{-1}$.

ICA Algorithm

The joint distribution of *independent* sources $s = \{s_1, \dots, s_n\}$:

$$p(s) = \prod_{j=1}^{n} p_s(s_j)$$

The density of observation $x = As = W^{-1}s$ is:

$$p_x(x) = p_s(s)|W| = \prod_{j=1}^n p_s(s_j)|W| = \prod_{j=1}^n p_s(w_j^T x)|W|$$

Choose the sigmoid function $g(s) = \frac{1}{1+e^{-s}}$ as the *non-Gaussian* cdf for p_s , then

$$p_s(s) = g'(s)$$

This appears to be a heuristic choice, yet it can be justified rigorously in other interpretations.

ICA Algorithm

Given i.i.d. training samples $\{x^{(1)}, \dots, x^{(m)}\}$, the log likelihood is

$$I(W) = \sum_{i=1}^{m} log(p_{x}(x^{(i)})) = \sum_{i=1}^{m} log(\prod_{j=1}^{n} p_{s}(w_{j}^{T}x)|W|)$$
$$= \sum_{i=1}^{m} \left(\sum_{j=1}^{n} log g'(w_{j}^{T}x^{(i)}) + log |W|\right)$$

Stochastic gradient ascent learning rule for sample $x^{(i)}$:

$$W := W + \alpha \left(\begin{bmatrix} 1 - 2g(w_1^T x^{(i)}) \\ \vdots \\ 1 - 2g(w_n^T x^{(i)}) \end{bmatrix} x^{(i)^T} + (W^T)^{-1} \right)$$

Check this at home!

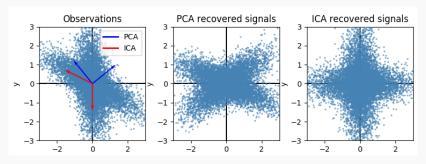
- Originally proposed by Jutten & Herault (1991) ¹90 years later than PCA
- ▶ Equivalent to learning projection directions $w_1, ..., w_n$ that
 - maximize the sum of non-gaussianity of the projected signals
 - minimize the mutual information of the projected signals

under the constraint that $w_1^T x, \dots, w_n^T x$ are uncorrelated. ²

and applications." Neural networks 13.4-5 (2000): 411-430.

¹Christian Jutten, Jeanny Herault, Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture, Signal Processing, Vol 24:1, 1991 ²Hyvärinen, Aapo, and Erkki Oja. "Independent component analysis: algorithms

ICA vs PCA



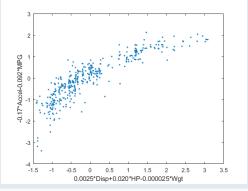
PCA	ICA	
approximately Gaussian data	non-Gaussian data	
removes correlation (low order	removes correlations and higher	
dependence)	order dependence	
ordered importance	all components are equally impor-	
	tant	
orthogonal	not orthogonal	

Canonical Correlation Analysis

Canonical correlation analysis (CCA) finds the associations among two sets of variables.

Example: two sets of measurements of 406 cars:

- Specification: Engine displacement (Disp), horsepower (HP), weight (Wgt)
- Measurement: Acceleration (Accel), MPG



find important features that explain covariation between sets of variables

CCA Definitions

- ▶ Random vectors $X = \begin{bmatrix} x_1 \\ \vdots \\ x_{n_1} \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_{n_2} \end{bmatrix}$
- ightharpoonup Covariance matrix $\Sigma_{XY} = cov(X, Y)$
- ightharpoonup CCA finds vectors a and b such that the random variables $a^T X$ and $b^T Y$ maximize the correlation

$$\rho = corr(a^T X, b^T Y)$$

- $V = a^T X$ and $V = b^T Y$ are called **the first pair of canonical** variables
- ightharpoonup Subsequent pairs of canonical variables maximizes ho while being uncorrelated with all previous pairs

Review: Singular Value Decomposition

A generalization of eigenvalue decomposition to rectangle $(m \times n)$ matrices M.

$$M = U \Sigma V^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$

- $V \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices
- ▶ $\Sigma \in \mathbb{R}^{m \times n}$ is a rectangular diagonal matrix. Examples:

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \end{bmatrix}$$

Diagonal entries $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_k$, $k = \min(n, m)$ are called singular values of M.

Review: Singular Value Decomposition

A non-negative real number σ is a singular value for $M \in \mathbb{R}^{m \times n}$ if and only if there exist unit-length $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ such that

$$Mv = \sigma u$$
$$M^{\mathsf{T}} u = \sigma v$$

u is called the **left singular vector** of σ , v is called the **right singular vector** of σ

Connection to eigenvalue decomposition

Given SVD of matrix $M = U\Sigma V^T$,

- ▶ $M^TM = (V\Sigma^TU^T)(U\Sigma V^T) = V(\Sigma^T\Sigma)V^T \leftarrow v_i$ is an eigenvector of M^TM with eigenvalue σ_i^2
- ► $MM^T = (U\Sigma V^T)(V^T\Sigma^T U) = U(\Sigma\Sigma^T)U^T \leftarrow u_i$ is an eigenvector of MM^T with eigenvalue σ_i^2

CCA Derivations

The original problem:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in \mathbb{R}^{n_2}}{\operatorname{argmax}} \operatorname{corr}(a^T X, b^T Y)$$
 (1)

Assume $\mathbb{E}[x_1] = \cdots = \mathbb{E}[x_{n_1}] = \mathbb{E}[y_1] = \cdots = \mathbb{E}[y_{n_2}] = 0$,

$$corr(a^{T}X, b^{T}X) = \frac{\mathbb{E}[(a^{T}X)(b^{T}Y)]}{\sqrt{\mathbb{E}[(a^{T}X)^{2}]\mathbb{E}[(a^{T}Y)^{2}]}}$$
$$= \frac{a^{T}\Sigma_{XY}b}{\sqrt{a^{T}\Sigma_{XX}a}\sqrt{b^{T}\Sigma_{YY}b}}$$

(1) is equivalent to:

$$(a_1, b_1) = \underset{a \in \mathbb{R}^{n_1}, b \in R^{n_2}}{\operatorname{argmax}} \quad a^T \Sigma_{XY} b$$

$$a^T \Sigma_{YY} a = b^T \Sigma_{YY} b = 1$$

$$(2)$$

CCA Derivations

Define $\Omega \in R^{n_1 \times n_2}$, $c \in \mathbb{R}^{n_1}$ and $d \in \mathbb{R}^{n_2}$,

$$\Omega = \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-\frac{1}{2}}$$
$$c = \sum_{XX}^{\frac{1}{2}} a$$
$$d = \sum_{YY}^{\frac{1}{2}} b$$

(2) can be written as

$$(c_{1}, d_{1}) = \underset{c \in \mathbb{R}^{n_{1}}, d \in \mathbb{R}^{n_{2}}}{\operatorname{argmax}} c^{T} \Omega d$$

$$||c||^{2} = ||d||^{2} = 1$$
(3)

 (c_1, d_1) can be solved by SVD, then the first pair of canonical variables are

$$a_1 = \sum_{XX}^{-\frac{1}{2}} c_1, \quad b_1 = \sum_{YY}^{-\frac{1}{2}} d_1$$

$egin{aligned} (c_1,d_1) &= \mathop{\mathsf{argmax}}\limits_{c \in \mathbb{R}^{n_1},\, d \in \mathbb{R}^{n_2}} c^T \Omega d \ &||c||^2 = ||d||^2 = 1 \end{aligned}$

Proposition 1

 c_1 and d_1 are the left and right unit singular vectors of Ω with the largest singular value.

Theorem 2

 c_i and d_i are the left and right unit singular vectors of Ω with the ith largest singular value.

CCA Algorithm

Input: Covariance matrices for centered data X and Y:

- ightharpoonup Σ_{XY} , invertible Σ_{XX} and Σ_{YY}
- ▶ Dimension $k \le \min(n_1, n_2)$

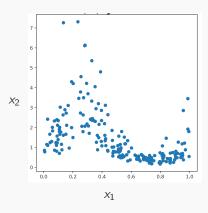
Output: CCA projection matrices A_k and B_k :

- ightharpoonup Compute SVD decomposition of Ω

$$\Omega = \begin{bmatrix} | & \dots & | \\ c_1 & \dots & c_{n_1} \\ | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix} \begin{bmatrix} -d_1^T - \\ \vdots \\ -d_{n_2}^T - \end{bmatrix}$$

 $A_k = \sum_{XX}^{-\frac{1}{2}} [c_1, \dots, c_k]$ and $B_k = \sum_{YY}^{-\frac{1}{2}} [d_1, \dots, d_k]$

- CCA only measures linear dependencies
- ► Non-linear generalizations:
 - ► Kernel CCA (KCCA)
 - Deep CCA (DCCA)
 - ► Maximal HGR Correlation



Non-linear dependency between x_1 and x_2

PCA, ICA and CCA

Linear Subspace Learning

Given high dimensional random vector \mathbf{x} , transform it to a low-dimensional vector \mathbf{y} through a projection matrix U:

$$y = U^T x$$

PCA, ICA and CCA are all unsupervised linear subspace learning methods.

Name	What is U ?	goal	subspace
PCA	principal component	remove (low order) cor-	single
	(<i>U</i>)	relation	
ICA	unmixing matrix (W)	remove (high order) cor-	single
		relation	
CCA	canonical projection	maximize correlation	paired
	matrices (A, B)	between feature pairs	