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introduction

Today’s Lecture

Reinforcement Learning
» What's reinforcement learning?
» Mathematical formulation: Markov Decision Process (MDP)
» Model Learning for MDP, Fitted Value lteration

> Deep reinforcement learning (Deep Q-networks)
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|[Reinforcement Learning and MDP|
- [Motivation

[ |
>
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[Reinforcement Learning and VIDF

Deep Reinforcement Learning: AlphaGo

AlphaGo beat World Go Champion Kejie (2017)

_ <l ALLSYSTEMSGO
Nature paper on by AlphaGo team
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[Reinforcement Learning and VIDF

Deép Reinforcement Learning: OpenAl

(2017)

OpenAl beats Dota2 world champion

D B -

Elon Musk

@elonmusk

OpenAl first ever to defeat world's best players in competitive
eSports. Vastly more complex than traditional board games like

chess & Go.
3:15 AM - Aug 12, 2017
O 647 116818 Q) 23,006 o
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Reinforcement Learning and MU

Mulii—Agent Reinforcement Learning: AlphaStar

l AlphaStar

Considered Location

Raw Observations RS )
ety FREN 2
Uon oo

[r
/> _Considered Build/Train

https://www.nature.com/articles/s41586-019-1724-z
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Reinforcement Learning: Autonomous Car, Helicopter
\%

—

Stanley, Winner of DARPA Grand Challenge (2005)
Inverted autonomous helicopter flight (2004)

Other applications include robotic control, computational economics,
health care...
——A—/’
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[Reinforcement Learning and VIDF

What is reinforcement learning?

Sequential decision making

To deciding, from experience, the sequence of actions to perform in
an nment in order to achieve some goals.

> e.g. play games, robotic control, autonomous driving, smart grid
> Do not have full knowledge of the environment a prior

» Difficult to label a sample as "the right answer" for a learning goal
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[Reinforcement Learning and VIDF

What is reinforcement learning?

A learning framework to solve sequential decision making problem,
inspired by behavior psychology (Sutton, 1984)
» An agent interacts with an environment which provides a “reward
function” to indicate how “well” the learning agent is doing
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[Reinforcement Learning and VIDF

What is reinforcement learning?

A learning framework to solve sequential decision making problem,
inspired by behavior psychology (Sutton, 1984)

» An agent interacts with an environment which provides a “reward
function” to indicate how “well” the learning agent is doing

> The agents take actions to maximize the cumulative “reward”
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[Reinforcement Learning and VIDF

What is reinforcement learning?

A learning framework to solve sequential decision making problem,
inspired by behavior psychology (Sutton, 1984)

» An agent interacts with an environment which provides a “reward
function” to indicate how “well” the learning agent is doing

> The agents take actions to maximize the cumulative “reward”

Rewarg
Interpreter
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[Reinforcement Learning and VIDF

Markov Decision Process

A Markov decision process
(S, A, {Pa}. 7. R)
> S: a set of states
(environment)
> A: a set of actions
> Py = P(sti1lst, a): state
transition probabilities.

Markov property:
’D(St+l|st> at)
P(st+1|st, arl’. ., 50, a
P@SXA—HRlsareward p
s P (s, el
function ]‘Preuwc] et oU-rJI‘J ol s&a = gos 051 325 5 Tou ,wm
> ~ € [0,1): discount factor *. rs> ¥ 2215 o T
-— J‘f/ at 51, ao 0.7 0.1 0.2
Si,a | 0 0.95 0.05
52, ao 0.4 0.6 0
Sy,a | 03 03 04

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


jheinforcement Learning and ViDF|
Markov Decision Process: Overview
_Frocess

At time step t = 0 with initial state sy € S %
for t = 0 until done: -
Environment

» Agent selects action at a; € A

» Environment yields reward 4
RN = (- 1=0) Rewarg
"¢ » Environment samples next state Interpreter
(-'it_tl ~ Pg, State \(? J
> Agent receives rewar@nd next state v

@ Agent

—

Action

Learning From Datal
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[Reinforcement Learning and VIDF

Markov Decision Process: Overview

At time step t = 0 with initial state sy € S %
for t = 0 until done:

> Agent selects action at a; € A Environment

> Environment yields reward 4
re = R(st, ar) %v
r

Interprete

» Environment samples next state
St41 ™ Psa % \ac:l)J

> Agent receives reward r; and next state 'y

St+1 Cagent>

EA policy 7w : S — A specifies what action to take in each state

Goal: find optimal policy 7* that maximizes cumulative discounte
—

reward
—_—

Action
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[Reinforcement Learning and VIDF

MDP Example: Maze Solver

Dlﬂﬁ*dij‘
Goal: get to the bottom-right corner of
; FEEE o N the nxn maze scy|, .. /ooja )
i A - > S: position of the agent (mouse)
> A: {Left, Right, Up, Down}
S P - - c‘ieée(m'ml;{'b
1 s’ is next move meod2|.
> Psa = —_— .
: 0 otherwise
0 B " Res)-=
—0.05 move to free cell
-1 move to wall/block
C,-J') @ move to goal

> ~ €[0,1): discount factor
https://www.samyzaf.com/ML/rl/gmaze.html —_—
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[Reinforcement Learning and VIDF

Cart ot Su,
e octions

aceding o !

T:S—>A .

Figure: An optimal policy function 7(s) learned by the solver.

—

https://www.samyzaf.com/ML/rl/gmaze.html
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L e A ane L

Markov Decision Process

Consider a sequence of states sp, 1, - - - with actionsE(_)7 ai,...
.\ '\
O—O®—@ -
N k" i’
® ® ®
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L e A ane L L

Markov Decision Process

Consider a sequence of states s, s1, ... with actions ag, a1, .. .,
ao@

@@\@

® ® W

Total payoff of a sequence s’fN(’MIS at (S &>(S,G,) 9 -

<1
R(s0, a0) +(R(s1, a1) +@?(52, a) + v :
- = —
lYnmec[,.o._{p_ '\\mw‘l’ futwce rewM«f-

o j'v-”h"'
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[Reinforcement Learning and VIDF

Markov Decision Process

Consider a sequence of states sg, s1,... with actions ag, a1, . . .,

o O
@@@
@@@

Total payoff of a sequence:

R(s0,a0) + YR(s1,a1) + v?R(s2, @) + . ..
For simplicity, let's assume rewards only depends on state s, i.e.

R(so) + vR(s1) + ¥’ R(s2) +

s

o
t
Future reward at step t is discounted by ~v* E Y RCsy)
<
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L e A ane L

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the
expected total payoff

@R(so) FyR(s1) + 12R(5:) + ... ]
€o,5y - -
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[Reinforcement Learning and VIDF

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the
expected total payoff

E[R(s0) + YR(s1) + v R(s2) + .. .]

A policy is any function 7: S — A.
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[Reinforcement Learning and VIDF

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the
expected total payoff

iE/[R(So) +yR(s1) + ’yzR(Sz) +...]

A policy is any function 7: S — A.
A value function of policy 7 is the expected payoff if we start from s,
take actions according to 7 dor S, s

VZ(s) = E[R(s0) + YR(s1) + 7V?R(82) + ... |s0 = s,@
e
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[Reinforcement Learning and VIDF

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the
expected total payoff

E[R(s0) + YR(s1) + v R(s2) + .. .]

SRR

A policy is any function 7: S — A.
A value function of policy 7 is the expected payoff if we start from s,
take actions according to w

Qes )

2 'l
V7(s) = E[R(s0) + YR(s1) + 7’ R(2) + - . |so = s, 7] ~s
Given , value function satisfies the Bellman equation: Why?

V7(s) € R(s) 7% Par(s) (S)V(s) R(s).

Py E(v“fsfﬂ

¢~ [Py
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—_

Bellman Equatlon Res)— \/“[S)JrWM (V) + P G5 ¢ - wgao@\laﬂ

\s| lmere

e@)wmw ‘ o /P(sgw@&z N =TS YT AN 3D+ -
Value function of 7 _at s: - -
o = QLSN)«-YPMO‘)\/ (sl>+ Foe e o - VD
O

V”(s) E[R(so, ( )+ YR(s1,7(s1)) + R(52,7r(52)) +...|%= S’f]
Assume action is known: E[ﬁ(-&r) S':S] = ke 0 = ( J{g%ii
V() —W(sz) +. lsn=s7]

=E[R(s)] + VE[R(sl) +R(s2) + ... |50 = s, 7]
= R(S) + ’yES’N s 75(s) [VT"(S/)] « i’rtlf IOOLAI'\I-A.J.» ”»

'\/ﬂlf) - R +7 Z PS,‘I\'(S)(S/)VT‘-(S,) < lz_&((mll‘(j e<>N_—LTaV\).

FES

_—

VI(Sk)

iVen IQ) PﬂL T, e can el )
Giv ) (5)+7/ Ps,,r(s)(sf)\/fr(sz)dsl VG, Wi --.)\)’T(g,,>
V7es) «u‘\rg Bellman's €3 s
V7 (s) can be solved as |S| linear equations with |S| unknowns.
0
N
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—_
Optimal value and policy
EL[/MN! E?"UJL‘”W YTs) =R+ XZPrm) DD

We define the optimal value function

Vi(s) = max _\/_’15) = R(s) + n&%xv Z Ps (s)(s) V™ (s")

= o=

- s’'eS

= R(s )+max'yZPsa YW*(s')

— . s'eS
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—_
Optimal value and policy

We define the optimal value function

V*(s) = max V7 (s) = R(s) + max~y Z P r(s)(sYV7(s")
— " " s'eS

= R(s) -ifr—?ea?ﬁ Psa(s)V*(s')

Let 7 : S — A be the policy that attains the 'max': AR (S

o Z.
7*(s) = argmax Z Ps.(s")V*(s)
acA s’eS
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[Reinforcement Learning and VIDF

Optimal value and policy

We define the optimal value function

V¥(s) = max V™ (s) = R(s) + max Z P r(s)(sYV7(s")

s’eS
— / * /
= R(s) + Teaﬂs,;gpsa(s YWA(s')

Let 7 : S — A be the policy that attains the 'max’:

axyedzzc\ velos ia\;m
Z Psa(S/)V*(SI next stote whke cj

7*(s) = argmax
es action o o stel S,

— acA

Then for every state s and every policy 7w, we can show
V() =V (s)2 v7(s)

" is the optimal policy for any initial state s
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[Reinforcement Learning and VIDF

—_—

Optimal value and policy Vo e RFTY mes')\/”“’)

——

Proposition 1

For every state s and-everpoticyT,

/
V*(s) =

+ a7
Proof. |>_ Show UTCSD Z__\J >

By aafncte -
\/*(S): M;)"Vﬂ(f) = \)i(S>

XS
-

Vels)

(2 Shew

YIS V)

Sappose Vis) > VT | A

Hure exists some ;r;‘)wz‘ that _V_%):W_[i)/
U Sy By Bellmert (42),\}“#

pe/a)+]}egl7mt$'>U (s) > Egn_%sﬂmi (5)

— ™

’LPWIQSOU ),

s'€es

11/
N[
-Z—Eftﬂ)[g )V §> >
SES —_—

5 > .
(ck{r&&ﬁl"t?lﬁ Ve cobn .
at = egmae ZRENTO.
Torefore
7 U*/s)suff"(s)
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L e A ane L L

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

1. For each state s, initialize V!s!::O
2.rRepeat until convergence {

Update V(s) :=(R(s)H maxaea¥ D> 5 cs Psa(s 1V(s &13

for every state s velue danckes

b ( e%fcc{uﬁ P24

U[_r) ConVPILR
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L e A ane L

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

1. For each state s, initialize V(s):=0
2. Repeat until convergence {
Update V(s) := R(s)+ maxacay Y o s Psa(s')V(s") }

for every state s

}

Two ways to update V/(s):
» Synchronous update:

Set@@): V(s) for all states s€S
For each s€S:
V(s) := R(s) + maxacav D ocs Psa(s’)Vo(s")

p———1
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L e A ane L

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

1. For each state s, initialize V(s):=0
2. Repeat until convergence {
Update V(s) := R(s)+ maxacay Y s s Psa(s')V(s")
for every state s

}

Two ways to update V/(s):
» Synchronous update:

Set Vy(s) := V(s) for all states s€S
For each s€S:
V(s) := R(s) + maxacav D ocs Psa(s’)Vo(s")

> Asynchronous update:

For each s€S: O(d}( AR /
V(s) = R(S) + maxzca 725’65 Psa(s/)_\i(i/)
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L e A ane L L

Solving finite-state MDP: policy iteration

1. Initialize m randomly )

2. Repeat until convergence { o[,;u.a_j( j° .
a. Let V::@ WWU &/\v—cd&)’; f"-‘&’ﬂ' {l' { [tates

b. For each state s, d (ie
7(s) i= argmax,e 4 >y Psa(s')V<s')l npdebe Polit
—_—

oy
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L e A ane L

Solving finite-state MDP: policy iteration

1. Initialize m randomly
2. Repeat until convergence {
Let V=
b. For each state s,
7(s) 1= argmax,c 4 >y Psa(s’)V(s)
}

Step (a) can be done by solving Bellman's equation.
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[Reinforcement Learning and VIDF

Discussion

Both value iteration and policy iteration will converge to V* and 7*

Value iteration vs. policy iteration
» Policy iteration is more efficient and converge faster for small MDP

» Value iteration is more practical for MDP's with large state spaces
,—J
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[Model Learning for MDP]
[Discrete states «

| | &
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Learning a model for finite-state MDP

Suppose the reward function R(s) and the transition probability Ps, is
not known. How to estimate them from data?

Experience from MDP

Given policy 7, execute 7 repeatedly in the environment:

(1 (

) D (1)

REN R R
,.aa)Ya(z)Ya(z)
—a (S)Y )Y 3)

(3 (
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Viodel Learning for ViDF

Estimate model from experience

Estimate P,

Maximum likelihood estimate of state transition probability:
#{s % s'}

Ps.(s") = P(s|s,a) =
TsC )T T e

If 445 B} = 0, set psa(s)_@

Estimate R(s)

Let R( )®) be the immediate reward of state s in the t-th trail,

R(s) = E[R(s)\%] = — >~ R(s)®

— t=1
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Viodel Learning for ViDF

Algorithm: MDP Model Learning

1. Initialize @ randomly, V(s):=0 for all s
2. [Repeat until convergenc.e { ”ec—é oxpRREAR K
a. Execute m for m trails (o r (A,(O&J,,‘,ML
A S N

_m _trail;

b. Update Ps; and R using the accumulated et imoian
experience

ch t=ValueIteration(Ps;, R, V)

b. Update greedily with respect to V:
m(s) = argmax,c 4 >y Psa(s")V(s')

ValueIteration(Ps,, R, Vo)

1. Initialize V=V
2. Repeat until convergence {
Update V(s):= R(s) + maxaea7 D s cs Psa(s’)V(s')
for every state s
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Viodel Learning for ViDF

Continuous state MDPs 5;‘

_

€3 Y, 9)
An MDP may have an infinite number of states: 19.0,%.4,6).
> A car's state : (x,y,&,k,y,é) = (%3

> A helicopter’s state : (x,y,z,,0,¢,%,y,2,¢,0,¢ ) =12,
1D Inverte Pendulums €R

Control goal: balance the pole on the cart
> State representation: (X,H,X,é)
> Action: force F on the car [ &/~

» Reward: +1 each time the pole is
upright ——

77777 777 /////' 7 ) ) . i i )
Due to the Curse of Dimensionality, discretization rarely works well in
continuous state with more than 1-2 dimensions
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Viodel Learning for ViDF

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:

» Obtain a model or simulator for the MDP, to produce experience
tuples: (s,a,s’,r)

» Sample s, ..., s(™ from the state space S, estimate their optimal

e>(<1i_3)§£te___,,.llaélw d total payoff using the model, i.e.
yD = V(sh),y@ ~ v(s@), ...

> ’Z\pproximate V as a function of state s using supervised learning
from (s, yM) (s, ) ... eg. juimre Mf

- 7
V(s) = 9@s)
\_’J;__,_,

v olue ﬁum&tgw
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Viodel Learning for ViDF

Obtaining a simulator

A simulator is a black box that generates the next state s;;1 given
current state s; and action a.

S Simulator S~ Py

a
> Use physics laws. e.g. equation of motion for
the inversed pendulum problem:

(m+ M)x + mL(6%sin® — 6 cos(9)) = F
gsinf + xcosf = L

» Use out-of-the-shelf simulation software

» Game simulator
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Viodel Learning for ViDF

Obtaining a model from data

Execute m trails in which we repeatedly take actions in an MDP, each
trial for T timesteps.

@ Y@
cf‘w‘wa

g (—\,>
Learn a prediction model Is; ;1 :@> by picking 1?5/01 ;

M1\ |2
i S
0, — by (M)
t

m T-1

= arg{;nin Z

i=1 t=0
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Viodel Learning for ViDF

Obtaining a model from data

Popular prediction models
» Linear function: hy = As; + Ba;
> Linear function with feature mapping: hy = Aps(st) + Bpa(ar)
» Neural network o o

Build a simulator using the model:

» Deterministic model: s = ( [Zt]>
— t
> Stochastic model: s;11 = hy ({Zt}) +@, e ~ N(0,%)
t
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Viodel Learning for ViDF

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
» Obtain a model or simulator for the MDP

» Sample s, ..., s(™ from the state space S, estimate their optimal
expected total payoff using the model, i.e.
y® = V(s®), y@ ~ v(s@), ... gmu/\o(

> ’A—pproximate V as a function of state s using supervised learning
from (s, yM) (s, ) ... eg.

V(s) =07¢(s)

okl velos
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ivViodel Learning for MiDF
Value function for continuous states

Update for finite-state value function:
s
e / /
V(s) := R(s) + v max SEIES Psa(s")V(s")

Update we want for continuous-state value function:

V(s) := R(s) +’yr;1€;a/4>\</ Pe.(s")V(s")ds

s/

= R(s) +7 TQXEs/NPH [V(s)]

For each sample state s, we compute y(!) to approximate
R(s) +vmaxaea Esp , [V(s')] using finite samples from P,
<) UL et et

L,
Eg‘
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Viodel Learning for ViDF

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
» Obtain a model or simulator for the MDP
» Sample s, ..., s(™ from the state space S, estimate their optimal
expected total payoff using the model, i.e.
yW x v(sW),y@ ~ v(s®), ...
> Approximate,_V as a function of state s using supervised learning
from (s, y(1)) (s®) y@) .. eg.

V(s) =07 ¢(s)

—
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Fitted value iteration

Algorithm: Fitted value iteration (Stochastic Model)

1. Sample s ... sMes L o oy
2. Initialize 0 =0 < PA(G*N&‘- fi ve M"} )
2. Repeat {

a. For each sample s() L \/[5{

For each action /V( shPha T
Sample [s],...,s, ~ P\ using a model ~’

\S“"/ Lf’ﬁ compute Q(a) = 3 35 (R(s?)) + 'y(V(st) >
1 estimates R(s") +Esp, [V(s')]

where V/(s) := 07 ¢(s)

T estlmateséRgs ;)—&-'ymax [V(s)]

b. Update 0 using supervise

ing
0 := argming % Z£1(9T¢(s(i)) — y(’A))2 ]

If the model is deterministic, set k =1

Learning From Datal
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Viodel Learning for ViDF

Computing the optimal policy

After obtaining the value function approximation V, the corresponding
policy is
m(s) = argmaxEg p,[V(s")])
a O O

Estimate the optimal policy from experience:

For each action a :
1. Sample si,...,s, ~ Ps, using a model
2. Compute Q(a)= X/, R(s)+7V(s))
m(s) = argmax, Q(a)

Instead of linear regression, other learning algorithms can be used to
estimate V/(s).

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Datal


Mobile User

Mobile User

Mobile User


—_ _— — =SSP e orcemen. e

IDeep Reinforcement Learning|
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Two Outstanding Success Stories

Atari Al [Minh et al. 2015]
> Plays a variety of Atari 2600 video games at superhuman level

» Trained directly from image pixels, based on a single reward signal

AlphaGo [Silver et al. 2016]
» A hybrid deep RL system

» Trained using supervised and reinforcement learning, in combination
with a traditional tree-search algorithm.
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Deep Reinforcement Learning

Main difference from classic RL:

> Use deep network to represent value function
» Optimize value function end-to-end

» Use stochastic gradient descent
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Q-Value Function

Given policy 7 which produce sample sequence (s, ao, o), (s1, a1, 1), - - -
» Value function of 7 :

\ﬁr}@:]E thrt Sg =S,

= >0

» The Q-value function G@(s,@ is the expected payoff if we take a
at state s and follow m

Q"(s,a) =E Z’ytrt so= s

>0

» The optimal Q-value function is:

Q*(s,a) = max Q™ (s, a) = maxE E Yirlso =s,a0 = a, 7
T ™
£>0
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Q-Learning

Bellman's equation for Q-Value function:
T =Eagl + 1)l

Value iteration is not practical when the search space is large.

e.g. In an Atari game, each frame is an 128-color 210 x 160 image, then

—_— —

S| = 12872010 ;
[ mm s =a = & |

» Uses a function approximation: _
@ 2B~ @' (.9)
-—

» In deep Q-learning, Q(s, a;0) is
a neural network
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Neural Network Review

Training goal: ming .7, L(f(x(7); 6), y()
Forward propagation
Initialize h(®)(x) = x
For each layer I =1...d:
> a(l)(X) = W(I)h(l—l)(x) + p(
> h(x) = g(al"(x))
Evaluate loss function L(h(?)(x), y)

Backward propagation

Compute gradient %
For each layer I =d ... 1:

» Update gradient for parameters in layer
/
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Q-Networks

Training goal: find Q(s, a; #) that fits Bellman's equation:
Q*(s,a) = Ege[r + ymaxy Q*(s', a')]s, a]
Forward Pass
Loss function: )
Li(6:) = Es,a[(v)— Q(s, a: 6:)°]

where y; = Egog[r + ymaxy Q(s',a’; 0i—1)|s, a]
— -~ O O O OO

Backward Pass

Update parameter 6 by computing gradient

Vo, Li(07) = Es a5ne Kr +ymax Q(s',a";6i-1) — Q(s, 0,-)) VoQ(s, a; 9;)}
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Deep Q-Network Architecture

» Input: 4 consecutive frames

» Preprocessing: convert to grayscale, down-sampling, cropping. Final
dimension| 84 x 84 x 4 Imeds froames

)
» Output: Q-value functions for 4 actions Q(s, a1), Q(s, a2),
1’\

—~—

Qs,2), Qs 20) 7y

| FC-4(Qvalues) |
| FC-256 |

3
fi—%
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Experience Replay

Challenge of standard deep Q-learning: correlated input
» invalidate the i.i.d. assumption on training samples
> 1.1.d._assul

» current policy may restrict action samples we experience in the
environment

Experience replay
> Store past transitions (s;, a¢, rt, St+1) within a sliding window in the
replay memory D.
-—

» Train Q-Network using random mini-batch sampled from D to
reduce sample correlation

» Also reduces total running time by reusing samples
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The Algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity NV
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z1} and preprocessed sequenced ¢ = ¢(s1)

fort=1,7 do
~With probability e select a random action a; d
otherwise select a; = ma *(p(se), a0 v o=

Execute action a; in emulator and observe reward r; and image x4
Set s;41 = S, ay, x1+1 and preprocess ¢y 1 = A(Si+1)
Store transition (¢¢, at, ¢, ¢1+1) in D
Sample random minibatch of transitions (¢;, a;, 75, ¢j4+1) from D
Sety,; = { Py for terminal qﬁjﬂ
J rj +ymaxy Q(¢jt1,4a;6) for non-terminal ¢ 1
Perform a gradient descent step on (y; — Q(¢;, aj; 6))? according to equation 3
end for
end for

Parameter(€ rontrols the exploration vs. optimization trade-off
~ e e
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Reinforcement Learning Demo

See Demo.
https://cs.stanford.edu/people/karpathy/convnetjs/demo/
rIdemo.htmll
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