Learning From Data Lecture 11: Reinforcement Learning

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 9, 2022

Reinforcement Learning

- ► What's reinforcement learning?
- ► Mathematical formulation: Markov Decision Process (MDP)
- ▶ Model Learning for MDP, Fitted Value Iteration
- Deep reinforcement learning (Deep Q-networks)

Reinforcement Learning and MDP

> Motivation

Deep Reinforcement Learning: AlphaGo

AlphaGo beat World Go Champion Kejie (2017)

Nature paper on by AlphaGo team

Deep Reinforcement Learning: OpenAl

OpenAl beats Dota2 world champion (2017)

OpenAl first ever to defeat world's best players in competitive eSports. Vastly more complex than traditional board games like chess & Go.

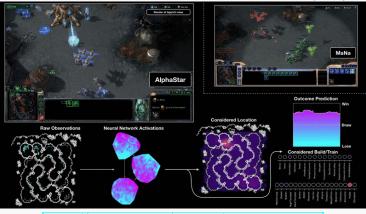
3:15 AM - Aug 12, 2017

Q 647 1 6,818 C 23,006

0

Multi-Agent Reinforcement Learning: AlphaStar

AlphaStar reached Grandmaster level in StarCraft II (2019)



https://www.nature.com/articles/s41586-019-1724-z

einforcement Learning and MDP

Reinforcement Learning: Autonomous Car, Helicopter

Stanley, Winner of DARPA Grand Challenge (2005) Inverted autonomous helicopter flight (2004)

Other applications include <u>robotic control</u>, <u>computational economics</u>, health care...

Learning From Data

What is reinforcement learning?

Sequential decision making

To deciding, from **experience**, the **sequence of actions** to perform in an **uncertain environment** in order to achieve some **goals**.

- e.g. play games, robotic control, autonomous driving, smart grid
- ▶ Do not have full knowledge of the environment a prior
- Difficult to label a sample as "the right answer" for a learning goal

What is reinforcement learning?

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

► An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing

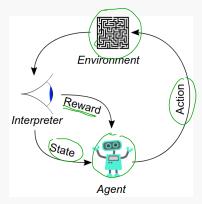
What is reinforcement learning?

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

- ► An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing
- ► The agents take actions to maximize the cumulative "reward"

A learning framework to solve sequential decision making problem, inspired by behavior psychology (Sutton, 1984)

- An agent interacts with an environment which provides a "reward function" to indicate how "well" the learning agent is doing
- The agents take actions to maximize the cumulative "reward"



Markov Decision Process

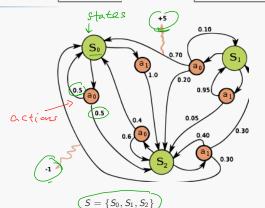
A Markov decision process $(S, A, \{P_{sa}\}, \gamma, R)$

- S: a set of states (environment)
- ► A: a set of **actions**
- $P_{sa} := P(s_{t+1}|s_t, a_t)$: state transition probabilities.

Markov property:
$$P(s_{t+1}|s_t, a_t) =$$

$$P(s_{t+1}|s_t,a_t) = P(s_{t+1}|s_t,a_t,\ldots,s_0,a_0).$$

- \triangleright \mathbb{R} ? $S \times A \rightarrow \mathbb{R}$ is a **reward**
- function R(s,a) if reward defend a $\gamma \in [0,1)$: discount factor a, R(s)



$$\begin{array}{c}
A = \{a_0, a_1\} \\
R(s_1, a_0) = 5 R(s_2, a_1) = -1 \\
S_{t+1}
\end{array}$$

.2~	S_0	S_1	S ₂	
S_0, a_0	0.5	0	0.5	_
S_0, a_1	0	0	1	
$\xi \in S_1, a_0$	0.7	0.1	0.2	
S_1, a_1	0	0.95	0.05	
S_2, a_0	0.4	0.6	0	
S_2, a_1	0.3	0.3	0.4	

St. a.

At time step $\underline{t=0}$ with initial state $\underline{s_0} \in S$ for t=0 until done:

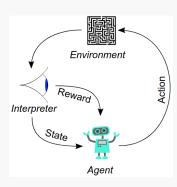
- Agent selects action at $a_t \in A$
 - Environment yields reward

$$S_{t,t} = R(s_t, a_t)$$

Environment samples next state

$$[s_{t+1}] \sim P_{sa}$$

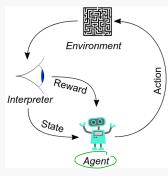
Agent receives reward (r_t) and next state



Markov Decision Process: Overview

At time step t = 0 with initial state $s_0 \in S$ for t = 0 until done:

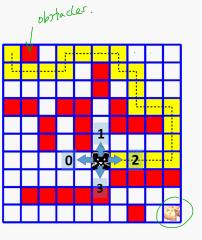
- ▶ Agent selects action at $a_t \in A$
- Environment yields reward $r_t = R(s_t, a_t)$
- Environment samples next state $s_{t+1} \sim P_{sa}$
- Agent receives reward r_t and next state s_{t+1}



A **policy** $\pi: S \to A$ specifies what action to take in each state

Goal: find optimal policy π^* that maximizes cumulative discounted reward

MDP Example: Maze Solver



https://www.samyzaf.com/ML/rl/qmaze.html

Goal: get to the bottom-right corner of the nxn maze $S \in \{1, \dots, 100\}$

- ► S: position of the agent (mouse)
- ► A: {Left, Right, Up, Down} $P_{sa}(s') = \begin{cases} \frac{1}{0} & s' \text{ is next move } model. \end{cases}$ Otherwise
 - R(a,s) =move to goal
- $ightharpoonup \gamma \in [0,1)$: discount factor

Reinforcement Learning and MDP | Model Learning for MDP | Deep Reinforcement Learning

MDP Example: Maze Solver

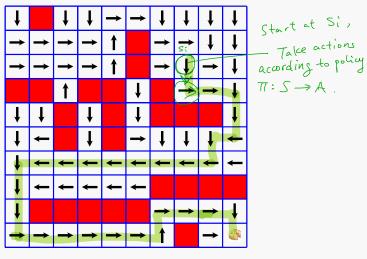
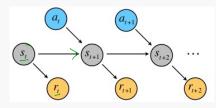


Figure: An optimal policy function $\pi(s)$ learned by the solver.

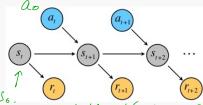
https://www.samyzaf.com/ML/rl/qmaze.html

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



Markov Decision Process

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



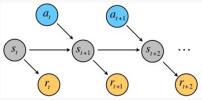
Total payoff of a sequence: starting $a+(s_a, a_b) \rightarrow l S_1, a_1) \rightarrow \cdots$

$$R(s_0, a_0) + \Re(s_1, a_1) + \Re(s_2, a_2) + \dots$$
T
Immediate discount future reward
reward factor

Y < 1.

Markov Decision Process

Consider a sequence of states s_0, s_1, \ldots with actions a_0, a_1, \ldots ,



Total payoff of a sequence:

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \dots$$

For simplicity, let's assume rewards only depends on state s, i.e.

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

Future reward at step t is discounted by γ^t $\sum_{t=0}^{\infty} \gamma^t R(s_t)$

$$\sum_{t=1}^{\infty} \gamma^{t} R(s_{t})$$

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\underbrace{\mathbb{E}}_{S_0,S_0,\cdots} [R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

A **policy** is any function $\pi \colon S \to A$.

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

A **policy** is any function $\pi: S \to A$.

A **value function** of policy π is the expected payoff if we start from s, So, S,, Sz .. take actions according to π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

Goal of reinforcement learning: choose actions that maximize the expected total payoff

$$\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots]$$

A **policy** is any function $\pi: S \to A$.

A value function of policy π is the expected payoff if we start from s, take actions according to π

$$V^{\pi}(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots | s_0 = s, \pi]$$

Given π , value function satisfies the **Bellman** equation: Why?

$$V^{\pi}(s) = \underbrace{R(s)} + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^{\pi}(s')$$

$$S' \sim P_{s\pi(s)}(s')$$

R(5)

Equation R(s) - V"(s,) + YPsa (sDV"(s) + YPsa(s)V"(s) + ... + XPsa(s)V"(s) 0 = P(S2)+rPs_(S,)U"(S1)-V"(S2)+rPs_((S,))U"(S3)+... $O = R(S_N) + rP_{S_n}(S_1)V^{r}(S_1) + r \cdots$ - V#(IN) $V^{\pi}(s) = \mathbb{E}[R(s_0, \overline{\pi}(s_0) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \dots | s_0 = s, \pi]$ Assume action is known: $\mathbb{E}[R(S_0)|S_0=S] = R(S_0)$ $V_{-}^{\pi}(s) = \mathbb{E}[R(s_0) + \Re(s_1) + \sqrt{\frac{s}{2}}R(s_2) + \dots | s_0 = s, \pi]$ $= \mathbb{E}[R(s)] + \gamma \mathbb{E}[R(s_1) + \gamma R(s_2) + \dots | s_0 = s, \pi]$ "1-step look ahead" $= R(s) + \gamma \mathbb{E}_{s' \sim P_{s,\pi(s)}}[V^{\pi}(s')]$

Given R, Psa, π , we can tind or $R(s) + \gamma \int_{s'}^{s \in S} P_{s,\pi(s)}(s') V^{\pi}(s') ds'$ $V^{\pi}(s)$ using Bellman's eq: $V^{T}(S_1)$, $V^{T}(S_2)$ - $V^{T}(S_N)$

 $V^{\pi}(s)$ can be solved as |S| linear equations with |S| unknowns.

Optimal value and policy

We define the optimal value function

$$V^*(s) = \max_{\underline{\pi}} \underline{V^{\underline{\pi}}(s)} = R(s) + \max_{\underline{\pi}} \gamma \sum_{s' \in S} \underline{P_{s,\underline{\pi}(s)}}(s') V^{\underline{\pi}}(s')$$
$$= R(s) + \max_{\underline{a} \in A} \gamma \sum_{s' \in S} \underline{P_{s\underline{a}}(s')} V^*(s')$$

Optimal value and policy

We define the optimal value function

$$\frac{V^{*}(s) = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')}{R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')}$$

Let $\pi^*: S \to A$ be the policy that attains the 'max':

$$\pi^*(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

We define the **optimal value function**

$$\underbrace{V^{*}(s)}_{\pi} = \max_{\pi} V^{\pi}(s) = R(s) + \max_{\pi} \gamma \sum_{s' \in S} P_{s,\pi(s)}(s') V^{\pi}(s')$$
$$= R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^{*}(s')$$

Let $\pi^*: S \to A$ be the policy that attains the 'max':

$$\pi^*(s) = \underset{a \in A}{\operatorname{argmax}} \sum_{s' \in S} P_{sa}(s') V^*(s') \underset{action \ a \ at \ state}{\operatorname{expected value of}} .$$

Then for every state s and every policy π , we can show

$$\boxed{V^*(s) = V^{\pi^*}(s)} \geq V^{\pi}(s)$$

 π^* is the optimal policy for any initial state s

Optimal value and policy

$V^{\pi}(s) \triangleq R(s) + \gamma \sum_{s \in \omega} P_{s \in \omega}(s') V^{\pi}(s')$

Proposition 1

For every state s and every policy π ,

$$V^*(s) = V^{\pi^*}(s)$$

Proof. 1) Show
$$V^*(s) \ge V^{\pi^*}(s)$$
 (2) Show $V^*(s) \le V^{\pi^*}(s)$.

By definition,
$$V^*(s) = \max_{T} V^{\pi}(s) \ge V^{\pi^*}(s)$$
there exists some T_T such that $V^{\pi}(s) = \max_{T} V^{\pi}(s) = \max_{T}$

Suppose
$$V^*(s) > V^{\pi^*}(s)$$
, then

there exists some of such that U"(s) = V*(s)

$$V^{\pi'}(s) > V^{\pi'}(s). \qquad \text{By Bellman's eg,}$$

$$R(i) + \gamma \sum_{s' \in S} P_{S\pi(s)}(s) V^{\pi'}(s) > R(s) + \delta \sum_{s' \in S} P_{S\pi(s)}(s') V^{\pi'}(s)$$

$$\sum_{s' \in S} P_{I\pi(s)}(s') V^{\pi'}(s') > \sum_{s' \in S} P_{J\pi(s)}(s') V^{\pi'}(s),$$
(extradiction because.

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

```
1. For each state s, initialize V(s) := 0

2. Repeat until convergence {

Update V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')} where for every state s

(expected payoff)
```

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.

```
1. For each state s, initialize V(s) := 0
2. Repeat until convergence {
\widehat{\text{Update } V(s)} := R(s) + \max_{s \in A} \gamma \sum_{s' \in S} P_{sa}(s')V(s')
for every state s
}
```

Two ways to update $V(\underline{s})$:

Synchronous update:

```
Set V_0(s) = V(s) for all states s \in S
For each s \in S:
V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V_0(s')
```

Assume the MDP has finite state and action space.

```
1. For each state s, initialize V(s) := 0
2. Repeat until convergence {
            Update V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')
              for every state s
    }
```

Two ways to update V(s):

Synchronous update:

```
Set V_0(s) := V(s) for all states s \in S
For each s \in S:
           V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V_0(s')
```

Asynchronous update:

```
For each s∈S: ← order matters!
          V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')
```

Solving finite-state MDP: policy iteration

spoling function

- Initialize π randomly
- 2. Repeat until convergence { a. Let $V:=|V^{\overline{\pi}}|$ compute expected payoff of policy $\overline{\pi}$ for all states b. For each state s, $\pi(s):=\operatorname{argmax}_{a\in A}\sum_{s'}P_{sa}(s')V(s')$ applied policy f.

```
1. Initialize \pi randomly
2. Repeat until convergence {
     (a) Let V := V^{\widehat{\pi}}
      \overline{\mathtt{b}}. For each state s,
             \pi(s) := \operatorname{argmax}_{s \in A} \sum_{s'} P_{sa}(s') V(s')
```

Step (a) can be done by solving Bellman's equation.

Both value iteration and policy iteration will converge to \underline{V}^* and $\underline{\pi}^*$

Value iteration vs. policy iteration

- ▶ Policy iteration is more efficient and converge faster for small MDP
- ▶ Value iteration is more practical for MDP's with large state spaces

Model Learning for MDP

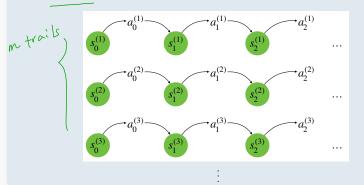
Discrete states

Continuous states

Suppose the reward function R(s) and the transition probability P_{sa} is not known. How to estimate them from data?

Experience from MDP

Given policy π , execute π repeatedly in the environment:



Estimate model from experience

Estimate P_{sa}

Maximum likelihood estimate of state transition probability:

$$\underbrace{P_{sa}(s') = P(s'|s, a)}_{P_{sa}(s') = \underbrace{\#\{\underline{s} \stackrel{\exists}{\Rightarrow} s'\}}_{\#\{\underline{s} \stackrel{\exists}{\Rightarrow} \cdot\}}$$

If
$$\#\{s \stackrel{\widehat{a}}{\longrightarrow} \cdot\} = 0$$
, set $P_{sa}(s') = \underbrace{1 \choose |S|}$.

Estimate R(s)

Let $R(s)^{(t)}$ be the immediate reward of state s in the t-th trail,

$$R(s) = \mathbb{E}[R(s)^{(t)}] = \frac{1}{m} \sum_{t=1}^{m} R(s)^{(t)}$$

Algorithm: MDP Model Learning

1. Initialize \widehat{m} randomly, V(s) := 0 for all s2. Repeat until convergence {
 a. Execute π for \underline{m} trails collect experience
 b. Update $\underline{P_{Sa}}$ and \underline{R} using the accumulated experience
 c. $\widehat{V} = \text{ValueIteration}(P_{Sa}, R, V)$ b. Update \widehat{m} greedily with respect to V:
 $\pi(s) := \operatorname{argmax}_{a \in A} \sum_{s'} P_{sa}(s') V(s')$

ValueIteration(P_{sa} , R, V_0)

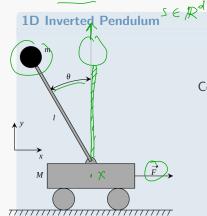
- 1. Initialize $V = V_0$
- 2. Repeat until convergence { Update $V(s):=R(s)+\max_{a\in A}\gamma\sum_{s'\in S}P_{sa}(s')V(s')$ for every state s }

S

Continuous state MDPs

An MDP may have an infinite number of states:

- A <u>car</u>'s state : $(x, y, \theta, \dot{x}, \dot{y}, \dot{\theta})^{d=6}$
- A helicopter's state : $(x, y, z, \phi, \theta, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\phi}, \dot{\theta}, \dot{\psi})$ $d = \iota 2$.



Control goal: balance the pole on the cart

(x, y, 0, x, y, 0).

- ► State representation: $(\underline{x}, \underline{\theta}, \dot{x}, \dot{\theta})$
- Action: force F on the car $F \in \mathbb{R}$
- Reward: +1 each time the pole is upright

Due to the Curse of Dimensionality, discretization rarely works well in continuous state with more than 1-2 dimensions

How to approximate V directly without resorting to discretization?

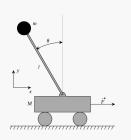
Main ideas:

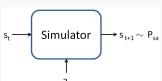
- Obtain a <u>model</u> or <u>simulator</u> for the MDP, to produce **experience tuples**: $\langle s, a, s', r \rangle$
- Sample $s^{(1)}, \ldots, s^{(m)}$ from the state space S, estimate their optimal expected total payoff using the model, i.e. $y^{(1)} \approx V(s^{(1)}), y^{(2)} \approx V(s^{(2)}), \ldots$
- Approximate V as a function of state s using supervised learning from $(s^{(1)}, y^{(1)}), (s^{(2)}, y^{(2)}), \ldots$ e.g.

$$V(s) = \theta^T \phi(s)$$

Value function

A **simulator** is a black box that generates the next state s_{t+1} given current state s_t and action a_t .





Use physics laws. e.g. equation of motion for the inversed pendulum problem:

$$(m+M)\ddot{x} + mL(\dot{\theta}^2 \sin \theta - \ddot{\theta} \cos(\theta)) = F$$
$$g \sin \theta + \ddot{x} \cos \theta = L\ddot{\theta}$$

- Use out-of-the-shelf simulation software
- Game simulator

Obtaining a model from data

Execute m trails in which we repeatedly take actions in an MDP, each trial for T timesteps.

Learn a prediction model $s_{t+1} = h_{\theta}$

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{m} \sum_{t=0}^{T-1} \left\| s_{t+1}^{(i)} - h_{\theta} \left(\begin{bmatrix} s_{t}^{(i)} \\ a_{t}^{(i)} \end{bmatrix} \right) \right\|^2$$

Obtaining a model from data

Popular prediction models

- ▶ Linear function: $h_{\theta} = As_t + Ba_t$
- ► Linear function with feature mapping: $h_{\theta} = A\phi_s(s_t) + B\phi_a(a_t)$
- ► Neural network

Build a simulator using the model:

- ▶ Deterministic model: $\underline{s_{t+1}} = h_{\widehat{\theta}} \begin{pmatrix} s_t \\ a_t \end{pmatrix}$
- Stochastic model: $s_{t+1} = h_{\theta} \left(\begin{bmatrix} s_t \\ a_t \end{bmatrix} \right) + \underbrace{\epsilon_t}, \ \epsilon_t \sim \mathcal{N}(0, \Sigma)$

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:

- Obtain a model or simulator for the MDP
- ▶ Sample $s^{(1)}, \ldots, s^{(m)}$ from the state space S, estimate their optimal expected total payoff using the model, i.e. $y^{(1)} \approx V(s^{(1)}), y^{(2)} \approx V(s^{(2)}), \dots$ ground truth value
- \triangleright Approximate V as a function of state s using supervised learning from $(s^{(1)}, y^{(1)}), (s^{(2)}, y^{(2)}), \dots$ e.g.

$$V(s) = \theta^T \phi(s)$$

Value function for continuous states

Update for finite-state value function:

$$\underbrace{V(s) := R(s) + \gamma \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V(s')}_{s' \in S}$$

Update we want for continuous-state value function:

$$V(s) := R(s) + \gamma \max_{a \in A} \int_{s'} P_{sa}(s')V(s')ds'$$
$$= R(s) + \gamma \max_{a \in A} \mathbb{E}_{s' \sim P_{sa}}[V(s')]$$

For each sample state s, we compute $y^{(i)}$ to approximate $R(s) + \gamma \max_{a \in A} \mathbb{E}_{s' \sim P_{s(i)}}[V(s')]$ using finite samples from P_{sa}

How to approximate V directly without resorting to discretization?

Main ideas:

- Obtain a model or simulator for the MDP
- \triangleright Sample $s^{(1)}, \ldots, s^{(m)}$ from the state space S, estimate their optimal expected total payoff using the model, i.e. $v^{(1)} \approx V(s^{(1)}), v^{(2)} \approx V(s^{(2)}), \dots$
- \triangleright Approximate, V as a function of state s using supervised learning from $(s^{(1)}, v^{(1)}), (s^{(2)}, v^{(2)}), \dots$ e.g.

$$V(s) = \theta^T \phi(s)$$

Fitted value iteration

Algorithm: Fitted value iteration (Stochastic Model)

```
1. Sample \underline{s^{(1)},\ldots,s^{(m)}}\in \underline{S}
2. Initialize \underline{\theta:=0} \leftarrow parameter of value \underline{\uparrow} metro \underline{u}
              2. Repeat {
a. For each sample s^{(i)}

For each action a:

Sample \left[s'_1, \dots, s'_k \sim P_{s(i)}\right] \text{ using a model} \rightarrow Compute } Q(a) = \frac{1}{k} \sum_{j=1}^k \left(R(s^{(i)}) + \gamma V(s'_j)\right)
                                                                                \uparrow estimates R(s^{(i)}) + \gamma \mathbb{E}_{s' \sim P}, [V(s')]
                                                                                 where V(s) := \theta^T \phi(s)
                                 \underbrace{y^{(i)} = \max_{a} Q(a)}_{\uparrow \text{ estimates}} + \gamma \max_{a} \underbrace{\mathbb{E}_{s' \sim P_{s',a}}[V(s')]}_{\downarrow f}
                                Update \theta using supervised learning:
                                     \theta := \operatorname{argmin}_{\theta} \frac{1}{2} \sum_{i=1}^{m} (\theta^{T} \phi(s^{(i)}) - y^{(i)})^{2}
                       }
```

If the model is deterministic, set k = 1

Computing the optimal policy

After obtaining the value function approximation \underline{V} , the corresponding policy is

$$\pi(s) = \operatorname*{argmax}_{s} \mathbb{E}_{s' \sim P_{sa}}[V(s')])$$

Estimate the optimal policy from experience:

For each action
$$a$$
:

1. Sample $s'_1, \ldots, s'_k \sim P_{s,a}$ using a model

2. Compute $Q(a) = \frac{1}{k} \sum_{j=1}^k R(s) + \gamma V(s'_j)$
 $\pi(s) = \operatorname{argmax}_a Q(a)$

Instead of linear regression, other learning algorithms can be used to estimate V(s).

Deep Reinforcement Learning

Two Outstanding Success Stories

Atari Al [Minh et al. 2015]

- Plays a variety of Atari 2600 video games at superhuman level
- Trained directly from image pixels, based on a single reward signal

AlphaGo [Silver et al. 2016]

- ► A hybrid deep RL system
- ► Trained using supervised and reinforcement learning, in combination with a traditional tree-search algorithm.

Learning From Data

Deep Reinforcement Learning

Main difference from classic RL:

- Use deep network to represent value function
- ► Optimize value function end-to-end
- ► Use stochastic gradient descent

Q-Value Function

Given policy π which produce sample sequence $(s_0, a_0, r_0), (s_1, a_1, r_1), \ldots$

 \triangleright Value function of π :

$$\underbrace{ \sqrt{\pi} (s)} = \mathbb{E} \left[\sum_{t \geq 0} \gamma^t r_t \middle| s_0 = s, \pi \right]$$

▶ The **Q-value function** $\mathbb{Q}^{\mathbb{T}}(s,\widehat{a})$ is the expected payoff if we take aat state s and follow π

$$Q^{\pi}(s,a) = \mathbb{E}\left[\left|\sum_{t\geq 0} \gamma^t r_t\right| s_0 = s(a_0 = a_p)\pi\right]$$

► The optimal Q-value function is:

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) = \max_{\pi} \mathbb{E} \left[\sum_{t>0} \gamma^t r_t \middle| s_0 = s, a_0 = a, \pi \right]$$

Q-Learning

Bellman's equation for Q-Value function:

$$Q^*(s,\widehat{a}) = \mathbb{E}_{s'} \underbrace{\mathcal{E}}_{a'} \underbrace{r + \gamma \max_{a'} Q^*(s',\widehat{a'}) | s,\widehat{a}]}_{a'}$$

Value iteration is not practical when the search space is large.

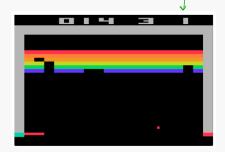
e.g. In an Atari game, each frame is an 128-color 210×160 image, then

$$|S| = 128^{210 \times 160}$$

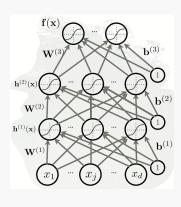
Uses a function approximation:

$$Q(s,a;\theta) \approx Q^*(s,a)$$

▶ In deep Q-learning, $Q(s, a; \theta)$ is a neural network



Neural Network Review



Training goal: $\min_{\theta} \sum_{i=1}^{m} L(f(x^{(i)}; \theta), y^{(i)})$

Forward propagation

Initialize $h^{(0)}(x) = x$

For each layer $l = 1 \dots d$:

$$a^{(l)}(x) = W^{(l)}h^{(l-1)}(x) + b^{(l)}$$

$$h^{(1)}(x) = g(a^{(1)}(x))$$

Evaluate loss function $L(h^{(d)}(x), y)$

Backward propagation

Compute gradient $\frac{dL}{dh^{(d)}}$ For each layer $I = \tilde{d} \dots 1$:

Update gradient for parameters in layer

Q-Networks

Training goal: find $Q(s, a; \theta)$ that fits Bellman's equation:

$$Q^*(s,a) = \mathbb{E}_{s' \sim \mathcal{E}}[r + \gamma \max_{a'} Q^*(s',a')|s,a]$$

Forward Pass

Loss function:

$$L_i(\theta_i) = \mathbb{E}_{s,a}[(\hat{y_i} - Q(s,a;\theta_i)^2)]$$

where $y_i = \mathbb{E}_{s' \sim \mathcal{E}}[r + \gamma \max_{a'} Q(s', a'; \theta_{i-1}) | s, a]$

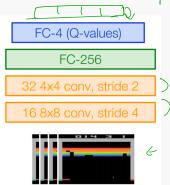
Backward Pass

Update parameter θ by computing gradient

$$abla_{ heta_i} L_i(heta_i) = \mathbb{E}_{s,a,s' \sim \mathcal{E}} \left[\left(r + \gamma \max_{a'} Q(s',a'; heta_{i-1}) - Q(s,a; heta_i)
ight)
abla_{ heta} Q(s,a; heta_i)
ight]$$

Deep Q-Network Architecture

- Input: 4 consecutive frames
- Preprocessing: convert to grayscale, down-sampling, cropping. Final dimension 84 × 84 × 4
- Output: Q-value functions for 4 actions $Q(s, a_1), Q(s, a_2), Q(s, a_3), Q(s, a_4)$



Experience Replay

Challenge of standard deep Q-learning: correlated input

- invalidate the i.i.d. assumption on training samples
- current policy may restrict action samples we experience in the environment

Experience replay

- Store past transitions $(\underline{s_t, a_t, r_t, s_{t+1}})$ within a sliding window in the replay memory D.
- ► Train Q-Network using random mini-batch sampled from *D* to reduce sample correlation
- ► Also reduces total running time by reusing samples

The Algorithm

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights
for episode = 1, M do
    Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
    for t = 1. T do
        With probability \epsilon select a random action a_t otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
          Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
          Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
    end for
end for
```

Parameter ϵ controls the <u>exploration</u> vs. optimization trade-off

See Demo.

https://cs.stanford.edu/people/karpathy/convnetjs/demo/

rldemo.html