
Learning From Data
Lecture 11: Reinforcement Learning

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 8, 2022



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Today’s Lecture

Reinforcement Learning
I What’s reinforcement learning?
I Mathematical formulation: Markov Decision Process (MDP)
I Model Learning for MDP, Fitted Value Iteration
I Deep reinforcement learning (Deep Q-networks)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Deep Reinforcement Learning: AlphaGo

AlphaGo beat World Go Champion Kejie (2017)

Nature paper on by AlphaGo team

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Deep Reinforcement Learning: OpenAI
OpenAI beats Dota2 world champion (2017)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Multi-Agent Reinforcement Learning: AlphaStar

AlphaStar reached Grandmaster level in StarCraft II (2019)

https://www.nature.com/articles/s41586-019-1724-z

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

https://www.nature.com/articles/s41586-019-1724-z


Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Reinforcement Learning: Autonomous Car, Helicopter

Stanley, Winner of DARPA Grand Challenge (2005)
Inverted autonomous helicopter flight (2004)

Other applications include robotic control, computational economics,
health care...

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

What is reinforcement learning?

Sequential decision making
To deciding, from experience, the sequence of actions to perform in
an uncertain environment in order to achieve some goals.

I e.g. play games, robotic control, autonomous driving, smart grid
I Do not have full knowledge of the environment a prior
I Difficult to label a sample as "the right answer" for a learning goal

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

What is reinforcement learning?
A learning framework to solve sequential decision making problem,
inspired by behavior psychology (Sutton, 1984)
I An agent interacts with an environment which provides a “reward

function” to indicate how “well” the learning agent is doing
I The agents take actions to maximize the cumulative “reward”

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Markov Decision Process

A Markov decision process
(S,A, {Psa}, γ,R)

I S: a set of states
(environment)

I A: a set of actions
I Psa := P(st+1|st , at): state

transition probabilities.
Markov property:
P(st+1|st , at) =
P(st+1|st , at , . . . , s0, a0) .

I R : S × A → R is a reward
function

I γ ∈ [0, 1): discount factor

S = {S0, S1, S2}
A = {a0, a1}
R(s1, a0) = 5, R(s2, a1) = −1

S0 S1 S2
S0, a0 0.5 0 0.5
S0, a1 0 0 1
S1, a0 0.7 0.1 0.2
S1, a1 0 0.95 0.05
S2, a0 0.4 0.6 0
S2, a1 0.3 0.3 0.4

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Markov Decision Process: Overview

At time step t = 0 with initial state s0 ∈ S
for t = 0 until done:
I Agent selects action at at ∈ A
I Environment yields reward

rt = R(st , at)

I Environment samples next state
st+1 ∼ Psa

I Agent receives reward rt and next state
st+1

A policy π : S → A specifies what action to take in each state

Goal: find optimal policy π∗ that maximizes cumulative discounted
reward

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

MDP Example: Maze Solver

Goal: get to the bottom-right corner of
the nxn maze
I S: position of the agent (mouse)
I A: {Left, Right, Up, Down}

I Psa(s ′) =
{

1 s ′ is next move
0 otherwise

I R(a, s) =
−0.05 move to free cell
−1 move to wall/block
1 move to goal

I γ ∈ [0, 1): discount factor
https://www.samyzaf.com/ML/rl/qmaze.html

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

https://www.samyzaf.com/ML/rl/qmaze.html


Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

MDP Example: Maze Solver

Figure: An optimal policy function π(s) learned by the solver.

https://www.samyzaf.com/ML/rl/qmaze.html

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

https://www.samyzaf.com/ML/rl/qmaze.html


Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Markov Decision Process

Consider a sequence of states s0, s1, . . . with actions a0, a1, . . . ,

Total payoff of a sequence:

R(s0, a0) + γR(s1, a1) + γ2R(s2, a2) + . . .

For simplicity, let’s assume rewards only depends on state s, i.e.

R(s0) + γR(s1) + γ2R(s2) + . . .

Future reward at step t is discounted by γt

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Policy & value functions

Goal of reinforcement learning: choose actions that maximize the
expected total payoff

E[R(s0) + γR(s1) + γ2R(s2) + . . . ]

A policy is any function π : S → A.
A value function of policy π is the expected payoff if we start from s,
take actions according to π

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]

Given π, value function satisfies the Bellman equation: Why?

V π(s) = R(s) + γ
∑
s′∈S

Psπ(s)(s ′)V π(s ′)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Bellman Equation

Value function of π at s:

V π(s) = E[R(s0, π(s0) + γR(s1, π(s1)) + γ2R(s2, π(s2)) + . . . |s0 = s, π]

Assume action is known:

V π(s) = E[R(s0) + γR(s1) + γ2R(s2) + . . . |s0 = s, π]
= E[R(s)] + γE[R(s1) + γR(s2) + . . . |s0 = s, π]
= R(s) + γEs′∼Ps,π(s) [V

π(s ′)]

= R(s) + γ
∑
s′∈S

Ps,π(s)(s ′)V π(s ′)

or R(s) + γ

∫
s′

Ps,π(s)(s ′)V π(s ′)ds ′

V π(s) can be solved as |S| linear equations with |S| unknowns.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Optimal value and policy

We define the optimal value function

V ∗(s) = max
π

V π(s) = R(s) + max
π
γ
∑
s′∈S

Ps,π(s)(s ′)V π(s ′)

= R(s) + max
a∈A

γ
∑
s′∈S

Psa(s ′)V ∗(s ′)

Let π∗ : S → A be the policy that attains the ’max’:

π∗(s) = argmax
a∈A

∑
s′∈S

Psa(s ′)V ∗(s ′)

Then for every state s and every policy π, we can show

V ∗(s) = V π∗
(s) ≥ V π(s)

π∗ is the optimal policy for any initial state s

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Optimal value and policy

Proposition 1
For every state s and every policy π,

V ∗(s) = V π∗
(s)

Proof.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Solving finite-state MDP: value iteration

Assume the MDP has finite state and action space.
1. For each state s , initialize V (s) := 0
2. Repeat until convergence {

Update V (s) := R(s) + maxa∈A γ
∑

s′∈S Psa(s′)V (s′)
for every state s

}

Two ways to update V (s):
I Synchronous update:

Set V0(s) := V (s) for all states s ∈ S
For each s ∈ S:

V (s) := R(s) + maxa∈A γ
∑

s′∈S Psa(s′)V0(s′)

I Asynchronous update:
For each s ∈ S:

V (s) := R(s) + maxa∈A γ
∑

s′∈S Psa(s′)V (s′)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Solving finite-state MDP: policy iteration

1. Initialize π randomly
2. Repeat until convergence {

a. Let V := Vπ

b. For each state s ,
π(s) := argmaxa∈A

∑
s′ Psa(s′)V (s′)

}

Step (a) can be done by solving Bellman’s equation.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Discussion

Both value iteration and policy iteration will converge to V ∗ and π∗

Value iteration vs. policy iteration
I Policy iteration is more efficient and converge faster for small MDP
I Value iteration is more practical for MDP’s with large state spaces

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Learning a model for finite-state MDP

Suppose the reward function R(s) and the transition probability Psa is
not known. How to estimate them from data?

Experience from MDP
Given policy π, execute π repeatedly in the environment:

s(1)
1

a(1)
0 a(1)

1

s(1)
0 s(1)

2

a(1)
2

… 

s(2)
1

a(2)
0 a(2)

1

s(2)
0 s(2)

2

a(2)
2

… 

s(3)
1

a(3)
0 a(3)

1

s(3)
0 s(3)

2

a(3)
2

… 

...

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Estimate model from experience

Estimate Psa

Maximum likelihood estimate of state transition probability:

Psa(s ′) = P(s ′|s, a) = #{s a−→ s ′}
#{s a−→ ·}

If #{s a−→ ·} = 0, set Psa(s ′) = 1
|S| .

Estimate R(s)

Let R(s)(t) be the immediate reward of state s in the t-th trail,

R(s) = E[R(s)(t)] = 1
m

m∑
t=1

R(s)(t)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Algorithm: MDP Model Learning

1. Initialize π randomly , V (s) := 0 for all s
2. Repeat until convergence {

a. Execute π for m trails
b. Update Psa and R using the accumulated

experience
c. V :=ValueIteration(Psa,R,V )
b. Update π greedily with respect to V :

π(s) := argmaxa∈A
∑

s′ Psa(s′)V (s′)
}

ValueIteration(Psa,R,V0)

1. Initialize V = V0
2. Repeat until convergence {

Update V (s) := R(s) + maxa∈A γ
∑

s′∈S Psa(s′)V (s′)
for every state s

}

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Continuous state MDPs
An MDP may have an infinite number of states:
I A car’s state : (x , y , θ, ẋ , ẏ , θ̇)
I A helicopter’s state : (x , y , z , φ, θ, ψ, ẋ , ẏ , ż , φ̇, θ̇, ψ̇ )

1D Inverted Pendulum

Control goal: balance the pole on the cart
I State representation: (x , θ, ẋ , θ̇)
I Action: force F on the car
I Reward: +1 each time the pole is

upright

Due to the Curse of Dimensionality, discretization rarely works well in
continuous state with more than 1-2 dimensions

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
I Obtain a model or simulator for the MDP, to produce experience

tuples: 〈s, a, s ′, r〉
I Sample s(1), . . . , s(m) from the state space S, estimate their optimal

expected total payoff using the model, i.e.
y (1) ≈ V (s(1)), y (2) ≈ V (s(2)), . . .

I Approximate V as a function of state s using supervised learning
from (s(1), y (1)), (s(2), y (2)), . . . e.g.

V (s) = θTφ(s)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Obtaining a simulator

A simulator is a black box that generates the next state st+1 given
current state st and action at .

10

A second downside of this representation is called the curse of dimen-
sionality. Suppose S = Rn, and we discretize each of the n dimensions of the
state into k values. Then the total number of discrete states we have is kn.
This grows exponentially quickly in the dimension of the state space n, and
thus does not scale well to large problems. For example, with a 10d state, if
we discretize each state variable into 100 values, we would have 10010 = 1020

discrete states, which is far too many to represent even on a modern desktop
computer.

As a rule of thumb, discretization usually works extremely well for 1d
and 2d problems (and has the advantage of being simple and quick to im-
plement). Perhaps with a little bit of cleverness and some care in choosing
the discretization method, it often works well for problems with up to 4d
states. If you’re extremely clever, and somewhat lucky, you may even get it
to work for some 6d problems. But it very rarely works for problems any
higher dimensional than that.

4.2 Value function approximation

We now describe an alternative method for finding policies in continuous-
state MDPs, in which we approximate V ∗ directly, without resorting to dis-
cretization. This approach, caled value function approximation, has been
successfully applied to many RL problems.

4.2.1 Using a model or simulator

To develop a value function approximation algorithm, we will assume that
we have a model, or simulator, for the MDP. Informally, a simulator is
a black-box that takes as input any (continuous-valued) state st and action
at, and outputs a next-state st+1 sampled according to the state transition
probabilities Pstat :

There’re several ways that one can get such a model. One is to use
physics simulation. For example, the simulator for the inverted pendulum

I Use physics laws. e.g. equation of motion for
the inversed pendulum problem:

(m + M)ẍ + mL(θ̇2 sin θ − θ̈ cos(θ)) = F
g sin θ + ẍ cos θ = Lθ̈

I Use out-of-the-shelf simulation software
I Game simulator

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Obtaining a model from data

Execute m trails in which we repeatedly take actions in an MDP, each
trial for T timesteps.

Learn a prediction model st+1 = hθ

([
st
at

])
by picking

θ∗ = argmin
θ

m∑
i=1

T−1∑
t=0

∥∥∥∥∥s(i)t+1 − hθ

([
s(i)t
a(i)t

])∥∥∥∥∥
2

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Obtaining a model from data

Popular prediction models
I Linear function: hθ = Ast + Bat

I Linear function with feature mapping: hθ = Aφs(st) + Bφa(at)

I Neural network

Build a simulator using the model:

I Deterministic model: st+1 = hθ

([
st
at

])
I Stochastic model: st+1 = hθ

([
st
at

])
+ εt , εt ∼ N (0,Σ)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
I Obtain a model or simulator for the MDP
I Sample s(1), . . . , s(m) from the state space S, estimate their optimal

expected total payoff using the model, i.e.
y (1) ≈ V (s(1)), y (2) ≈ V (s(2)), . . .

I Approximate V as a function of state s using supervised learning
from (s(1), y (1)), (s(2), y (2)), . . . e.g.

V (s) = θTφ(s)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Value function for continuous states

Update for finite-state value function:

V (s) := R(s) + γmax
a∈A

∑
s′∈S

Psa(s ′)V (s ′)

Update we want for continuous-state value function:

V (s) := R(s) + γmax
a∈A

∫
s′

Psa(s ′)V (s ′)ds ′

= R(s) + γmax
a∈A

Es′∼Psa [V (s ′)]

For each sample state s, we compute y (i) to approximate
R(s) + γmaxa∈A Es′∼Ps(i)a

[V (s ′)] using finite samples from Psa

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Value function approximation

How to approximate V directly without resorting to discretization?

Main ideas:
I Obtain a model or simulator for the MDP
I Sample s(1), . . . , s(m) from the state space S, estimate their optimal

expected total payoff using the model, i.e.
y (1) ≈ V (s(1)), y (2) ≈ V (s(2)), . . .

I Approximate V as a function of state s using supervised learning
from (s(1), y (1)), (s(2), y (2)), . . . e.g.

V (s) = θTφ(s)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Fitted value iteration

Algorithm: Fitted value iteration (Stochastic Model)

1. Sample s(1), . . . , s(m) ∈ S
2. Initialize θ := 0
2. Repeat {

a. For each sample s(i)
For each action a:

Sample s′1, . . . , s′k ∼ Ps(i),a using a model

Compute Q(a) = 1
k
∑k

j=1 R(s(i)) + γV (s′j )
↑ estimates R(s(i)) + γEs′∼Ps′a

[V (s′)]
where V (s) := θTφ(s)

y (i) = maxa Q(a)
↑ estimates R(s(i)) + γmaxa Es′∼Ps′a

[V (s′)]
b. Update θ using supervised learning :

θ := argminθ
1
2
∑m

i=1(θ
Tφ(s(i))− y (i))2

}

If the model is deterministic, set k = 1

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Computing the optimal policy

After obtaining the value function approximation V , the corresponding
policy is

π(s) = argmax
a

Es′∼Psa [V (s ′)])

Estimate the optimal policy from experience:
For each action a :

1. Sample s′1, . . . , s′k ∼ Ps,a using a model
2. Compute Q(a) = 1

k
∑k

j=1 R(s) + γV (s′j )
π(s) = argmaxa Q(a)

Instead of linear regression, other learning algorithms can be used to
estimate V (s).

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Two Outstanding Success Stories

Atari AI [Minh et al. 2015]
I Plays a variety of Atari 2600 video games at superhuman level
I Trained directly from image pixels, based on a single reward signal

AlphaGo [Silver et al. 2016]
I A hybrid deep RL system
I Trained using supervised and reinforcement learning, in combination

with a traditional tree-search algorithm.

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Deep Reinforcement Learning

Main difference from classic RL:
I Use deep network to represent value function
I Optimize value function end-to-end
I Use stochastic gradient descent

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Q-Value Function

Given policy π which produce sample sequence (s0, a0, r0), (s1, a1, r1), . . .

I Value function of π :

V π(s) = E

∑
t≥0

γtrt

∣∣∣∣∣∣s0 = s, π


I The Q-value function Qπ(s, a) is the expected payoff if we take a

at state s and follow π

Qπ(s, a) = E

∑
t≥0

γtrt

∣∣∣∣∣∣s0 = s, a0 = a, π


I The optimal Q-value function is:

Q∗(s, a) = max
π

Qπ(s, a) = max
π

E

∑
t≥0

γtrt

∣∣∣∣∣∣s0 = s, a0 = a, π



Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Q-Learning

Bellman’s equation for Q-Value function:

Q∗(s, a) = Es′∼E [r + γmax
a′

Q∗(s ′, a′)|s, a]

Value iteration is not practical when the search space is large.

e.g. In an Atari game, each frame is an 128-color 210 × 160 image, then
|S| = 128210×160

I Uses a function approximation:

Q(s, a; θ) ≈ Q∗(s, a)

I In deep Q-learning, Q(s, a; θ) is
a neural network

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Neural Network Review

Training goal: minθ
∑m

i=1 L(f (x (i); θ), y (i))

Forward propagation
Initialize h(0)(x) = x
For each layer l = 1 . . . d :
I a(l)(x) = W (l)h(l−1)(x) + b(l)

I h(l)(x) = g(a(l)(x))
Evaluate loss function L(h(d)(x), y)

Backward propagation
Compute gradient dL

dh(d)

For each layer l = d . . . 1:
I Update gradient for parameters in layer

l

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Q-Networks

Training goal: find Q(s, a; θ) that fits Bellman’s equation:
Q∗(s, a) = Es′∼E [r + γmaxa′ Q∗(s ′, a′)|s, a]

Forward Pass
Loss function:

Li(θi) = Es,a[(yi − Q(s, a; θi)
2]

where yi = Es′∼E [r + γmaxa′ Q(s ′, a′; θi−1)|s, a]

Backward Pass
Update parameter θ by computing gradient

∇θi Li(θi) = Es,a,s′∼E

[(
r + γmax

a′
Q(s ′, a′; θi−1)− Q(s, a; θi)

)
∇θQ(s, a; θi)

]

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Deep Q-Network Architecture

I Input: 4 consecutive frames
I Preprocessing: convert to grayscale, down-sampling, cropping. Final

dimension 84 × 84 × 4
I Output: Q-value functions for 4 actions Q(s, a1),Q(s, a2),

Q(s, a3),Q(s, a4)

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Experience Replay

Challenge of standard deep Q-learning: correlated input
I invalidate the i.i.d. assumption on training samples
I current policy may restrict action samples we experience in the

environment
Experience replay
I Store past transitions (st , at , rt , st+1) within a sliding window in the

replay memory D.
I Train Q-Network using random mini-batch sampled from D to

reduce sample correlation
I Also reduces total running time by reusing samples

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

The Algorithm

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1,M do

Initialise sequence s1 = {x1} and preprocessed sequenced �1 = �(s1)
for t = 1, T do

With probability ✏ select a random action at
otherwise select at = maxa Q⇤(�(st), a; ✓)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess �t+1 = �(st+1)
Store transition (�t, at, rt,�t+1) in D
Sample random minibatch of transitions (�j , aj , rj ,�j+1) from D

Set yj =
⇢

rj for terminal �j+1

rj + �maxa0 Q(�j+1, a0; ✓) for non-terminal �j+1

Perform a gradient descent step on (yj �Q(�j , aj ; ✓))
2 according to equation 3

end for

end for

Second, learning directly from consecutive samples is inefficient, due to the strong correlations
between the samples; randomizing the samples breaks these correlations and therefore reduces the
variance of the updates. Third, when learning on-policy the current parameters determine the next
data sample that the parameters are trained on. For example, if the maximizing action is to move left
then the training samples will be dominated by samples from the left-hand side; if the maximizing
action then switches to the right then the training distribution will also switch. It is easy to see how
unwanted feedback loops may arise and the parameters could get stuck in a poor local minimum, or
even diverge catastrophically [25]. By using experience replay the behavior distribution is averaged
over many of its previous states, smoothing out learning and avoiding oscillations or divergence in
the parameters. Note that when learning by experience replay, it is necessary to learn off-policy
(because our current parameters are different to those used to generate the sample), which motivates
the choice of Q-learning.

In practice, our algorithm only stores the last N experience tuples in the replay memory, and samples
uniformly at random from D when performing updates. This approach is in some respects limited
since the memory buffer does not differentiate important transitions and always overwrites with
recent transitions due to the finite memory size N . Similarly, the uniform sampling gives equal
importance to all transitions in the replay memory. A more sophisticated sampling strategy might
emphasize transitions from which we can learn the most, similar to prioritized sweeping [17].

4.1 Preprocessing and Model Architecture

Working directly with raw Atari frames, which are 210⇥ 160 pixel images with a 128 color palette,
can be computationally demanding, so we apply a basic preprocessing step aimed at reducing the
input dimensionality. The raw frames are preprocessed by first converting their RGB representation
to gray-scale and down-sampling it to a 110⇥84 image. The final input representation is obtained by
cropping an 84⇥ 84 region of the image that roughly captures the playing area. The final cropping
stage is only required because we use the GPU implementation of 2D convolutions from [11], which
expects square inputs. For the experiments in this paper, the function � from algorithm 1 applies this
preprocessing to the last 4 frames of a history and stacks them to produce the input to the Q-function.

There are several possible ways of parameterizing Q using a neural network. Since Q maps history-
action pairs to scalar estimates of their Q-value, the history and the action have been used as inputs
to the neural network by some previous approaches [20, 12]. The main drawback of this type
of architecture is that a separate forward pass is required to compute the Q-value of each action,
resulting in a cost that scales linearly with the number of actions. We instead use an architecture
in which there is a separate output unit for each possible action, and only the state representation is
an input to the neural network. The outputs correspond to the predicted Q-values of the individual
action for the input state. The main advantage of this type of architecture is the ability to compute
Q-values for all possible actions in a given state with only a single forward pass through the network.

5

Parameter ε controls the exploration vs. optimization trade-off

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data



Introduction Reinforcement Learning and MDP Model Learning for MDP Deep Reinforcement Learning

Reinforcement Learning Demo

See Demo.
https://cs.stanford.edu/people/karpathy/convnetjs/demo/
rldemo.html

Yang Li yangli@sz.tsinghua.edu.cn Learning From Data

https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html
https://cs.stanford.edu/people/karpathy/convnetjs/demo/rldemo.html

	Introduction
	Reinforcement Learning and MDP
	Motivation
	Markov Decision Process

	Model Learning for MDP
	Discrete states
	Continuous states

	Deep Reinforcement Learning

