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Today's Lecture

Unsupervised Learning (Part II):’FI’S/S
> Motivation
» Linear PCA
> Kernel PCA
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Motivation of PCA

Example: Analyzing San Francisco public transit route efficiency

features

notes

— speed

average speed

_ flow

# boarding pas-
sengers per hour

crowded

% passenger ca-
pacity reached

~ wait time

average  waiting
time at bus stop

earning

net operation rev-
enue
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Motivation of PCA

Input features contain a lot of redundancy
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Scatter plot matrix

reveals pairwise correlations among 5 major features
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Motivation of PCA

Example of linearly dependent features

> Flow: average # boarding passengers per hour

average # passengers on train

. }
Crowdedness: .
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Motivation of PCA

Example of linearly dependent features

> Flow: average # boarding passengers per hour

average # passengers on train
train capacity

» Crowdedness:
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How to remove feature redundancy?

Given {x(M) ... x(M} x() ¢ R".

» Find a linear, orthogonal transformation W : R” — R¥ of the input

data

» W aligns the direction of maximum variance with the axes of the

new space.
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features x; and x are strongly

correlated
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:.}:(/\-j)g

—-20 —10

10

20

rL

variations in z = x" W is mostly
along the x-axis. x can be repre-

sented in 1D! =.
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Direction of Maximum Variance

» Suppose p = mean(x) =0, oj = var(x;) = 1 (variance of jth feature)
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Direction of Maximum Variance

> Suppose ;= mean(x) =0, oj = var(x;) = 1 (variance of jth feature)

» Find major axis of variation unit vector u:
major 42> O varate

x x % /U”‘( - >< >< meL
Loz

input observations projections on u projections on u
have large variance have small variance
u maximizes the variance of the projections
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Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into
principal components". Journal of Educational Psychology.
PCA goals

» Find principal components U, that are mutually orthogonal
(uncorrelated) —

» Most of the variation in x will be accounted for by k prmcnpal
components where k < n.
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Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into

principal components". Journal of Educational Psychology.

PCA goals

» Find principal components vy, ..., u, that are mutually orthogonal
(uncorrelated)

> Most of the variation in x will be accounted for by k principal
components where k << n.

Main steps of (full) PCA:
1. Standardize x such that Mean(x) =0, Var(x;) =1 for all j
2. Find projection ofﬁ, @x with maximum variance «w1 - 4 rr{nm‘f&\
3. Forj=2,....n, Covmpana
Find another projection of x, uJ-Tx with maximum variance,
where u; is orthogonal to uq, 7., uj_1

—  —
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Step 1: Standardize data

=1

Normalize x such that Mean(x) =0 and Var(x;)

5l o A — | < recenter

(') —X(')/U « scale by stdev(x;)

Check: fa_,l_gj 6,,\1,.()()
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Step 2: Find Projection with Maximum Variance

ORI 2

R= *);:\‘“_ e Co\)(x> = L“L L':
. [GEISY © SN
7{:»«7 Bue

e
Since |u| =1, the length of
x0's projection on u is
MOLM

ST
x u

[lull =1
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Step 2: Find Projection with Maximum Variance

Since |u| =1, the length of

OV rens ; Variance of the projections:
x*’'s projection on u Is

oM
X u. 7 T 1 . T
—> (xD y-0)2== > uTxDxD "y
mixa - =
_ (I
LXK

T
x®u

[lull =1
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Step 2: Find Projection with Maximum Variance

Since |u| =1, the length of
x(D’s projection on u is

N T
xD "y,

Variance of the projections:

LS u0y2 = LSy Txx07
m m iz - —

i=1
N 7 . T
N =ml (| = (1), (1)
. u (m ’;X X )u
Covlt) = 2

ST
x u

[lull =1
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Step 2: Find Projection

Since |u| =1, the length of
x(D’s projection on u is

N T
xD "y,

ST
x u

[lull =1

with Maximum Variance

Variance of the projections:
= " y_0)2=— NONOM
m G 0=
_ (1 L (i)T) J

miz
=u"Yu
3 : the sample covariance matrix of
x L x(m)
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1st Principal Component

Find unit vector u; that maximizes variance of projections:

u = argmax u' Xu (1)
| uf|=1
Cdafintton) s

uy is the 1st principal component of X

uy can be solved using optimization tools, but it has a more efficient
solution:

Proposition 1

uy is the largest eigenvector of covariance matrix X
—_— -
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Proposition 1

uy is the largest eigenvector of covariance matrix *

Proof. ]
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Proposition 1

uy is the largest eigenvector of covariance matrix *

Proof. Generalized Lagrange function of Problem [??}

L(u)=-u"%u +@UTU -1)
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Proposition 1

uy is the largest eigenvector of covariance matrix *
Proof. Generalized Lagrange function of Problem [??}

L(u)=-u"%u +—5(LT£J -1)
To minimize L(u),

L
?—:—2Zu+2,6’u 0 = Xu= ,Bu
u

Therefore u; must be an eigenvector of .
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Proposition 1

uy is the largest eigenvector of covariance matrix ¥
Proof. Generalized Lagrange function of Problem [??}

L(u)=—u"Su+pB(u"u-1)
To minimize L(u),

oL
— =-2Yu+20u=0 = Xu=Lu
ou
Therefore u; must be an eigenvector of .
Let u; :)’vj—,\the eigenvector with the jth largest eigenvalue ),
AYj

ul Tur= v Ty = Ny Ty =

Hence u; = vy, the eigenvector with the largest eigenvalue A;.

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Data


Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User

Mobile User


Proposition 2

The jth principal component of X , u; is the jth largest eigenvector of
e S |

Proof.
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Proposition 2

The jth principal component of X , u; is the jth largest eigenvector of
Y.

Proof. Consider the case j = 2,

U= argmax_ u'Xu (2)

] ul=1 ] u=0|
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Proposition 2

The jth principal component of X , u; is the jth largest eigenvector of
2.

Proof. Consider the case j = 2,

U= argmax u'Xu (2)
us|lufl=1,uf u=0

The Lagrangian function:

L(u)=-u"Su+Br(u"u-1)+ Ba(uf u)

Minimizing L(u) yields: J/
Pz0ru-fu L) L5 apeso
?%‘7(::) B —IZuJ—'LFHL"’PLu, = 0. v

iM:F\\/L-
T, =
ML\\{A‘\/L/ w . 202w *ApUTU * Ba Ut g.
2 M < 2B, ulw £ B h'Uy =0,
v —~— —=
2L =0 u‘,’u:.:) = =0 e
o[ Br=0.
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Proposition 2

The jth principal component of X , u; is the jth largest eigenvector of
Y.

Proof. Consider the case j = 2,

U= argmax u'Xu (2)
us|lufl=1,uf u=0

The Lagrangian function:
L(u)=-u"Su+Br(u"u-1)+ Ba(uf u)

Minimizing L(u) yields:
B2=0,2u=pru
To maximize u” Xu =\, u> must be the eigenvector with the second

largest eigenvalue 1 = A\. The same argument can be generalized to
cases j > 2. (Use induction to prove for j=1...n ) O
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Summary

We can solve PCA by solving an eigenvalue problem!
Main steps of (full) PCA:

1. Standardize x such that Mean(x) =0, Var(x;) =1 for all j
2. Compute X = cov(x)

3. Find principal components uy, ..., u, by eigenvalue decomposition:
Y = UNUT. < U is an orthogonal basis in R"

Next we project data vectors x to this new basis, which spans the
principal component space.
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PCA Projection

> Projection of sample x € R" in the principal component space:
‘g((’(.eh T
?w) 3 ’ x{) uy

20 = : eR”

Y
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PCA Projection

> Projection of sample x € R” in the principal component space:

[y
2 = : eR”
x0Ty,
» Matrix notation:
| 17
Z(D = Ui ... U, x{ = UTX(i), or Z=XU
| |
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PCA Projection

> Projection of sample x € R” in the principal component space:

[y
PAC : eR"
x0Ty,
» Matrix notation:
| 17
z(0 = Ui ... Up x) = UTX(i), or Z=XU
| |

> The truncated transformation Z; = XU, keeping only the first k
principal components is used for dimension reduction.
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Properties of PCA

» The variance of principal component projections are
/ coulx)

Var(x"u;) = u;"Zu; = \; for j=1,...,n

——y
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Properties of PCA

» The variance of principal component projections are
Var(xTuj) = UJ'TZUJ' = )\J' forj = ]., -l
Vo
A
» % of variance explained by the jth principal com onent:

i.e. projections are uncorrelated
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Properties of PCA

r11 AT
» The variance of principal component projections are .

lc=
Var(xTuj):ujTZuj:)\j forjzl,...,n ="

» % of variance explained by the jth principal component:

i.e. projections are uncorrelated
r. * % of variance accounted for by retaining the first k principal
Z—Ij(:I Ajg — dj. pust e pe PW)@C"&(‘:V\JA
n
> j=1 /\j )]
Another geometric interpretation of PCA is minimizing projection
residuals. (see homework!)

components (k < n):
_— ——
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Covariance Interpretation of PCA

x = Cov(¥)= L
PCA removes the “redundancy” (or noise) in input data X:
Let Z =(XU be the PCA projected data, e &
o

1 1 1 v

cov(Z)=~2T7=LxuyT(xuy = U" (fxTx) U=-UTsU

_— m____ m __ ;7 __, _ m — o —

NS

Z
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Covariance Interpretation of PCA

PCA removes the “redundancy” (or noise) in input data X:
Let Z = XU be the PCA projected data,

cov(2) = 1277 - Lixu)Txuy - uT (lex) U=UTsU
m m m
Since ¥ is symmetric, it has real eigenvalues. Its eigen decomposition is

Y = UNUT

where

)<

I
—Ig —

1

>

Learning From Data
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Covariance Interpretation of PCA

PCA removes the “redundancy” (or noise) in input data X:
Let Z = XU be the PCA projected data,

==

el Z) = %ZTZ - %(XU)T(XU) _uT (%XTX) U-UTsU

Since ¥ is symmetric, it has real eigenvalues. Its eigen decomposition is

Y = UNUT
where
| | A1
U =\ U coo Un ,/\ = %
| | An
Then
cov(Z) = UT(UNUT)U = A,
=
I z
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Covariance Interpretation of PCA

PCA removes the “redundancy” (or noise) in input data X:
Let Z = XU be the PCA projected data,

el Z) = %ZTZ - %(XU)T(XU) _uT (%XTX) U=UTsU

Since ¥ is symmetric, it has real eigenvalues. Its eigen decomposition is
¥ = UNUT
where
| | Ml
U =\ U coo Un ,/\ = %
| | A
Then
cov(Z) = UT(UANUTYU = A

The principal component transformation XU diagonalizes the sample
covariance matrix of X
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Linear PCA Review

PCA Dimension reduction

» Find principal components vy, ..., u, that are mutually orthogonal
(uncorrelated) _g

> Most of the variations in x will be accounted for by k principal
components where k < n.

Main steps
1. Standardize x such that Mean(x) =0, Var(x;) =1 for all j
Standardi
2. Compute X = cov(x)

3. Find principal components uy, ..., u, by eigenvalue decomposition:
Y = UNUT. < U is an orthogonal basis in R"

4. Project data on first the k principal components:
z=[x"up, ..., xTu]"
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PCA Example: Iris Dataset

» 150 samples

> input feature dimension: 4

First two input attributes

4.5
4 [
[ ]
<
] 35
3
g 3¢
[0}
(2]
25
2 . ® setosa
4 8 ® versicolor
sepal length ® virginica
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PCA Example: Iris Dataset

» 150 samples

> input feature dimension: 4

PCA Projection on 2 Principal Components

15 ¢ o °
1t s :
o9 ° . % . -—r\—( d
05+ [ % !
NJ ol ® .'o. ..00&. ° Z >\J
o) [ ° ) oo \):4
.’ & " L)
05+ o . ~.:0. 0.:0'
qt g ®
15 ° . , ® setosa
4 2 2 4 ® versicolor

[ ]
0
( u; ) © virginica
—

% of variance explained by PC1: 73%, by PC2: 22% 75%
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PCA Example: Eigenfaces

Learning image representations for face recognition using PCA [Turk and
Pentland CVPR 1991]
X

i 700
= —

Training data  (

W 7oxz20

Eigenfaces: k principal components
S A w3,
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PCA Example: Eigenfaces

Each face image is a linear combination of the
eigenfaces (principal components)
B diahnas

&«

+1 Mean Image <
i+

Each image is represented by k weights
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PCA Example: Eigenfaces

Each face image is a linear combination of the
eigenfaces (principal components)

+1 Mean Image

w1 wa wg wy Ws | ... Wk

]

Each image is represented by k weights

Recognize faces by
classifying the weight
vectors. e.g. k-Nearest
Neighbor — —
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Kernel PCA

Feature extraction using PCA

f 20 ZA e[ s 0
e.g. k-means

Linear PCA assumes data are separable in R”
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Kernel PCA

Feature extraction using PCA

20 ZA e[ s 0

—

e.g. k-means

Linear PCA assumes data are separable in R”

A non-linear generalization

> Project data into higher dimension using feature mapping
¢:R" > R? (d>n)
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Kernel PCA

Feature extraction using PCA

20 ZA e[ s 0

e.g. k-means

Linear PCA assumes data are separable in R”

A non-linear generalization
> Project data into higher dimension using feature mapping
¢:R" > R? (d>n)
> Feature mapping is defined by a kernel function
K (x(’),xU)) = p(xN)Tp(xW)) or kernel matrix K e R™m
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Kernel PCA

Feature extraction using PCA

20 ZA e[ s 0

e.g. k-means

Linear PCA assumes data are separable in R”

A non-linear generalization
> Project data into higher dimension using feature mapping
¢:R" > R? (d>n)
> Feature mapping is defined by a kernel function
K (x(’),xU)) = p(xN)Tp(xWD)) or kernel matrix K e R™m™

» We can now perform standard PCA in the feature space
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Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods) Sample covariance matrix of
feature mapped data (assuming ¢(x) is centered)

> o(xXNp(xN)T e REC

ANGE]

Yy =

3|~
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Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods) Sample covariance matrix of

feature mapped data (assuming ¢(x) is centered)

3

T = — 3 o)) e mI-
— m;

I
[ary

Let (Ak,uk),k=1,...,d be the eigen decomposition of X:

Zuk = /\kuk
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Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods) Sample covariance matrix of
feature mapped data (assuming ¢(x) is centered)

£ == S o Mp(x))T e RO
=i

Let (Ak,uk),k=1,...,d be the eigen decomposition of X:
Zuk = /\kuk
PCA projection ofﬁ(/’) onto the kth principal component wuy:

(x) Ty

—_—
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Kernel PCA

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal
component analysis. In Advances in kernel methods) Sample covariance matrix of
feature mapped data (assuming ¢(x) is centered)

£ == S o Mp(x))T e RO
miz1
Let (Ak,uk),k=1,...,d be the eigen decomposition of X:
YUk = AUk
PCA projection of x() onto the kth principal component uy:

(xD) Ty

How to avoid evaluating ¢(x) explicitly?
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The Kernel Trick

Represent projection ¢(x())7 uy using kernel function K:

» Write uj as a linear combination of ¢(x(M), ..., ¢(x(™):

i . g
ue = Y afp(x)
- a1
2 e = AUk
( L ) o) )u«_: MU,

256(’(‘“, \(O)T\J\.\c U
'\ "‘m/\_—
3 &5, Oy %CX UE e,

=] ——
otk
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The Kernel Trick

Represent projection ¢(x())7 uy using kernel function K:

» Write uj as a linear combination of ¢(x(M), ..., ¢(x(™):

U= > ey

i=1 =

» PCA projection ofg_(’) using kernel function K:

¢(X(I))Tuk = QS(X(I))T E ai(zﬁ(x(")) = E aLK(X(/),X(i))
- — &,:/ =i —
How to find oz;;'s directly 7
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The Kernel Trick

Kth eigenvector equation:
1 . )
Ty = ( Z¢(x<'>>¢<x<'>>T) Uk = Nt
miz

> Substitute ux = X7 ol ¢(x(), we obtain

Kak = )\kmak

where a, = | @ |can be solved by eigen decomposition of K

Pava

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Data


Mobile User


The Kernel Trick

Kth eigenvector equation:
1 . )
Ty = ( Z¢(x<'>>¢<x<'>>T) Uk = Nt
miz

> Substitute ux = X7 ol ¢(x(), we obtain
KOék = )\kmak
a
where a, = | @ |can be solved by eigen decomposition of K
oy
> Normalize a such that u) ux = 1:

UkTUk = Z Zai(a/,;¢(x(i))T¢(XU)) = akTKak = Akm(OékTOék)

i=1j=1

2
« =—
lowl? = £ —
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Kernel PCA

When E[¢(x)] # 0, we need to center ¢(x):

F0) = 6(:7) = 2 33 5(x")
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Kernel PCA

When E[¢(x)] # 0, we need to center ¢(x):
1 m
B(x?) = o(x D) = = 5> 5(x)
m3
The “centralized” kernel matrix is
Ri,j = $(X(’))T$(XU))
In matrix notation:
K=K-1,K-Klp+1nKl,
1/m ... 1/m
where 1, =| :

1/m ... 1/m
Use K to compute PCA

@ Rmxm

Yang Li  yangli@sz.tsinghua.edu.cn Learning From Data



Kernel PCA Example

original data standard PCA

100

50

-50

-100
-100

X 100 400
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Kernel PCA Example

Polynomial kernel PCA Gaussian kernel PCA
%1020
* class 1 6r
6r O class 2
&t i
4t ¥ ;éji*
y@f&ﬁ"}jﬁ* g F 4
P eSS Ve J
*
of I
B o= 5 2
ot . P 'l
a4l *%ﬁ *i " s %*** 0r
H
R At
6 L * class 1
ot O class 2
45 4 05 0 05 1 15 ‘ ‘ ‘ ‘
x102! -10 5 0 5 10
112
/ / 5 / X=X
k(x,x")=(x-x"+1) k(x,x):exp(—%)
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Discussions of kernel PCA

» Often used in clustering, abnormality detection, etc
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Discussions of kernel PCA

» Often used in clustering, abnormality detection, etc
> Requires finding eigenvectors of m x m matrix instead of nx n
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Discussions of kernel PCA

» Often used in clustering, abnormality detection, etc

> Requires finding eigenvectors of m x m matrix instead of nx n

» Dimension reduction by projecting to k-dimensional principal
subspace is generally not possible

9()

Kernel Mapping

Principle Component
X Projection

0\‘59 o v
\(\Q Principle Component
Subspace

The Pre-Image problem: reconstruct data in input space x from feature space
vectors ¢(x)
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PCA Limitations

» Assumes input data is real and continuous

> Assumes approximate normality of input space (but may still work
well on non-normally distributed data in practice) <« sample mean
& covariance must be sufficient statistics
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PCA Limitations

» Assumes input data is real and continuous

» Assumes approximate normality of input space (but may still work
well on non-normally distributed data in practice) <« sample mean
& covariance must be sufficient statistics

Example of strongly non-normal distributed input:

PCA Projection

PDF Original Input

0.7

0.6
0.5
0.4
0.3
0.2
0.1

3L
03T =T 0 1 2 -
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PCA Limitations

PCA results may not be useful when
» Axes of larger variance is less ‘interesting’ than smaller ones.

> Axes of variations are not orthogonal,

»> ‘b o0

‘P ‘ '.
4 $

» °

Not interesting!

Interesting!
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Summary

Representation learning

> Transform input features into “simpler” or “interpretable”
representations.

» Used in feature extraction, dimension reduction, clustering etc
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Summary

Representation learning

> Transform input features into “simpler” or “interpretable”
representations.

» Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms:
‘ low dimension sparse disentangle variations

k-means v’ v’
spectral embedding v’ v’
PCA v’ v’
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