Learning from Data Lecture 10: Principal Component Analysis

Yang Li yangli@sz.tsinghua.edu.cn

TBSI

December 2, 2022

Unsupervised Learning (Part II): PCA

- Motivation
- Linear PCA
- Kernel PCA

Yang Li yangli@sz.tsinghua.edu.cn

Example: Analyzing San Francisco public transit route efficiency

	features	notes
	speed	average speed
_	flow	# boarding pas-
		sengers per hour
_	crowded	% passenger ca-
		pacity reached
~ `	wait time	average waiting
		time at bus stop
	earning	net operation rev-
		enue
-	:	:

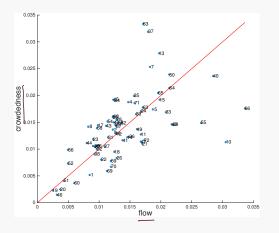
Input features contain a lot of redundancy



Scatter plot matrix reveals pairwise correlations among 5 major features

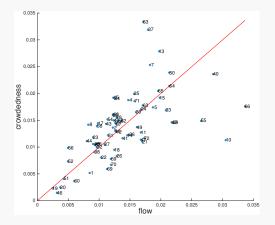
Example of linearly dependent features

- Flow: average # boarding passengers per hour
- Crowdedness: average # passengers on train train capacity



Example of linearly dependent features

- Flow: average # boarding passengers per hour
- Crowdedness: <u>average # passengers on train</u> train capacity



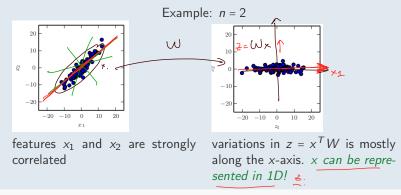
How can we automatically detect and remove this redundancy?

- geometric approach ←
 start here!
- diagonalize covariance matrix approach

How to remove feature redundancy?

Given
$$\{x^{(1)}, \dots, x^{(m)}\}, x^{(i)} \in \mathbb{R}^n$$
.

- ▶ Find a linear, orthogonal transformation $W : \mathbb{R}^n \to \mathbb{R}^k$ of the input data
- ► W aligns the direction of maximum variance with the axes of the new space.



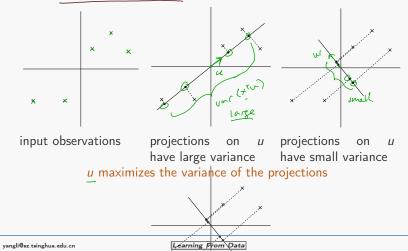
Direction of Maximum Variance

Suppose $\mu = mean(x) = 0$, $\sigma_j = var(x_j) = 1$ (variance of jth feature)

Direction of Maximum Variance

Yang Li

- Suppose $\mu = mean(x) = 0$, $\sigma_j = var(x_j) = 1$ (variance of jth feature)
- Find major axis of variation unit vector u:



Yang Li yangli@sz.tsinghua.edu.cn

Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into principal components". Journal of Educational Psychology.

PCA goals

- Find principal components u₁,..., u_n that are mutually orthogonal (uncorrelated)
- Most of the variation in x will be accounted for by k principal components where $k \ll n$.

Principal Component Analysis (PCA)

Pearson, K. (1901), Hotelling, H. (1933) "Analysis of a complex of statistical variables into principal components". Journal of Educational Psychology.

PCA goals

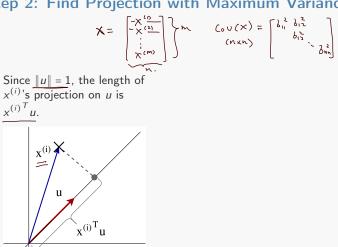
- Find principal components u₁,..., u_n that are mutually orthogonal (uncorrelated)
- Most of the variation in x will be accounted for by k principal components where k << n.</p>

Main steps of (full) PCA:

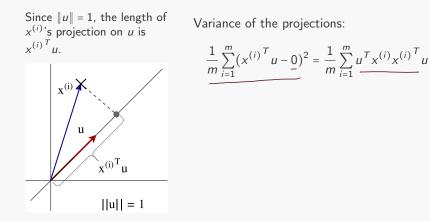
- 1. Standardize x such that Mean(x) = 0, $Var(x_j) = 1$ for all j
- 2. Find projection of x, $a_1^T x$ with maximum variance u_1 : 1st principal component
- 3. For j = 2, ..., n, Find another projection of x, $u_j^T x$ with maximum variance, where u_j is orthogonal to $u_1, ..., u_{j-1}$

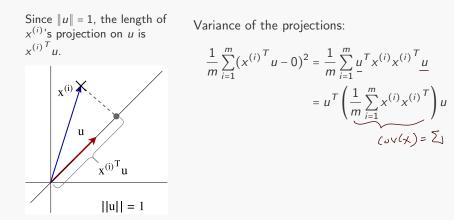
Step 1: Standardize data

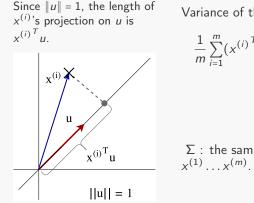
Normalize x such that Mean(x) = 0 and $Var(x_i) = 1$ $x^{(i)} \coloneqq x^{(i)} - \mu \leftarrow \text{recenter}$ $x_j^{(i)} \coloneqq x_j^{(i)} / \sigma_j \leftarrow \text{ scale by } stdev(x_j)$ $\operatorname{var}\left(\frac{x_{j}}{\sigma_{j}}\right) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{x_{j}^{(i)} - \mu_{j}}{\sigma_{j}}\right)^{2} = \left[\frac{1}{\sigma_{j}^{2}}\right] \frac{1}{m} \sum_{i=1}^{m} \left(x_{j}^{(i)} - \mu_{j}\right)^{2}$ $= \frac{1}{\sigma_{j}^{2}} \sigma_{j}^{2} = 1$ Check:



||u|| = 1







Variance of the projections:

$$\frac{1}{m} \sum_{i=1}^{m} (x^{(i)^{T}} u - 0)^{2} = \frac{1}{m} \sum_{i=1}^{m} u^{T} x^{(i)} x^{(i)^{T}} u$$
$$= u^{T} \left(\frac{1}{m} \sum_{i=1}^{m} x^{(i)} x^{(i)^{T}} \right) u$$
$$= u^{T} \Sigma u$$

 Σ : the sample covariance matrix of $x^{(1)} \dots x^{(m)}$.

Find unit vector u_1 that maximizes variance of projections:

$$u_{1} = \underset{u: \underline{\|u\| = 1}}{\operatorname{argmax}} \quad \underline{u}^{T} \Sigma u \tag{1}$$

(det(n)) u_1 is the **1st principal component** of X

 u_1 can be solved using optimization tools, but it has a more efficient solution:

Proposition 1

 u_1 is the largest eigenvector of covariance matrix Σ

 u_1 is the largest eigenvector of covariance matrix $\boldsymbol{\Sigma}$

Proof.

Proof. Generalized Lagrange function of Problem ??

$$L(u) = -u^T \Sigma u + \widehat{\beta} (u^T u - 1)$$

 u_1 is the largest eigenvector of covariance matrix Σ

Proof. Generalized Lagrange function of Problem ??

$$L(u) = -u^T \Sigma u + \underline{\beta(u^T u - 1)}$$

To minimize L(u),

$$\frac{\delta L}{\delta u} = -2\Sigma u + 2\beta u = 0 \implies \underline{\Sigma u = \beta u}$$

Therefore u_1 must be an eigenvector of Σ .

 u_1 is the largest eigenvector of covariance matrix Σ

Proof. Generalized Lagrange function of Problem ??

$$L(u) = -u^T \Sigma u + \beta (u^T u - 1)$$

To minimize L(u),

$$\frac{\delta L}{\delta u} = -2\Sigma u + 2\beta u = 0 \implies \Sigma u = \beta u$$

Therefore u_1 must be an eigenvector of Σ . Let $u_1 = v_j$, the eigenvector with the *j*th largest eigenvalue λ_j , $u_1^T \Sigma u_1 = v_j^T \Sigma v_j = \lambda_j v_j^T v_j = \lambda_j$.

Hence $\underline{u_1} = \underline{v_1}$, the eigenvector with the largest eigenvalue $\underline{\lambda_1}$.

The j**th principal component** of X , u_j is the jth largest eigenvector of Σ .

Proof.

The jth principal component of X , u_j is the jth largest eigenvector of Σ .

Proof. Consider the case j = 2,

$$u_{2} = \underset{\underline{u}: \|u\| = 1, \overline{u_{1}^{T} u = 0}}{\operatorname{argmax}} u^{T} \Sigma u$$
(2)

The jth principal component of X , u_j is the jth largest eigenvector of Σ .

Proof. Consider the case j = 2,

$$u_2 = \underset{u:\|u\|=1, u_1^T u=0}{\operatorname{argmax}} u^T \Sigma u$$
(2)

The Lagrangian function:

Yang Li yangli@sz.tsinghua.edu.cn

The jth principal component of X , u_j is the jth largest eigenvector of Σ .

Proof. Consider the case j = 2,

$$u_2 = \underset{u:\|u\|=1, u_1^T u=0}{\operatorname{argmax}} u^T \Sigma u$$
(2)

The Lagrangian function:

$$L(u) = -u^T \Sigma u + \beta_1 (u^T u - 1) + \beta_2 (u_1^T u)$$

Minimizing L(u) yields:

$$\beta_2 = 0, \Sigma u = \beta_1 u$$

To maximize $\underline{u}^T \Sigma \underline{u} = \lambda$, u_2 must be the eigenvector with the second largest eigenvalue $\beta_1 = \lambda_2$. The same argument can be generalized to cases j > 2. (Use induction to prove for $j = 1 \dots n$)

Summary

We can solve PCA by solving an eigenvalue problem! Main steps of (full) PCA:

- **1.** Standardize x such that Mean(x) = 0, $Var(x_j) = 1$ for all j
- **2.** Compute $\Sigma = cov(x)$
- **3.** Find principal components u_1, \ldots, u_n by eigenvalue decomposition: $\Sigma = U \Lambda U^T$. $\leftarrow U$ is an orthogonal basis in \mathbb{R}^n

Next we project data vectors x to this new basis, which spans the **principal component space**.

PCA Projection

Projection of sample $x \in \mathbb{R}^n$ in the principal component space:

$$z^{(i)} = \begin{bmatrix} x^{(i)}^T \underline{u}_1 \\ \vdots \\ x^{(i)}^T \underline{u}_n \end{bmatrix} \in \mathbb{R}^{n}$$

PCA Projection

Projection of sample $x \in \mathbb{R}^n$ in the principal component space:

$$z^{(i)} = \begin{bmatrix} x^{(i)^T} u_1 \\ \vdots \\ x^{(i)^T} u_n \end{bmatrix} \in \mathbb{R}^n$$

Matrix notation:

$$z^{(i)} = \begin{bmatrix} | & | \\ u_1 & \dots & u_n \\ | & | \end{bmatrix}^T x^{(i)} = U^T x^{(i)}, \text{ or } Z = XU$$

PCA Projection

▶ Projection of sample $x \in \mathbb{R}^n$ in the principal component space:

$$z^{(i)} = \begin{bmatrix} x^{(i)}^T u_1 \\ \vdots \\ x^{(i)}^T u_n \end{bmatrix} \in \mathbb{R}^n$$

Matrix notation:

$$z^{(i)} = \begin{bmatrix} | & | \\ u_1 & \dots & u_n \\ | & | \end{bmatrix}^T x^{(i)} = U^T x^{(i)}, \text{ or } Z = XU$$

The truncated transformation Z_k = XU_k keeping only the first k principal components is used for dimension reduction.

Properties of PCA

The variance of principal component projections are

$$\operatorname{Var}(x^{T}u_{j}) = \underbrace{u_{j}^{T}\Sigma}_{j}\underbrace{u_{j}}_{j} = \underbrace{\lambda_{j}}_{j} \text{ for } j = 1, \dots, n$$

Properties of PCA

The variance of principal component projections are

$$\operatorname{Var}(x^{T}u_{j}) = \underbrace{u_{j}}_{j}^{T}\Sigma u_{j} = \lambda_{j} \text{ for } j = 1, \dots, n$$

Var

• % of variance explained by the *j*th principal component: λ_j i.e. projections are uncorrelated

Properties of PCA

The variance of principal component projections are

$$\operatorname{Var}(x^T u_j) = u_j^T \Sigma u_j = \lambda_j \text{ for } j = 1, \dots, n$$

r.1-

 $\begin{array}{c} & & & \\ &$

Another geometric interpretation of PCA is minimizing projection residuals. (see homework!)

Covariance Interpretation of PCA

$$X = Cov(x) = \sum_{i=1}^{n}$$

PCA removes the "redundancy" (or noise) in <u>input data X</u>: Let $\underline{Z} = \bigotimes U$ be the PCA projected data, $\underline{cov}(\underline{Z}) = \frac{1}{m} \underline{Z}^T \underline{Z} = \frac{1}{m} (\underline{X}\underline{U})^T (\underline{X}\underline{U}) = \underline{U}^T \left(\frac{1}{m} \underline{X}^T \underline{X}\right) \underline{U} = \underline{U}^T \underline{\Sigma} \underline{U}$

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data X: Let Z = XU be the PCA projected data,

$$\operatorname{cov}(Z) = \frac{1}{m} Z^{\mathsf{T}} Z = \frac{1}{m} (XU)^{\mathsf{T}} (XU) = U^{\mathsf{T}} \left(\frac{1}{m} X^{\mathsf{T}} X \right) U = U^{\mathsf{T}} \Sigma U$$

Since $\boldsymbol{\Sigma}$ is symmetric, it has real eigenvalues. Its eigen decomposition is

$$\Sigma = U \Lambda U^T$$

where

$$\underbrace{\mathcal{U}}_{i} = \begin{bmatrix} | & & | \\ \underline{u}_{1} & \dots & \underline{u}_{n} \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \underline{\lambda}_{1} & & \\ & \ddots & \\ & & \underline{\lambda}_{n} \end{bmatrix}$$

Covariance Interpretation of PCA

Since Σ is symmetric, it has real eigenvalues. Its eigen decomposition is

 $\Sigma = U \Lambda U^T$

where

$$U = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Then

$$\underbrace{\operatorname{cov}(Z)}_{\mathcal{I}} = \underbrace{U^{T}(U\Lambda U^{T})U}_{\mathcal{I}} = \bigwedge_{\mathcal{L}}$$

Covariance Interpretation of PCA

PCA removes the "redundancy" (or noise) in input data X: Let Z = XU be the PCA projected data,

$$\operatorname{cov}(Z) = \frac{1}{m} Z^{\mathsf{T}} Z = \frac{1}{m} (XU)^{\mathsf{T}} (XU) = U^{\mathsf{T}} \left(\frac{1}{m} X^{\mathsf{T}} X \right) U = U^{\mathsf{T}} \Sigma U$$

Since Σ is symmetric, it has real eigenvalues. Its eigen decomposition is

 $\Sigma = U \Lambda U^T$

where

$$U = \begin{bmatrix} | & & | \\ u_1 & \dots & u_n \\ | & & | \end{bmatrix}, \Lambda = \begin{bmatrix} \underline{\lambda}_1 | & \\ & \ddots & \\ & & \underline{\lambda}_n \end{bmatrix}$$

Then

$$\operatorname{cov}(Z) = U^T (U \wedge U^T) U = \Lambda$$

The principal component transformation XU diagonalizes the sample covariance matrix of X

Yang Li yangli@sz.tsinghua.edu.cn

Linear PCA Review

PCA Dimension reduction

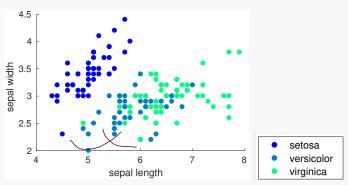
- Find principal components <u>u1</u>,..., <u>un</u> that are mutually orthogonal (uncorrelated)
- Most of the variations in x will be accounted for by k principal components where k le n.

Main steps

- 1. Standardize x such that Mean(x) = 0, $Var(x_j) = 1$ for all j
- **2.** Compute $\Sigma = cov(x)$
- **3.** Find principal components u_1, \ldots, u_n by eigenvalue decomposition: $\underline{\Sigma} = U \Lambda U^T$. $\leftarrow U$ is an orthogonal basis in \mathbb{R}^n
- 4. Project data on first the k principal components: $z = [x^T u_1, \dots, x^T u_k]^T$

PCA Example: Iris Dataset

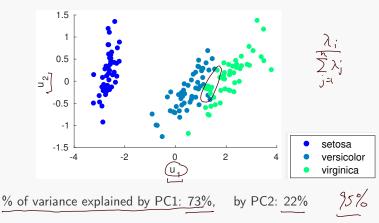
- 150 samples
- input feature dimension: 4



First two input attributes

PCA Example: Iris Dataset

- 150 samples
- input feature dimension: 4



PCA Projection on 2 Principal Components

Learning From Data

PCA Example: Eigenfaces

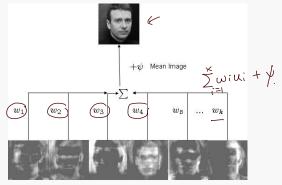
Learning image representations for face recognition using PCA [Turk and Pentland CVPR 1991] $x^{(i)} = \prod_{i=1}^{i} \frac{1}{2} \frac{$

Training data

Eigenfaces: k principal components

PCA Example: Eigenfaces

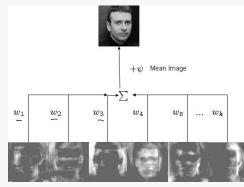
Each face image is a linear combination of the **eigenfaces** (principal components)



Each image is represented by k weights

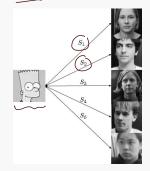
PCA Example: Eigenfaces

Each face image is a linear combination of the **eigenfaces** (principal components)



Each image is represented by k weights

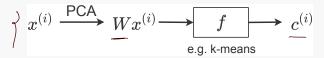
Recognize faces by classifying the weight vectors. e.g. k-Nearest Neighbor



Yang Li yangli@sz.tsinghua.edu.cn

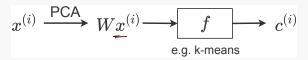
Learning From Data

Feature extraction using PCA



Linear PCA assumes data are separable in \mathbb{R}^n

Feature extraction using PCA

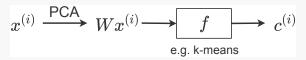


Linear PCA assumes data are separable in \mathbb{R}^n

A non-linear generalization

• Project data into higher dimension using feature mapping $\phi : \mathbb{R}^n \to \mathbb{R}^d \ (d \ge n)$

Feature extraction using PCA

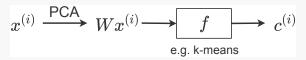


Linear PCA assumes data are separable in \mathbb{R}^n

A non-linear generalization

- Project data into higher dimension using feature mapping $\phi : \mathbb{R}^n \to \mathbb{R}^d \ (d \ge n)$
- Feature mapping is defined by a kernel function $K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$ or kernel matrix $K \in \mathbb{R}^{m \times m}$

Feature extraction using PCA



Linear PCA assumes data are separable in \mathbb{R}^n

A non-linear generalization

- Project data into higher dimension using feature mapping $\phi : \mathbb{R}^n \to \mathbb{R}^d \ (d \ge n)$
- Feature mapping is defined by a kernel function $K(x^{(i)}, x^{(j)}) = \phi(x^{(i)})^T \phi(x^{(j)})$ or kernel matrix $K \in \mathbb{R}^{m \times m}$
- We can now perform standard PCA in the feature space

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \frac{\phi(x^{(i)})}{(x^{(i)})} \phi(x^{(i)})^{T} \in \mathbb{R}^{d \times d}$$

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\sum_{m=1}^{\infty} = \frac{1}{m} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^{T} \in \mathbb{R}^{d \times d}$$

Let $(\lambda_k, u_k), k = 1, \dots, d$ be the eigen decomposition of Σ :

 $\Sigma u_k = \lambda_k u_k$

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\boldsymbol{\Sigma} = \frac{1}{m} \sum_{i=1}^{m} \boldsymbol{\phi}(\boldsymbol{x}^{(i)}) \boldsymbol{\phi}(\boldsymbol{x}^{(i)})^{T} \in \mathbb{R}^{d \times d}$$

Let $(\lambda_k, u_k), k = 1, \dots, d$ be the eigen decomposition of Σ :

$$\Sigma u_k = \lambda_k u_k$$

PCA projection of $\underline{x^{(l)}}$ onto the *kth* principal component u_k :

$$\underbrace{\phi(x^{(l)})^T u_k}$$

(Bernhard Schoelkopf, Alexander J. Smola, and Klaus-Robert Mueller. 1999. Kernel principal component analysis. In Advances in kernel methods) Sample covariance matrix of feature mapped data (assuming $\phi(x)$ is centered)

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} \phi(\boldsymbol{x}^{(i)}) \phi(\boldsymbol{x}^{(i)})^{T} \in \mathbb{R}^{d \times d}$$

Let $(\lambda_k, u_k), k = 1, \dots, d$ be the eigen decomposition of Σ :

$$\Sigma u_k = \lambda_k u_k$$

PCA projection of $x^{(l)}$ onto the *kth* principal component u_k :

$$\underbrace{\phi(x^{(l)})^T u_k}$$

How to avoid evaluating $\phi(x)$ explicitly?

Yang Li yangli@sz.tsinghua.edu.cn

Represent projection $\phi(x^{(l)})^T u_k$ using kernel function K:

• Write u_k as a linear combination of $\phi(x^{(1)}), \ldots, \phi(x^{(m)})$:

$$\underline{u}_{k} = \sum_{i=1}^{m} \alpha_{k}^{i} \phi(x^{(i)})$$

$$\sum u_{k} = \lambda_{k} u_{k}$$

$$\left(\frac{1}{m} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^{T} \right) u_{k} = \lambda_{k} u_{k}.$$

$$\frac{1}{m} \lambda_{k} \sum_{i=1}^{m} \phi(x^{(i)}) \phi(x^{(i)})^{T} u_{k} = u_{k}.$$

$$\sum_{i=1}^{m} \frac{1}{m\lambda_{k}} \phi(x^{(i)}) u_{k} \phi(x^{(i)}) = u_{k}.$$

Represent projection $\phi(x^{(l)})^T u_k$ using kernel function K:

• Write u_k as a linear combination of $\phi(x^{(1)}), \ldots, \phi(x^{(m)})$:

$$u_k = \sum_{i=1}^m \alpha_k^i \phi(x^{(i)})$$

• PCA projection of $\underline{x}^{(l)}$ using kernel function <u>K</u>:

$$\underbrace{\phi(x^{(l)})^{T} u_{k}}_{(k)} = \underbrace{\phi(x^{(l)})^{T} \sum_{i=1}^{m} \alpha_{k}^{i} \phi(x^{(i)})}_{(k)} = \sum_{i=1}^{m} \alpha_{k}^{i} \underbrace{\mathcal{K}(x^{(l)}, x^{(i)})}_{(k)}$$

How to find α_k^i 's directly ?

Kth eigenvector equation:

$$\Sigma u_k = \left(\frac{1}{m} \sum_{i=1}^m \phi(x^{(i)}) \phi(x^{(i)})^T\right) u_k = \lambda_k u_k$$

• Substitute $u_k = \sum_{i=1}^m \alpha_k^{(i)} \phi(x^{(i)})$, we obtain

$$K\alpha_k = \lambda_k m\alpha_k$$

where
$$\alpha_k = \begin{bmatrix} \alpha_k^1 \\ \vdots \\ \alpha_k^m \end{bmatrix}$$
 can be solved by eigen decomposition of K

Kth eigenvector equation:

$$\Sigma u_k = \left(\frac{1}{m} \sum_{i=1}^m \phi(x^{(i)}) \phi(x^{(i)})^T\right) u_k = \lambda_k u_k$$

• Substitute $u_k = \sum_{i=1}^m \alpha_k^{(i)} \phi(x^{(i)})$, we obtain

$$K\alpha_k = \lambda_k m\alpha_k$$

where
$$\alpha_k = \begin{bmatrix} \alpha_k^1 \\ \vdots \\ \alpha_k^m \end{bmatrix}$$
 can be solved by eigen decomposition of K

• Normalize α_k such that $u_k^T u_k = 1$:

$$u_k^T u_k = \sum_{i=1}^m \sum_{j=1}^m \alpha_k^i \alpha_k^j \phi(x^{(i)})^T \phi(x^{(j)}) = \alpha_k^T K \alpha_k = \lambda_k m(\alpha_k^T \alpha_k)$$

$$\|\alpha_k\|^2 = \frac{1}{\lambda_k m}$$

Learning From Data

When $\mathbb{E}[\phi(x)] \neq 0$, we need to center $\phi(x)$:

$$\widetilde{\phi}(x^{(i)}) = \phi(x^{(i)}) - \frac{1}{m} \sum_{l=1}^{m} \widetilde{\phi}(x^{(l)})$$

When $\mathbb{E}[\phi(x)] \neq 0$, we need to center $\phi(x)$:

$$\widetilde{\phi}(x^{(i)}) = \phi(x^{(i)}) - \frac{1}{m} \sum_{l=1}^{m} \widetilde{\phi}(x^{(l)})$$

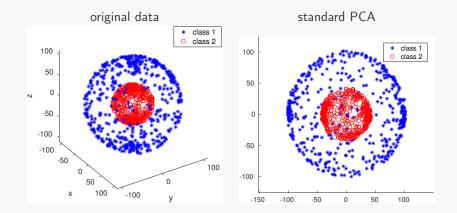
The "centralized" kernel matrix is

$$\widetilde{K}_{i,j} = \widetilde{\phi}(x^{(i)})^T \widetilde{\phi}(x^{(j)})$$

In matrix notation:

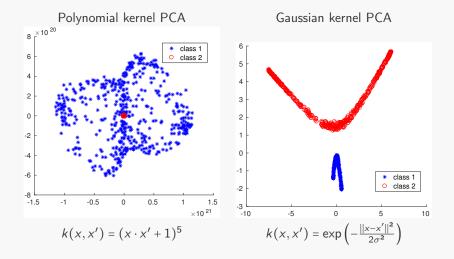
$$\widetilde{K} = K - 1_m K - K 1_m + 1_m K 1_m$$
where $1_m = \begin{bmatrix} 1/m & \dots & 1/m \\ \vdots & \ddots & \vdots \\ 1/m & \dots & 1/m \end{bmatrix} \in \mathbb{R}^{m \times m}$
Use \widetilde{K} to compute PCA

Kernel PCA Example



Learning From Data

Kernel PCA Example



Learning From Data

Discussions of kernel PCA

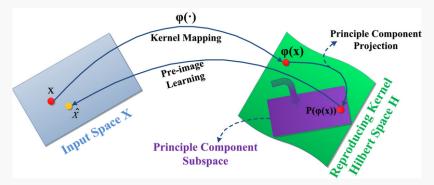
Often used in clustering, abnormality detection, etc

Discussions of kernel PCA

- Often used in clustering, abnormality detection, etc
- Requires finding eigenvectors of $m \times m$ matrix instead of $n \times n$

Discussions of kernel PCA

- Often used in clustering, abnormality detection, etc
- Requires finding eigenvectors of $m \times m$ matrix instead of $n \times n$
- Dimension reduction by projecting to k-dimensional principal subspace is generally not possible



The Pre-Image problem: reconstruct data in input space x from feature space vectors $\phi(x)$

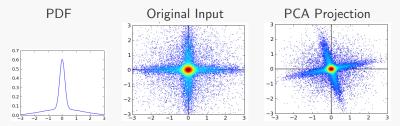
PCA Limitations

- Assumes input data is real and continuous
- ► Assumes approximate normality of input space (but may still work well on non-normally distributed data in practice) ← sample mean & covariance must be sufficient statistics

PCA Limitations

- Assumes input data is real and continuous
- ► Assumes approximate normality of input space (but may still work well on non-normally distributed data in practice) ← sample mean & covariance must be sufficient statistics

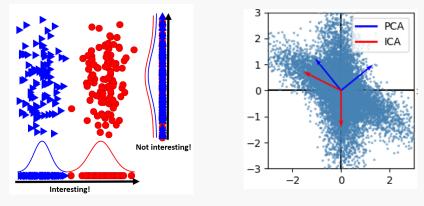
Example of strongly non-normal distributed input:



PCA Limitations

PCA results may not be useful when

- Axes of larger variance is less 'interesting' than smaller ones.
- Axes of variations are not orthogonal;



Learning From Data

Summary

Representation learning

- Transform input features into "simpler" or "interpretable" representations.
- ▶ Used in feature extraction, dimension reduction, clustering etc

Summary

Representation learning

- Transform input features into "simpler" or "interpretable" representations.
- Used in feature extraction, dimension reduction, clustering etc

Unsupervised learning algorithms:

	low dimension	sparse	disentangle variations
k-means	\checkmark	\checkmark	
spectral embedding	\checkmark		\checkmark
PCA	\checkmark		\checkmark