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POLICIES

• Acknowledgments: We expect you to make an honest effort to solve the prob-
lems individually. As we sometimes reuse problem set questions from previous years,
covered by papers and web pages, we expect the students NOT to copy, refer to,
or look at the solutions in preparing their answers (relating to an unauthorized ma-
terial is considered a violation of the honor principle). Similarly, we expect you to
not google directly for answers (though you are free to google for knowledge about
the topic). If you do happen to use other material, it must be acknowledged here,
with a citation on the submitted solution.

• Required homework submission format: You can submit homework either
as one single PDF document or as handwritten papers. Written homework needs
to be provided during the class on the due date, and a PDF document needs to be
submitted through Tsinghua’s Web Learning (http://learn.tsinghua.edu.cn/)
before the end of the due date.

• Collaborators: In a separate section (before your answers), list the names of all
people you collaborated with and for which question(s). If you did the HW entirely
on your own, PLEASE STATE THIS. Each student must understand, write, and
hand in answers of their own.

3.1. (Kernel SVM) Suppose we are given a training dataset {(x(i), y(i))}mi=1 consisting of
m independent examples, where x(i) ∈ Rn is n-dimension vector, and y(i) ∈ {−1,+1}.
When the data are not linearly separable, consider the Kernel-SVM given by

minimize
w,b

1

2
∥w∥22

subject to yi(w
Tϕ(xi) + b) ≥ 1, i = 1, . . . ,m,

(1)

where ϕ(x) is a mapping function ϕ(x) : (x1, x2) 7→
(
x2
1,
√
2x1x2, x

2
2

)
.

(a) (1 point) Prove that K(xi,xj)
def
= ϕ(xi)

Tϕ(xj) is positive semi-definite symmet-
ric, i.e. for any vector v ∈ Rm, vTKv ≥ 0 .

(b) (2 points) Given data set
{
((1,

√
2)T, 1), ((

√
2, 1)T, 1), ((2,

√
2)T,−1)

}
, derive the

optimal value of w∗ and b∗ in (1).

(c) (1 point) In (b), for new sample (4
√
2, 1)T, make your decision of classification.
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3.2. (Least-Squares SVM) Suppose we are given a training dataset {(x(i), y(i))}mi=1 con-
sisting of m independent examples, where x(i) ∈ Rn is n-dimension vector, and
y(i) ∈ {−1, 1}. The Least-Squares Support Vector Machine (LS-SVM) aims to con-
struct a linear model f(x) = wTϕ(x) + b in a given feature space, i.e. ϕ(x) : X → F,
that is able to distinguish between examples drawn from different categories C− and
C+, such that

x ∈

{
C+, f(x) ≥ 0

C−, o.w.
.

The optimal model parameters (w∗, b∗) are given by solving a constrained optimiza-
tion problem,

minimize
w,b

1

2
∥w∥22 +

1

2µ

m∑
i=1

ϵ2i

subject to yi = wTϕ(xi) + b+ ϵi, i = 1, . . . ,m,

, (2)

where µ is a regularization hyper-parameter. The primal Lagrangian for this opti-
mization problem (2) gives the unconstrained minimization problem,

L =
1

2
∥w∥22 +

1

2µ

m∑
i=1

ϵ2i −
m∑
i=1

αi[w
Tϕ(xi) + b+ ϵi − yi], (3)

where α
def
= [α1, . . . αm]

T is a vector of Lagrange multipliers.

(a) (2 points) Give the KKT optimality conditions for this problem.

(Hint: Set
∂L

∂w
=

∂L

∂b
=

∂L

∂ϵi
=

∂L

∂αi

= 0)

(b) (2 points) Denoting that K(x(i),x(j))
def
=

〈
ϕ(x(i)), ϕ(x(j))

〉
, prove that[

K + µI 1
1T 0

] [
α∗

b∗

]
=

[
y
0

]
.

3.3. (Back Propagation)(2 points) Consider the backpropagation on the hidden layer in
a neural network. Given a batch of input feature X = [x(1), x(2), · · · , x(M)]T (Shape:
M × D0), a set of weight {W ∈ RD0×D1 , b ∈ RD1×1}, and element-wise Sigmoid
activation function σ(·). The forward propagation on this hidden layer is given by:

F1 = XW + 1M bT , F2 = σ(F1)

where 1M is a vector composed of 1 in length M . σ(·) is element-wise Sigmoid
function:

[σ(X)]ij =
1

1 + exp(−Xij)

Then in the backpropagation stage, suppose we already know the gradients for some
scalar loss function l with respect to F2 as ∇F2l. Proceed the backpropagation and
show that ∇F1l = (∇F2l)⊙ F2 ⊙ (1− F2). where (A⊙ B)ij = AijBij is element-wise
production.


